Soluzione numerica di equazioni differenziali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzione numerica di equazioni differenziali"

Transcript

1 Soluzione numerica di equazioni differenziali Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari Soluzione numerica di equazioni differenziali p.1/10

2 Problema Si considera la soluzione numerica del seguente problema di Cauchy (problema a valori iniziali) y = f(t,y) t [t 0, t f ] y(t 0 ) = y 0 Si suppone che il problema abbia un unica soluzione (ad esempio che la funzione f : [t 0, t f ] R R sia Lipshitziana). Essendo la soluzione y una funzione, il metodo numerico è in grado di calcolare un approssimazione di essa in un numero finito di punti dell intervallo. Soluzione numerica di equazioni differenziali p.2/10

3 Approssimazione Sia h = t f t 0 n, dove n rappresenta il numero di punti in cui vogliamo calcolare la soluzione. Indichiamo con t i = t 0 + ih, i = 1,...,n, la discretizzazione dell intervallo [t 0,t f ]. Il metodo numerico più semplice si ottiene dalla formula di Taylor y(t i+1 ) = y(t i ) + hy (t i ) + h2 2 y (ξ i ). Trascurando l errore e sostituendo al valore esatto y(t i ) la sua approssimazione numerica y i si ha il metodo di Eulero esplicito y i+1 = y i + hf(t i,y i ). Soluzione numerica di equazioni differenziali p.3/10

4 Metodo di Eulero esplicito noto y 0, questo metodo determina ricorsivamente y 1,y 2,... il metodo si può anche ottenere approssimando y (t i ) con il rapporto incrementale y(t i+1) y(t i ) h graficamente il metodo corrisponde ad approssimare y(t 1 ) con il valore dato dalla retta tangente ad y(t) nel punto t 0 calcolata nel punto t 1 τ i = h2 2 y (ξ i ) è detto errore di troncamento locale e rappresenta solo l errore commesso al passo (i + 1)-esimo, supposto y i = y(t i ) Soluzione numerica di equazioni differenziali p.4/10

5 Errore Per calcolare l errore vero è necessario tener presente che l errore commesso al passo i viene amplificato al passo successivo, ed ad esso viene inoltre aggiunto l errore al passo i + 1. Posto e i = y(t i ) y i, si ha (considerando le formule precedenti) e i+1 = e i + h(f(t i,y(t i )) f(t i,y i )) + τ i. L obiettivo è di avere formule che mantengano l errore limitato quando il numero di punti considerato è basso, e che siano convergenti quando n (h 0). Soluzione numerica di equazioni differenziali p.5/10

6 Problema test scalare Si considera il problema con f(t,y) = λy di cui si conosce la soluzione teorica y(t) = e λ(t t 0) y 0. Tale soluzione oscilla se λ è complesso mentre è monotona se λ è reale. Inoltre: tende a zero se la parte reale di λ è negativa tende a infinito se la parte reale di λ è positiva è limitata se la parte reale di λ è nulla Il caso Re(λ) 0 corrisponde ad un problema ben condizionato e quindi al metodo numerico si richiede che sia stabile quando risolve tale problema. Soluzione numerica di equazioni differenziali p.6/10

7 Metodo di Eulero esplicito Si ha y i+1 = (1 + hλ)y i = (1 + hλ) i+1 y 0 da cui si ottiene che se 1 + hλ < 1 la soluzione tende a 0, viceversa se è maggiore di 1 tende a infinito (se è uguale a 1 allora la soluzione resta limitata. Quindi il metodo è stabile sull asse reale per λ [ 2, 0] e nel caso complesso nel cerchio di centro 1 e raggio 1. Questa è detta regione di assoluta stabilità. Analogamente l errore è e i 1 + hλ i+1 1 h 2 M, dove M 1 + hλ 1 2 è una maggiorazione della derivata seconda di y. Se h 0, allora 1 + hλ i+1 0, inoltre 1 + hλ > 0 e quindi e i hm 2 λ. Il metodo è convergente con ordine di convergenza 1 Soluzione numerica di equazioni differenziali p.7/10

8 Stabilità, consistenza, convergenza Il metodo numerico y i+1 = s(q)y i, q = hλ che approssima l equazione y = λy, Re(λ) < 0 si dice assolutamente stabile in q se s(q) < 1 convergente con ordine p se τ i+1 = O(h p+1 ) consistente se p 1 Soluzione numerica di equazioni differenziali p.8/10

