Proprieta meccaniche dei fluidi
|
|
|
- Giuliana Casini
- 10 anni fa
- Visualizzazioni
Transcript
1 Proprieta meccaniche dei fluidi 1. Definizione di fluido: liquido o gas 2. La pressione in un fluido 3. Equilibrio nei fluidi: legge di Stevino 4. Il Principio di Pascal 5. Il barometro di Torricelli 6. Il principio di Archimede 7. Moto in un fluido: fluido ideale 8. Regime stazionario. Portata 9. Il teorema di Bernoulli
2 I fluidi Una sostanza che non e dotata di forma propria e detta fluido. I fluidi assumono la forma del recipiente che li contiene. Sono fluidi : le sostanze liquide - che hanno volume definito ed una superficie limite le sostanze gassose - che non volume definito e tendono ad occupare tutto il volume a disposizione. La densita dei liquidi ρ = M/V e molto maggiore di quella dei gas (di circa un fattore 10 3 ) I liquidi sono incompressibili (non variano il volume se sono sottoposti ad una forza esterna) mentre i gas sono facilmente compressibili. Le proprieta dei liquidi e dei solidi dipendono dal loro struttura microscopica, ovvero dal legame tra le molecole. Inoltre dal punto di vista meccanico il fluido si puo pensare composto da elementi infinitesimi di massa dm = ρ dv, che scorrono tra loro in una qualunque direzione.
3 La pressione in un fluido Non e possibile parlare di una forza applicata ad un fluido. Per ciascun elemento del fluido si considerano: -forze di volume (applicate a tutto il volume dv dell elemento di fluido) come la forza peso df = g dm = g ρ dv -forze di superficie, agenti sulla superficie infinitesima dell elemento di fluido. In generale si definisce pressione p il rapporto tra una forza agente su una superficie infinitesima e la superficie stessa: p = df/ds -Ne segue che la forza di superficie e data da : df = p ds. -La pressione in un fluido non e direzionale, ma e una quantita scalare. Tale proprieta segue dal principio di solidificazione ovvero dallo stato meccanico di quiete di una parte qualunque del fluido. - L unita di misura della pressione e 1 Pa = 1 N/m 2 - Un suo multiplo importante e 1 bar = 10 5 Pa - La pressione atmosferica 1 atm = 1,01325 bar
4 Equilibrio nei fluidi Per studiare come puo variare la pressione all interno di un fluido si deve imporre che il fluido sia in quiete. Ovvero tutte le parti del fluido non subiscono spostamenti, hanno velocita ed accelerazione nulle. Allora la risultante delle forze di volume e di superficie e nulla: Fv + Fs = 0 Le forze di superficie agenti in una direzione sono due, per le due facce dell unita di volume: Fs = p(z)ds p(z+dz)ds = - (dp/dz) dzds = - (dp/dz) dv Le forze di volume sono date da: Fv = f z ρ dv dove f e la forza per unita di massa agente in direzione z. Allora la condizione di equilibrio insegna: (dp/dz) = f z ρ ed analogamente per le altre componenti: (dp/dx) = f x ρ (dp/dy) = f y ρ
5 Equilibrio nei fluidi: la legge di Stevino Nel caso in cui agisca la forza di volume data dalla forza peso: f z = -g f x = 0 f y = 0 allora la condizione di equilibrio diventa: (dp/dz) = -g ρ (dp/dx) = 0 (dp/dy) = 0 e per la pressione si ha che: p(x)= costante, p(y)= costante p(z) = p(z 0 ) - g ρ (z-z 0 ) La pressione e costante lungo le superfici orizzontali (dette isobariche) e varia linearmente con la quota. Se consideriamo il liquido in un contenitore, sia p 0 la pressione agente sulla superficie limite del liquido (z 0 = 0 p(z 0 )= p 0. Alla profondita z = -h la pressione e data da: p(h) = p 0 + g ρ h Questa e la legge di Stevino: la pressione in un liquido a densita costante cresce linearmente con la profondita. Inoltre sulle superfici a pari pressione la densita deve essere costante: la superficie libera di un liquido in quiete deve essere orizzontale.