9 Metodo di Eulero implicito y i+1 = y i + hf(t i+1,y i+1 ) τ i = O(h 2 ); ordine 2 e i+1 = 1 1 hλ e i hλ τ i = regione di assoluta stabilità: n ( ) i j 1 1 τ j 1 hλ 1 1 hλ 1, cioè la j=0 regione esterna al cerchio di centro 1 e raggio 1 il metodo richiede l applicazione del metodo di Newton per calcolare y i+1, noto y i Soluzione numerica di equazioni differenziali p.9/10

10 Metodo dei trapezi y i+1 = y i + h 2 (f(t i,y i ) + f(t i+1,y i+1 )) τ i = O(h 3 ); ordine 2 e i+1 = 1 + hλ/2 1 hλ/2 e i hλ/2 1 hλ/2 τ i = n j=0 ( ) i j hλ/2 τ j 1 hλ/2 1, cioè la regione di assoluta stabilità: 1 + hλ/2 1 hλ/2 regione del piano complesso con parte reale negativa il metodo richiede l applicazione del metodo di Newton per calcolare y i+1, noto y i Soluzione numerica di equazioni differenziali p.10/10

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali 1 Francesca Mazzia Dipartimento di Matematica Università di Bari Equazioni Differenziali 2 Consideriamo il sistema di equazioni differenziali: con condizione iniziale: y = f(t, y) (6.1) y(t 0 ) = y 0,

Dettagli

Cenni sulla risoluzione numerica di equazioni differenziali ordinarie (ODE) f(t, y(t))dt. y (t)dt = y(x) y(x 0 ) =

Cenni sulla risoluzione numerica di equazioni differenziali ordinarie (ODE) f(t, y(t))dt. y (t)dt = y(x) y(x 0 ) = Cenni sulla risoluzione numerica di equazioni differenziali ordinarie (ODE) Problema di Cauchy. y (x) = f(x, y(x)) x [, T ] y( ) = y 0 Formulazione integrale. x Approssimazione numerica. y (t)dt = y(x)

Dettagli

CAPITOLO VIII EQUAZIONI DIFFERENZIALI. Consideriamo il seguente problema di Cauchy per i sistemi di equazioni differenziali del primo ordine :

CAPITOLO VIII EQUAZIONI DIFFERENZIALI. Consideriamo il seguente problema di Cauchy per i sistemi di equazioni differenziali del primo ordine : CAP8-DU versione aggiornata al 4/1/95 CAPITOLO VIII EQUAZIONI DIFFERENZIALI Consideriamo il seguente problema di Cauchy per i sistemi di equazioni differenziali del primo ordine : y'(t) = f(t,y(t)) y(t

Dettagli

Assoluta stabilità e metodi multipasso. Assoluta stabilità

Assoluta stabilità e metodi multipasso. Assoluta stabilità Assoluta stabilità e metodi multipasso Elena Loli Piccolomini-metodi multipasso p.1/33 Assoluta stabilità La convergenza è un concetto fondamentale: non avrebbe senso un metodo non convergente. la convergenza

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2012-2013 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I

Dettagli

Analisi Numerica I - Secondo appello a.a Correzione 10 febbraio 2017

Analisi Numerica I - Secondo appello a.a Correzione 10 febbraio 2017 Analisi Numerica I - Secondo appello a.a. 06 07 - Correzione 0 febbraio 07 Esercizio Si consideri il sistema lineare Ax = b con A = 0 α β, α, β R b = 0 8. 0. Dire per quali valori di α e β il metodo del

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 2 3 Problemi ai valori iniziali Problemi ai

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 Problemi ai Valori Iniziali: metodo di Eulero

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2018-2019 Laboratorio 11 Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I R,

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2010-2011 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

Modellistica e Simulazione. Outline. Notes. Notes. Luigi Iannelli. 6 giugno Introduzione. Generalità sui metodi numerici di integrazione

Modellistica e Simulazione. Outline. Notes. Notes. Luigi Iannelli. 6 giugno Introduzione. Generalità sui metodi numerici di integrazione 6 giugno 2011 1 Outline Introduzione Generalità sui metodi numerici di integrazione Proprietà dei metodi di integrazione Alcuni metodi di integrazione 2 Equazioni differenziali nello spazio di stato Consideriamo