6 Il principio di Pascal Nei punti della superficie libera di un fluido in un contenitore sottoposto alla forza peso, la pressione e pari a quella esterna ed assume in tutti i punti lo stesso valore. Dunque se la pressione esterna varia la pressione interna variera secondo la relazione: p = p(h) = p ext + g ρ h = p ext + p La relazione p = p ext + p e detta principio di Pascal. Stabilisce che ogni cambiamento di pressione esterna su un fluido, si distribuisce in ogni punto del fluido. Applicando la legge di Stevino ai punti di un fluido posti alla stessa profondita si deduce il principio dei vasi comunicanti: il liquido assume in vari recipienti comunicanti ed aperti allo stesso ambiente lo stesso livello rispetto al suolo.
7 Il barometro di Torricelli Torricelli fu il primo a sostenere che l atmosfera esercita una pressione e fu il primo a misurarne il valore. Lo strumento fu un barometro a mercurio: il peso della colonnina di mercurio in un ramo chiuso ( e sopra il quale era presente il vuoto) su un recipiente aperto determina una pressione sul fluido, controbilanciata dalla pressione dell atmosferica. L altezza della colonnina di mercurio fornisce l equivalente della pressione atmosferica: p 0 = ρ g h Nel suo esperimento Torricelli osservo che la colonnina di mercurio nelle condizioni di equilibrio si innalza di 760 mm. Dal valore della densita del mercurio ρ = Kg/m 3 segue che p 0 = x 9.8 x Pa = Pa = 1 atm
8 Il principio di Archimede Consideriamo un fluido sottoposto alla gravita, ed isoliamone idealmente un volume finito V di forma qualsiasi. La risultante delle forze di pressione esercitate sulla parte is olata dal resto del fluido e uguale ed opposta alla forza peso esercitata dal volume del fluido isolato. Fv + Fs = 0 ma Fv = mg = -ρvg dunque Fs = ρvg z Se ora sostituiamo al volume V un volume identico di una altra sostanza qualsiasi, la risultante delle forze di superficie e la stessa, ma le forze di volume cambiano con la densita ρ della sostanza. Non vi e piu una condizione di equilibrio. La forza risultante e pari a: Fv + Fs = (-ρ Vg + ρvg) z = (ρ - ρ ) Vg z Se ρ > ρ allora la forza ha la stessa direzione di g (ovvero diretta verso il basso) ed il corpo introdotto scende nel fluido. Se ρ < ρ allora la forza ha direzione opposta a quella di g (ovvero diretta verso l alto ) ed il corpo introdotto sale nel fluido. In entambi i casi: il corpo riceve un spinta verso l alto pari a Fs ovvero pari al peso del fluido spostato. Principio di Archimede Tale spinta e applicata al centro di massa del fluido spostato. Se il corpo ha il baricentro spostato la spinta di Archimede puo esercitare un momento.
9 Moto in un fluido: fluidi ideali Quando si verifica una situazione di scorrimento tra due elementi di fluido compare tra essi una forza tangenziale detta di attrito interno, con verso sempre opposto alla velocita relativa dei due fluidi. Le forze esercitate da due elementi tangenti, l uno sull altro, sono uguali ed opposte. Questa forza di attrito fa si che nei fluidi ideali la velocita di scorrimento sia massima al cntro di un condotto e diminuisca progressivamente fino ad uno strato limite di contatto con le pareti del condotto. Si chiama fluido ideale il fluido per il quale l attrito interno e nullo ed il fluido e incompressibile. Dunque se la densita e costante, una parte del fluido assumera sempre lo stesso volume, anche se in moto rispetto ad altre parti del fluido.
10 Regime stazionario Consideriamo un fluido in moto (ad esempio in un condotto) possiamo studiarne le caratteristiche del moto -seguendo il moto di un particolare elemento del fluido sottoposto alle forze risultanti agenti (descrizione Lagrangiana), -fissando l attenzione su un determinato punto P della massa fluida e studiando la velocita v che un elemento di fluido che passa nel punto P considerato assume in funzione del tempo (descrizione Euleriana) -Nel caso della descrizione Euleriana consideriamo il caso in cui la velocita, pur cambiando da punto a punto, sia in ciascun punto indipendente dal tempo. Questa situazione fisica e detta di regime stazionario. (In caso contrario si parla di regime variabile.) -Le linee che in ogni punto hanno direzione tangente alla velocita sono dette linee di corrente. Esse sono costanti in regime stazionario. Le linee di flusso che passano attraverso una sezione formano un tubo di flusso.