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 12 Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 12 Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2017-2018 Laboratorio 12 Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I R,

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 10

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 10 Complementi di Matematica e Calcolo Numerico A.A. 2014-2015 Laboratorio 10 Convergenza di metodi iterativi per sistemi lineari UnmetodoiterativoperlarisoluzionediunsistemalineareAx = b si scrive in forma

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 9 Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 9 Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2016-2017 Laboratorio 9 Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I R,

Dettagli

Metodi ad un passo espliciti

Metodi ad un passo espliciti Sono metodi della forma { un+1 = u n + h Φ(t n, u n ; h, f ) n = 0,..., N 1 Esempi: u 0 = y 0 metodi di Taylor metodo di Eulero esplicito metodo di Taylor di ordine 2 Φ(t, u; h, f ) = f (t, u) Φ(t, u;

Dettagli

Introduzione. Laboratorio di programmazione e calolo CdL in Chimica. Pierluigi Amodio

Introduzione. Laboratorio di programmazione e calolo CdL in Chimica. Pierluigi Amodio Introduzione Laboratorio di programmazione e calolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2015/16 P. Amodio

Dettagli

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 5 Equazioni differenziali ordinarie: metodi espliciti 25 Novembre 215 Esercizi di implementazione Un equazione differenziale

Dettagli

Fondamenti di Calcolo Numerico. Appunti relativi alla soluzione numerica di un problema di Cauchy

Fondamenti di Calcolo Numerico. Appunti relativi alla soluzione numerica di un problema di Cauchy Fondamenti di Calcolo Numerico Appunti relativi alla soluzione numerica di un problema di Cauchy Claudia Fassino (fassino@dima.unige.it) Premessa Queste dispense riassumono le mie lezioni relative alla

Dettagli

Esercitazione 4 - Matematica Applicata

Esercitazione 4 - Matematica Applicata Esercitazione - Matematica Applicata Lucia Pilleri // Esercizio dal compito del //). Considerato il seguente metodo alle differenze finite, dipendente dai parametri reali e β )] η i+ = η i + h 5fx i, η

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2014-2015 Equazioni Differenziali Si consideri il seguente problema: Quali sono le curve y = f (x) del piano

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 6 Equazioni differenziali ordinarie: metodi impliciti 3 Novembre 26 Esercizi di implementazione Un equazione differenziale

Dettagli

METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November 30, 2004

METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November 30, 2004 METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November, Nell approssimare numericamente un problema di Cauchy, puo capitare di essere interessati a valori della soluzione in punti

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Metodi a più passi. Esempi

Metodi a più passi. Esempi . Esempi Metodo del punto medio y(t n+1 ) = y(t n 1 ) + t n+1 t n 1 f (t, y(t)) dt = y(t n 1 ) + 2hf (t n, y(t n )) + O(h 3 ) u n+1 = u n 1 + 2hf (t n, u n ) Metodo di Simpson y(t n+1 ) = y(t n 1 ) + t

Dettagli

Claudio Estatico Equazioni non-lineari

Claudio Estatico Equazioni non-lineari Claudio Estatico (claudio.estatico@uninsubria.it) Equazioni non-lineari 1 Equazioni non-lineari 1) Equazioni non-lineari e metodi iterativi. 2) Metodo di bisezione, metodo regula-falsi. 3) Metodo di Newton.

Dettagli

Se la serie converge in C, il limite a cui tende si chiama somma della serie.

Se la serie converge in C, il limite a cui tende si chiama somma della serie. E-school di Arrigo Amadori Analisi I Serie di potenze 01 Introduzione. Le serie di potenze sono molto importanti perché costituiscono il punto di partenza per approssimare una funzione qualunque. Sono

Dettagli

Il problema di Cauchy

Il problema di Cauchy Sia I = [t 0, t 0 + T ] con 0 < T < +. Sia f (t, y) una funzione assegnata definita in I R continua rispetto ad entrambe le variabili. Si trata di determinare una funzione y C 1 (I ) soluzione di { y (t)

Dettagli

Metodi numerici per equazioni differenziali ordinarie. Calcolo Numerico a.a. 2008/2009