11 Portata Consideriamo un tubo di flusso di sezione infinitesima ortogonale alle linee di corrente. Il prodotto v ds = dq e detto portata. Rappresenta tutto il volume del fluido passato attraverso la sezione infinitesima in un secondo. Se il fluido e ideale, ovvero incomprimibile, la sua densita e costante, allora in condizioni di regime stazionario, (in cui le linee di corrente non cambiano) la portata deve essere la stessa in qualunque sezione. Fissate due qualunque sezioni del tubo, la massa che entra nell unita di tempo deve anche uscirne, se il fluido e incomprimibile. Allora: In regime stazionario se la densita e costante, e costante la portata di un tubo di flusso infinitesimo: v ds = costante Allora dove la sezione aumenta diminuisce la velocita mentre se la sezione diminuisce, aumenta la velocita del tubo di flusso. Se v m e la velocita media del fluido in una sezione S: v m S = costante
12 Il teorema di Bernoulli La proprieta fondamentale dei fluidi ideali e nota come il Teorema di Bernoulli. Consideriamo un un fluido a densita costante che scorre in regime stazionario. Una certa quantita di fluido compreso tra due sezioni si sposta attarverso il tubo di flusso. Vogliamo ricavare la relazione tra velocita e pressione del fluido alle varie sezioni del condotto. Nello spostamento l energia potenziale cambia solo per le parti del fluido che corrispodono ad una variazione globale di quota. Il lavoro della forza peso e pari a: dw v = - du = - dm g (z 2 z 1 ) = -ρ g (z 2 z 1 ) dv Le forze di pressione dovute alle pareti compiono un lavoro nullo, mentre le forze di pressione a monte ed a valle forniscono un lavoro: dw s = F 1 dx 1 F 2 dx 2 = p 1 ds 1 dx 1 p 2 ds 2 dx 2 = - (p 2 -p 1 )dv Il lavoro compiuto e pari alla variazione di energia cinetica: dt = ½ dm v 22 - ½ dm v 12 = ½ ρ dv (v 22 - v 12 )
13 Il teorema di Bernoulli Si ottiene allora che: dw v + dw s = dt -ρ g (z 2 z 1 ) dv - (p 2 -p 1 )dv = ½ ρ dv (v 22 - v 12 ) separando i temini 1 e 2 si ottiene: p + ρ g z + ½ ρ v 2 = costante In un fluido ideale in moto in regime stazionario la somma della pressione, della densita di energia potenziale per unita di volume e della densita di energia cinetica per unita di volume e costante lungo il condotto, ovvero lungo qualunque tubo di flusso. Si possono calcolare numerosi effetti tramite questo teorema (es teorema di Torricelli)
Statica e dinamica dei fluidi. A. Palano
Statica e dinamica dei fluidi A. Palano Fluidi perfetti Un fluido perfetto e incomprimibile e indilatabile e non possiede attrito interno. Forza di pressione come la somma di tutte le forze di interazione
Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI
Pressione EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Cos è la pressione? La pressione è una grandezza che lega tra di loro l intensità della forza e l aerea della superficie su cui viene esercitata
Capitolo 03 LA PRESSIONE ATMOSFERICA. 3.1 Esperienza del Torricelli 3.2 Unità di misura delle pressioni
Capitolo 03 LA PRESSIONE ATMOSFERICA 3.1 Esperienza del Torricelli 3.2 Unità di misura delle pressioni 12 3.1 Peso dell aria I corpi solidi hanno un loro peso, ma anche i corpi gassosi e quindi l aria,
MASSA VOLUMICA o DENSITA
MASSA VOLUMICA o DENSITA Massa volumica di una sostanza: è la massa di sostanza, espressa in kg, che occupa un volume pari a 1 m 3 1 m 3 di aria ha la massa di 1,2 kg 1 m 3 di acqua ha la massa di 1000
TEORIA CINETICA DEI GAS
TEORIA CINETICA DEI GAS La teoria cinetica dei gas è corrispondente con, e infatti prevede, le proprietà dei gas. Nella materia gassosa, gli atomi o le molecole sono separati da grandi distanze e sono
Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo
Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione
LEGGE DI STEVINO. La pressione non dipende dalla superficie della base del recipiente
LA PRESSIONE NEI LIQUIDI DOVUTA ALLA FORZA PESO In condizioni di equilibrio la superficie libera di un liquido pesante deve essere piana ed orizzontale. Liquido di densitàρ Ogni strato orizzontale di liquido
ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica
1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio
ELEMENTI DI IDROSTATICA IDROSTATICA L'idrostatica (anche detta fluidostatica) è una branca della meccanica dei fluidi che studiailiquidi liquidiin instato statodi diquiete quiete. Grandezze caratteristiche
Possiamo vedere in azione questo principio nell impianto frenante delle automobili, o nei ponti idraulici delle officine.
La pressione Pressione: intensità della forza F che agisce perpendicolarmente alla superficie S. La formula diretta è: Nota bene che: 1. la pressione è una grandezza scalare, F p = S 2. la forza è espressa
LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante
IDRAULICA LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante 2 LEGGE DI STEVIN Z = ALTEZZA GEODETICA ENERGIA POTENZIALE PER UNITA DI PESO p /
CAPITOLO 5 IDRAULICA
CAPITOLO 5 IDRAULICA Cap. 5 1 FLUIDODINAMICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO'
Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.
Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.
Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1
Gas e gas perfetti 1 Densita Densita - massa per unita di volume Si misura in g/cm 3 ρ = M V Bassa densita Alta densita Definizione di Pressione Pressione = Forza / Area P = F/A unita SI : 1 Nt/m 2 = 1
LA FORZA. Il movimento: dal come al perché
LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1
Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia
Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione Foronomia In idrostatica era lecito trascurare l attrito interno o viscosità e i risultati ottenuti valevano sia per i liquidi
LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi
LO STATO GASSOSO Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi STATO GASSOSO Un sistema gassoso è costituito da molecole
Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia
Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione
Gas perfetti e sue variabili
Gas perfetti e sue variabili Un gas è detto perfetto quando: 1. è lontano dal punto di condensazione, e quindi è molto rarefatto 2. su di esso non agiscono forze esterne 3. gli urti tra le molecole del
Esercitazione 5 Dinamica del punto materiale
Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal
Il lavoro nelle macchine
Il lavoro nelle macchine Corso di Impiego industriale dell energia Ing. Gabriele Comodi I sistemi termodinamici CHIUSO: se attraverso il contorno non c è flusso di materia in entrata ed in uscita APERTO:
Idrogeologia. Velocità media v (m/s): nel moto permanente è inversamente proporzionale alla superficie della sezione. V = Q [m 3 /s] / A [m 2 ]
Idrogeologia Oltre alle proprietà indici del terreno che servono a classificarlo e che costituiscono le basi per utilizzare con facilità l esperienza raccolta nei vari problemi geotecnici, è necessario
LABORATORIO DI CHIMICA GENERALE E INORGANICA
UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli
GAS. I gas si assomigliano tutti
I gas si assomigliano tutti Aeriforme liquido solido GAS Descrizione macroscopica e microscopica degli stati di aggregazione della materia Fornendo energia al sistema, le forze di attrazione tra le particelle
9. Urti e conservazione della quantità di moto.
9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due
Energia potenziale elettrica
Energia potenziale elettrica Simone Alghisi Liceo Scientifico Luzzago Novembre 2013 Simone Alghisi (Liceo Scientifico Luzzago) Energia potenziale elettrica Novembre 2013 1 / 14 Ripasso Quando spingiamo
Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013
Preparazione alle gare di II livello delle Olimpiadi della Fisica 01 Incontro su temi di termodinamica 14/1/01 Giuseppina Rinaudo - Dipartimento di Fisica dell Università di Torino Sommario dei quesiti
Cap 3.1- Prima legge della DINAMICA o di Newton
Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria
F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.
Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,
Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.