Metodi numerici per equazioni differenziali ordinarie. Calcolo Numerico a.a. 2008/2009 Metodi numerici per equazioni differenziali ordinarie Calcolo Numerico a.a. 2008/2009 ODE nei problemi dell ingegneria 1 Le leggi fondamentali della fisica, della meccanica, dell elettricità e della termodinamica

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2016-2017 Problemi non lineari Definizione f : R R F : R n R m f (x) = 0 F(x) = 0 In generale si determina

Dettagli

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Il Metodo di Newton, o delle Tangenti 6 Novembre 2016 Indice 1 Metodo di Newton, o delle tangenti 2 1.1

Dettagli

Sia assegnata la seguente equazione differenziale con condizione iniziale

Sia assegnata la seguente equazione differenziale con condizione iniziale Capitolo 2 METODI A UN PASSO PER ODE Sia assegnata la seguente equazione differenziale con condizione iniziale { y (t) = f(t, y(t)) y(t 0 ) = y 0 (2.1) dove y : [t 0, t f ] R, f : [t 0, t f ] R m R m e

Dettagli

1 + q + q = A 3. 2 ) = 5, Aq = 3 3 Dalla seconda equazione ricaviamo che A/3 = 1/q e sostituendo nella prima otteniamo. 1 q (1 + q + q2 ) = 5,

1 + q + q = A 3. 2 ) = 5, Aq = 3 3 Dalla seconda equazione ricaviamo che A/3 = 1/q e sostituendo nella prima otteniamo. 1 q (1 + q + q2 ) = 5, Ingegneria Elettronica e Informatica Analisi Matematica a (Foschi Compito del..208. Tre numeri reali positivi formano una progressione geometrica. La loro media aritmetica è 5, mentre la loro media geometrica

Dettagli

Calcolo del movimento di sistemi dinamici LTI

Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Analisi modale per sistemi dinamici LTI TC Modi naturali di un sistema dinamico Analisi modale Esercizio 1 Costante di tempo Esercizio 2 2 Analisi modale per

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a

Dettagli

Eq. differenziali ordinarie: modello matematico. METODI NUMERICI - II canale (A.A )

Eq. differenziali ordinarie: modello matematico. METODI NUMERICI - II canale (A.A ) METODI NUMERICI - II canale A.A. 007-008) Prof. Francesca Pitolli Eq. differenziali ordinarie: modello matematico Il moto di una particella di massa m attaccata all estremità di una molla di costante elastica

Dettagli

Laboratorio di Calcolo Numerico

Laboratorio di Calcolo Numerico Laboratorio di Calcolo Numerico M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2009/2010 Equazioni non lineari Data una funzione consideriamo il problema

Dettagli

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB Calcolo Numerico ed Elementi di Analisi - Allievi AEROSPAZIALI Proff. S. Micheletti, S. Perotto A.A. 20/202, Appello 28 Gennaio 203 NOME... COGNOME... MATRICOLA... DOCENTE... AULA... PC... Ver.A I seguenti

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni non lineari Sia

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

Metodi Numerici con Laboratorio di Informatica - A.A Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso

Metodi Numerici con Laboratorio di Informatica - A.A Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso Metodi Numerici con Laboratorio di Informatica - A.A. 2015-2016 Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso Metodi numerici per le equazioni differenziali ordinarie Consideriamo

Dettagli

f(x) dx = F (b) F (a) Formula di quadratura o di integrazione numerica c i f(x i ) + R n (f)

f(x) dx = F (b) F (a) Formula di quadratura o di integrazione numerica c i f(x i ) + R n (f) INTEGRAZIONE NUMERICA Integrale di funzione I(f) = a f(x) dx = F (b) F (a) Formula di quadratura o di integrazione numerica a f(x) dx = n i=0 c i f(x i ) + R n (f) dove le {x i } sono i nodi e {c i } sono

Dettagli

Eulero esplicito: Questo metodo approssima la derivata di una funzione con le differenze in avanti. La formula iterativa è la seguente:

Eulero esplicito: Questo metodo approssima la derivata di una funzione con le differenze in avanti. La formula iterativa è la seguente: Dato un problema di Cauchy del tipo: y =f(x,y) y(x0)=y0 Esistono vari metodi numerici che fissato h, cioè il passo di integrazione, forniscono una soluzione numerica che è costituita da una successione