Lavoro Un concetto molto importante è quello di lavoro (di una forza) La definizione di tale quantità scalare è L= F dl (unità di misura joule J) Il concetto di lavoro richiede che ci sia uno spostamento,
Stati di aggregazione della materia unità 2, modulo A del libro
Stati di aggregazione della materia unità 2, modulo A del libro Gli stati di aggregazione della materia sono tre: solido, liquido e gassoso, e sono caratterizzati dalle seguenti grandezze: Quantità --->
. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d
Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche
Modulo di Meccanica e Termodinamica
Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e
DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi
DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato
GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso
GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO
Capitolo 1 ( Cenni di chimica/fisica di base ) Pressione
PRESSIONE: La pressione è una grandezza fisica, definita come il rapporto tra la forza agente ortogonalmente 1 su una superficie e la superficie stessa. Il suo opposto (una pressione con verso opposto)
Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti
Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti Quesito 1 Un punto materiale di massa 5 kg si muove di moto circolare uniforme con velocità tangenziale 1 m/s. Quanto
p atm 1. V B ; 2. T B ; 3. W A B 4. il calore specifico a volume costante c V
1 Esercizio (tratto dal Problema 13.4 del Mazzoldi 2) Un gas ideale compie un espansione adiabatica contro la pressione atmosferica, dallo stato A di coordinate, T A, p A (tutte note, con p A > ) allo
CAFFE` Il segreto è nel fisico
CAFFE` Il segreto è nel fisico Preparata la macchina del caffè, e messala sul fuoco: L acqua raggiunge rapidamente la temperatura di ebollizione (100 C). Lo spazio del serbatoio lasciato libero viene occupato
Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo.
Introduzione Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. riassunto Cosa determina il moto? Forza - Spinta di un
Meteorologia Sinottica Proprietà dell Atmosfera PRESSIONE ATMOSFERICA. (parte 3^) 1
PRESSIONE ATMOSFERICA (parte 3^) 1 PRESSIONE ATMOSFERICA misura della pressione atmosferica: barometri barometro a mercurio (Torricelli( Torricelli) è il più accurato necessita di correzioni per: altitudine
Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012
Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100
Note a cura di M. Martellini e M. Zeni
Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 6 Energia e Lavoro Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte
Pressione. www.easymaths.altervista.org. 01 - Pressione.
Pressione 01 - Pressione La forza è una grandezza fisica caratterizzata dal fatto di essere in grado di modificare lo stato di moto di un corpo o di modificarne la struttura interna Supponiamo che una
v = 4 m/s v m = 5,3 m/s barca
SOLUZIONI ESERCIZI CAPITOLO 2 Esercizio n.1 v = 4 m/s Esercizio n.2 v m = 5,3 m/s = 7 minuti e 4 secondi Esercizio n.3 Usiamo la seguente costruzione grafica: fiume 1 km/h barca 7 km/h La velocità della
2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà
2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà 1 I liquidi e loro proprietà 2 Proprietà Generali dei Gas I gas possono essere espansi all infinito. I gas occupano i loro contenitori uniformemente
Lezione 11: Forze e pressioni nei fluidi
Lezione 11 - pag.1 Lezione 11: Forze e pressioni nei fluidi 11.1. Dalla forza alla pressione Abbiamo visto che la Terra attrae gli oggetti solidi con una forza, diretta verso il suo centro, che si chiama
Forze come grandezze vettoriali
Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due
GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω
GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,
L E L E G G I D E I G A S P A R T E I
L E L E G G I D E I G A S P A R T E I Variabili di stato Equazioni di stato Legge di Boyle Pressione, temperatura, scale termometriche Leggi di Charles/Gay-Lussac Dispense di Chimica Fisica per Biotecnologie
Concetto di forza. 1) Principio d inerzia
LA FORZA Concetto di forza Pi Principi ii dll della Dinamica: i 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale i e forza peso Accelerazione di gravità Massa, peso,
Lavoro di una forza costante
Lavoro ed energia Per spostare un oggetto o per sollevarlo dobbiamo fare un lavoro Il lavoro richiede energia sotto varie forme (elettrica, meccanica, ecc.) Se compio lavoro perdo energia Queste due quantità
CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2
COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto
LA CORRENTE ELETTRICA CONTINUA
LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico
a t Esercizio (tratto dal problema 5.10 del Mazzoldi)
1 Esercizio (tratto dal problema 5.10 del Mazzoldi) Una guida semicircolare liscia verticale di raggio = 40 cm è vincolata ad una piattaforma orizzontale che si muove con accelerazione costante a t = 2
Quantità di moto. Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v.
Quantità di moto Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v. La seconda legge di Newton può essere scritta con la quantità di moto: d Q F =
Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti
Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas
Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie
Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una
19 Il campo elettrico - 3. Le linee del campo elettrico
Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,
Dinamica II Lavoro di una forza costante
Dinamica II Lavoro di una forza costante Se il punto di applicazione di una forza subisce uno spostamento ed esiste una componente della forza che sia parallela allo spostamento, la forza compie un lavoro.
È una grandezza fisica FONDAMENTALE, SCALARE UNITÀ DI MISURA NEL S.I. : K (KELVIN)
È una grandezza fisica FONDAMENTALE, SCALARE UNITÀ DI MISURA NEL S.I. : K (KELVIN) È STRETTAMENTE LEGATA ALLA VELOCITÀ DI VIBRAZIONE DELLE MOLECOLE IN UN CORPO: SE LA TEMPERATURA DI UN CORPO AUMENTA LE
28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6
28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di
GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA
8. LA CONSERVAZIONE DELL ENERGIA MECCANICA IL LAVORO E L ENERGIA 4 GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA Il «giro della morte» è una delle parti più eccitanti di una corsa sulle montagne russe. Per
Lezione 4: I profili alari e le forze
Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezione 4: I profili alari e le forze aerodinamiche Prof. D. P. Coiro [email protected] www.dias.unina.it/adag/ Corso di Meccanica del Volo - Mod. Prestazioni
Esercitazione VIII - Lavoro ed energia II
Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito
Acqua azzurra, acqua chiara. Istituto Comprensivo della Galilla Scuola Media Dessì - Ballao
Acqua azzurra, acqua chiara Istituto Comprensivo della Galilla Scuola Media Dessì - Ballao Proprietà fisiche Ecosistemi acquatici Origine della vita Ciclo dell acqua Acqua Scoperte Sensazioni Leggi La
Complementi di Termologia. I parte
Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si
Temperatura e Calore
Temperatura e Calore 1 Temperatura e Calore Stati di Aggregazione Temperatura Scale Termometriche Dilatazione Termica Il Calore L Equilibrio Termico La Propagazione del Calore I Passaggi di Stato 2 Gli
L EQUILIBRIO 1. L EQUILIBRIO DEI SOLIDI. Il punto materiale e il corpo rigido. L equilibrio del punto materiale
L EQUILIBRIO 1. L EQUILIBRIO DEI SOLIDI Il punto materiale e il corpo rigido Un corpo è in equilibrio quando è fermo e continua a restare fermo. Si intende, per punto materiale, un oggetto così piccolo
Gas, liquidi, solidi. Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni).
Gas, liquidi, solidi Tutti i gas raffreddati liquefano Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni). Sostanza T L ( C) T E ( C) He - -269 H 2-263
I poli magnetici isolati non esistono
Il campo magnetico Le prime osservazioni dei fenomeni magnetici risalgono all antichità Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro Un ago magnetico libero
Corso di Laurea in Farmacia Verifica in itinere 3 dicembre 2014 TURNO 1
Corso di Laurea in Farmacia Verifica in itinere 3 dicembre 2014 TURNO 1 COMPITO A Un blocco di massa m 1 = 1, 5 kg si muove lungo una superficie orizzontale priva di attrito alla velocità v 1 = 8,2 m/s.
Cenni di Teoria Cinetica dei Gas
Cenni di Teoria Cinetica dei Gas Introduzione La termodinamica descrive i sistemi termodinamici tramite i parametri di stato (p, T,...) Sufficiente per le applicazioni: impostazione e progettazione di
MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME
6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice
Termodinamica: legge zero e temperatura
Termodinamica: legge zero e temperatura Affrontiamo ora lo studio della termodinamica che prende in esame l analisi dell energia termica dei sistemi e di come tale energia possa essere scambiata, assorbita
IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti
IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti ATTENZIONE Quest opera è stata scritta con l intenzione di essere un comodo strumento di ripasso, essa non dà informazioni
Lezione 14: L energia
Lezione 4 - pag. Lezione 4: L energia 4.. L apologo di Feynman In questa lezione cominceremo a descrivere la grandezza energia. Per iniziare questo lungo percorso vogliamo citare, quasi parola per parola,
Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA
Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi
APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA
APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA Concetti e grandezze fondamentali CAMPO ELETTRICO: è un campo vettoriale di forze,
EQUILIBRIO DEI FLUIDI
ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ EQUILIBRIO DEI FLUIDI CLASSI III A, III B E IV A Prof. Erasmo Modica [email protected] SOLIDI, LIQUIDI E GAS La divisione della materia nei suoi tre
CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA
CORRENTE E TENSIONE ELETTRICA La conoscenza delle grandezze elettriche fondamentali (corrente e tensione) è indispensabile per definire lo stato di un circuito elettrico. LA CORRENTE ELETTRICA DEFINIZIONE:
ISTITUTO STATALE DI ISTRUZIONE SUPERIORE EDITH STEIN.