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni Prof. ssa Laura Pezza (A.A. 2017-2018) XXVIII Lezione del 15.05.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 1. Metodo

Dettagli

Analisi degli errori

Analisi degli errori Analisi degli errori Corso di Calcolo Numerico, a.a. 2008/2009 Francesca Mazzia Dipartimento di Matematica Università di Bari Francesca Mazzia (Univ. Bari) Analisi degli errori 1 / 36 Errori Computazionali

Dettagli

Daniela Lera A.A. 2008-2009

Daniela Lera A.A. 2008-2009 Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Equazioni non lineari Metodo di Newton Il metodo di Newton sfrutta le informazioni sulla funzione

Dettagli

Approssimazione numerica

Approssimazione numerica Approssimazione numerica Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari Approssimazione numerica p.1/10 Problema

Dettagli

Introduzione ai metodi alle differenze finite

Introduzione ai metodi alle differenze finite Introduzione ai metodi alle differenze finite aggiornamento: 31 maggio 2013 (!) indica un argomento fondamentale, (F) un argomento facoltativo, ( ) un argomento o dimostrazione impegnativi, (NR) una dimostrazione

Dettagli

Esame di Analisi Matematica Prova scritta del 21 giugno 2011

Esame di Analisi Matematica Prova scritta del 21 giugno 2011 Prova scritta del 21 giugno 2011 A1 Sia f la funzione definita ponendo f(x) = e x2 1 x + 1. (d) Utilizzare tutte le informazioni raccolte per tracciare un grafico approssimativo (e) (Facoltativo) Determinare

Dettagli

CU. Proprietà differenziali delle curve

CU. Proprietà differenziali delle curve 484 A. Strumia, Meccanica razionale CU. Proprietà differenziali delle curve Richiamiamo in questa appendice alcune delle proprietà differenziali delle curve, che più frequentemente vengono utilizzate in

Dettagli

CAPITOLO 8 EQUAZIONI DIFFERENZIALI. Consideriamo il seguente problema di Cauchy per i sistemi di equazioni differenziali del primo ordine :

CAPITOLO 8 EQUAZIONI DIFFERENZIALI. Consideriamo il seguente problema di Cauchy per i sistemi di equazioni differenziali del primo ordine : REVISIONATO MAGGIO 0 CAPITOLO 8 EQUAZIONI DIFFERENZIALI Consideriamo il seguente problema di Cauchy per i sistemi di equazioni differenziali del primo ordine : y'(t) = f(t,y(t)) y(t 0 )=y 0 (8.) dove f(t,y):

Dettagli

Lezione n. 2. Introduzione all analisi numerica (metodi diretti ed iterativi per la soluzione di sistemi di equazioni lineari e non lineari)

Lezione n. 2. Introduzione all analisi numerica (metodi diretti ed iterativi per la soluzione di sistemi di equazioni lineari e non lineari) Lezione n. 2 Introduzione all analisi numerica (metodi diretti ed iterativi per la soluzione di sistemi di equazioni lineari e non lineari) R. Albanese, "Metodi numerici Pag. 1 Pag. 2 Metodi diretti per

Dettagli

Analisi Numerica. Francesca Mazzia. a.a. 2006/2007. Integrazione. Dipartimento di Matematica. Università di Bari

Analisi Numerica. Francesca Mazzia. a.a. 2006/2007. Integrazione. Dipartimento di Matematica. Università di Bari Analisi Numerica Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2006/2007 Integrazione 1 Integrazione Problema: approssimare integrali definiti del tipo: a f(x)dx, Scegliamo n + 1

Dettagli

Lezione 7 Equazioni Differenziali Ordinarie.

Lezione 7 Equazioni Differenziali Ordinarie. Lezione 7 Equazioni Differenziali Ordinarie http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Equazioni Differenziali Ordinarie Descrizione dell evolversi spazio-temporale

Dettagli

Tracce di calcolo numerico 1

Tracce di calcolo numerico 1 Tracce di calcolo numerico 1 Prof. Marco Vianello - Dipartimento di Matematica, Università di Padova aggiornamento: 15 gennaio 2018 6 Differenze finite per equazioni differenziali 1. dato un problema ai

Dettagli

Contenuti. (b) tipi di errori: errori di discretizzazione locali e globali; errori di arrotondamento; metodi consistenti

Contenuti. (b) tipi di errori: errori di discretizzazione locali e globali; errori di arrotondamento; metodi consistenti Appunti di Analisi e Calcolo Numerico Metodi numerici per la soluzione delle equazioni differenziali LS in Ingegneria Edile AA 2007-2008 Docente : Dott. Ivelina Bobtcheva Contenuti 1. Radici di equazioni

Dettagli

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 2017

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 2017 SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 217 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima pagina

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI EQUAZIONI DIFFERENZIALI Si consideri il problema di Cauchy y'(t) t y, y() y(t) t e. t, la cui soluzione esatta è PARTE a. Approssimare il problema di Cauchy con il metodo di Eulero Esplicito b. Eseguire

Dettagli

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI SERIE NUMERICHE Si consideri una successione di elementi. Si definisce serie associata ad la somma Per ogni indice della successione, si definisce successione delle somme parziali associata a la somma

Dettagli

Istituzioni di Matematiche quarta parte

Istituzioni di Matematiche quarta parte Istituzioni di Matematiche quarta parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 22 index Derivate 1 Derivate 2 Teoremi

Dettagli

Introduzione. Esercizio n 1. Metodo di Eulero Esplicito. Risolvere il problema ai valori iniziali: 3 2

Introduzione. Esercizio n 1. Metodo di Eulero Esplicito. Risolvere il problema ai valori iniziali: 3 2 Introduzione Nella seguente esercitazione si vogliono risolvere numericamente equazioni differenziali di diverso ordine, utilizzando metodi basati sulla discretizzazione delle stesse, ovvero sull approssimazione

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

Appello di Matematica II Corso di Laurea in Chimica / Scienze Geologiche 19 Giugno ( 1) n sin 1. n 3

Appello di Matematica II Corso di Laurea in Chimica / Scienze Geologiche 19 Giugno ( 1) n sin 1. n 3 Appello di Matematica II Corso di Laurea in Chimica / Scienze Geologiche 9 Giugno 203 TRACCIA A. Studiare il carattere della seguente serie numerica + n= ( ) n sin. Si tratta di una serie a termini di

Dettagli

Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio Soluzioni

Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio Soluzioni Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio 2006. Soluzioni In questo documento sono contenuti gli svolgimenti del tema d esame del 05/06/2006. Alcuni esercizi

Dettagli

Compito numero 2 - Compito intero

Compito numero 2 - Compito intero Esercitazione 6 - Correzione esame dell 8//3 Lucia Pilleri 9//3 Compito numero - Compito intero Esercizio del parziale - del compito intero Risolvere, mediante la fattorizzazione P A = LU, il sistema lineare

Dettagli

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ANALISI MATEMATICA I Soluzioni Foglio 7 14 maggio 2009 7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ordine y + y = 1 determinarne tutte le soluzioni, determinare la soluzione y(x)

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - 6.Funzioni con derivate - CTF Matematica Codice Compito: - Numero d Ordine D. Un polinomio di grado e tangente all asse x ed ha un flesso orizzontale nel punto

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2018-2019) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

26 - Funzioni di più Variabili Limiti e Derivate

26 - Funzioni di più Variabili Limiti e Derivate Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 26 - Funzioni di più Variabili Limiti e Derivate Anno Accademico 2013/2014 M.

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2014-2015 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il Problema di Cauchy: { y (t) = f(t, y(t)) t I, y(t 0 ) =

Dettagli

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come ite del rapporto incrementale) Se esiste finito (cioè, non + o ) il ite del rapporto incrementale

Dettagli

Lezione 4 Quadratura Numerica. Fernando Palombo

Lezione 4 Quadratura Numerica.  Fernando Palombo Lezione 4 Quadratura Numerica http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Scopo della Quadratura Numerica Calcolare con metodi numerici un integrale definito

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Metodi numerici per ODE. Metodi numerici per ODE

Metodi numerici per ODE. Metodi numerici per ODE Problema di Cauchy Consideriamo un equazione differenziale (sistema di equazioni) del primo ordine in forma normale con condizioni iniziali assegnate. { y (x) = f (x, y(x)) x [x 0, x F ] y(x 0 ) = y 0

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 4 - DERIVAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Calcolo numerico delle derivate 2 3 Introduzione Idea di base L idea di base

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale aa 2012 2013 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Algoritmi numerici. Zeri di una funzione. Integrale di una funzione. Soluzione di una equazione differenziale

Algoritmi numerici. Zeri di una funzione. Integrale di una funzione. Soluzione di una equazione differenziale Algoritmi numerici Zeri di una funzione Integrale di una funzione Soluzione di una equazione differenziale Zeri di una funzione Trovare le soluzioni di f(x) = 0 dove f(x) e una funzione reale di variabile

Dettagli

Cenni sull integrazione numerica delle equazioni differenziali. Corso di Dinamica e Simulazione dei Sistemi Meccanici

Cenni sull integrazione numerica delle equazioni differenziali. Corso di Dinamica e Simulazione dei Sistemi Meccanici Cenni sull integrazione numerica delle equazioni differenziali Corso di Dinamica e Simulazione dei Sistemi Meccanici 9 ottobre 009 Introduzione La soluzione analitica dell integrale di moto di sistemi

Dettagli

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A. 4-5 Corso di CALCOLO NUMERICO / ANALISI NUMERICA : Esempi di esercizi svolti in aula 9//4 ) Determinare la rappresentazione in base di.

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni Prof. ssa Laura Pezza (A.A. 2017-2018) XXXII Lezione del 21.05.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 1. Metodo

Dettagli

2. Costruire un M function file di Matlab che calcola il valore del

2. Costruire un M function file di Matlab che calcola il valore del Esercizi. 1. Costruire un M function file di Matlab che calcola il valore del polinomio di Chebyshev di grado n in un vettore di punti, usando la formula di ricorrenza a tre termini. Costruire il grafico

Dettagli

BOZZA :26

BOZZA :26 BOZZA 27..20 23:26 Università di Roma Tor Vergata Corso di Laurea in Scienze e Tecnologie per i Media Esempi sulla stima dell'errore negli sviluppi di Taylor Massimo A. Picardello CAPITOLO Stima numerica

Dettagli

Esercizi proposti di Analisi Numerica

Esercizi proposti di Analisi Numerica Esercizi proposti di Analisi Numerica Silvia Bonettini Dipartimento di Matematica, Università di Ferrara 30 gennaio 2012 1 Conversioni, operazioni di macchina e analisi dell errore 1. Convertire i numeri

Dettagli

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino 1 o compitino 1 febbraio 215 1 Si consideri la funzione f : R R definita da { f) = 2 log se se = a) Si dimostri che f è continua e derivabile su tutto R b) Si dica se f ammette derivata seconda in ogni

Dettagli

Progetti d esame per il corso di ANALISI NUMERICA CDL Matematica Magistrale A.A. 2012/2013

Progetti d esame per il corso di ANALISI NUMERICA CDL Matematica Magistrale A.A. 2012/2013 Progetti d esame per il corso di ANALISI NUMERICA CDL Matematica Magistrale A.A. 212/213 Docente: Ivonne Sgura, Dipartimento di Matematica e Fisica Ennio De Giorgi Università del Salento, Lecce 1 ivonne.sgura@unisalento.it

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

CALCOLO NUMERICO Prof. L. Gori Prova d esame

CALCOLO NUMERICO Prof. L. Gori Prova d esame CALCOLO NUMERICO Prof. L. Gori Prova d esame 2-7-998 ESERCIZIO. Data la seguente formula di quadratura: f(x)dx = ( ) 3 3 2 f + Af( x) + R 6 0 (.) Determinare A e x in modo che il grado di precisione sia.

Dettagli

Laboratorio di Calcolo Numerico A.A

Laboratorio di Calcolo Numerico A.A Laboratorio di Calcolo Numerico A.A. 2007-2008 Laboratorio 7 Minimi quadrati. Approssimazione delle derivate. Esercizio 1. Si considerino le 6 coppie di dati ( 4.5, 0.7), ( 3.2, 2.3), ( 1.4, 3.8), (0.8,

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Equazioni differenziali ordinarie Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio:

Dettagli

Derivazione Numerica

Derivazione Numerica Derivazione Numerica I metodi alle differenze finite sono basati sull approssimazione numerica di derivate parziali. Per questo consideriamo come problema iniziale quello di approssimare le derivate di

Dettagli

Funzione derivabile. La derivata.

Funzione derivabile. La derivata. Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto

Dettagli