PIANO DI LAVORO DELLA DISCIPLINA: FISICA CLASSI: SECONDE CORSO: LICEO SCIENTIFICO AS 2014-2015 Linee generali dell insegnamento della fisica nel liceo scientifico, da indicazioni ministeriali In particolare
Verifica sperimentale del principio di conservazione dell'energia meccanica totale
Scopo: Verifica sperimentale del principio di conservazione dell'energia meccanica totale Materiale: treppiede con morsa asta millimetrata treppiede senza morsa con due masse da 5 kg pallina carta carbone
PROBLEMA 1. Soluzione
PROBLEMA 1 Prendendo come riferimento la pressione atmosferica di 1013 mbar agente sulla superficie libera di un corso d acqua, risulta che la pressione idrostatica sott acqua raddoppia a una profondità
bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo
Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.
2. L ENERGIA MECCANICA
. L ENERGIA MECCANICA.1 Il concetto di forza La forza può essere definita come «azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso».
Campo elettrico per una carica puntiforme
Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici
MISURE CON IL MANOMETRO E DETERMINAZIONE DI DENSITA RELATIVE
MISURE CON IL MANOMETRO E DETERMINAZIONE DI DENSITA RELATIVE Materiali -Manometro: tubo a U fissato verticalmente ad un sostegno, con un braccio libero e l altro collegato ad un tubo flessibile di plastica
MECCANICA dei FLUIDI
MECCNIC dei LUIDI La meccanica dei fluidi si occupa dello studio di liquidi e aeriformi in quiete o in movimento. L IDROTTIC studia le leggi che regolano lo stato dei liquidi in quiete. L IDRODINMIC studia
2. La disequazione 9 (3x 2 + 2) > 16 (x - 3) è soddisfatta: A) sempre B) solo per x < 0 C) solo per x > 2/3 D) mai E) solo per x < 2/3
MATEMATICA 1. Per quali valori di x è x 2 > 36? A) x > - 6 B) x < - 6, x > 6 C) - 6 < x < 6 D) x > 6 E) Nessuno 2. La disequazione 9 (3x 2 + 2) > 16 (x - 3) è soddisfatta: A) sempre B) solo per x < 0 C)
Danilo Saccoccioni - LAVORO - - ENERGIA MECCANICA - - POTENZA -
Danilo Saccoccioni - LVORO - - ENERGI MECCNIC - - POTENZ - LVORO COMPIUTO D UN ORZ RELTIVMENTE UNO SPOSTMENTO Diamo la definizione di lavoro compiuto da una forza relativamente a uno spostamento, distinguendo
CORRENTE ELETTRICA. φ 1
COENTE ELETTCA lim t Q/ tdq/dt ntensità di corrente φ φ > φ φ La definizione implica la scelta di un verso positivo della corrente. Per convenzione, il verso positivo della corrente è parallelo al moto
FAM. 1. Sistema composto da quattro PM come nella tabella seguente
Serie 11: Meccanica IV FAM C. Ferrari Esercizio 1 Centro di massa: sistemi discreti Determina il centro di massa dei seguenti sistemi discreti. 1. Sistema composto da quattro PM come nella tabella seguente
L H 2 O nelle cellule vegetali e
L H 2 O nelle cellule vegetali e il suo trasporto nella pianta H 2 O 0.96 Å H O 105 H 2s 2 2p 4 tendenza all ibridizzazione sp 3 H δ+ O δ- δ+ 1.75 Å H legame idrogeno O δ- H H δ+ δ+ energia del legame
LA CORRENTE ELETTRICA Prof. Erasmo Modica [email protected]
LA CORRENTE ELETTRICA Prof. Erasmo Modica [email protected] L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.
Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.
Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,
FISICA DELLA BICICLETTA
FISICA DELLA BICICLETTA Con immagini scelte dalla 3 SB PREMESSA: LEGGI FISICHE Velocità periferica (tangenziale) del moto circolare uniforme : v = 2πr / T = 2πrf Velocità angolare: ω = θ / t ; per un giro
LA CORRENTE ELETTRICA
L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso
Capitolo 13: L offerta dell impresa e il surplus del produttore
Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:
