Il problema di Cauchy

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il problema di Cauchy"

Transcript

1 Sia I = [t 0, t 0 + T ] con 0 < T < +. Sia f (t, y) una funzione assegnata definita in I R continua rispetto ad entrambe le variabili. Si trata di determinare una funzione y C 1 (I ) soluzione di { y (t) = f (t, y(t)) t I y(t 0 ) = y 0 (1)

2 Esistenza e unicità di soluzione Una funzione f (t, y) si dice che è lipschitziana nella variabile y in un insieme D R 2 se esiste una costante L > 0 tale che per ogni (t, y 1 ), (t, y 2 ) D. f (t, y 1 ) f (t, y 2 ) L y 1 y 2 Sia D = {(t, y) t 0 t t 0 + T, y R} con 0 < T < +. Se f (t, y) è continua e lipschitziana nella variabile y in D allora il problema di Cauchy (1) ha una soluzione unica per t 0 t t 0 + T.

3 Funzioni lipschitziane Sia g : Σ R R una funzione lipschitziana, cioè, esiste una costante L > 0 tale che g(x 1 ) g(x 2 ) L x 1 x 2 x 1, x 2 Σ, allora g è continua in Σ. Non tutte le funzioni continue sono lipschitziane. Per esempio g(x) = x 1/3 è continua ma non è lipschitziana in [ 1, 1]. Se g C 1 (Σ) e esiste una costante K > 0 tale che g (x) K per ogni x Σ allora g è lipschitziana in Σ perche g(x 1 ) g(x 2 ) = g ( x) (x 1 x 2 ) K x 1 x 2. La funzione g(x) = x C 1 ([ 1, 1]) ma è lipschitziana in [ 1, 1] perche x 1 x 2 x 1 x 2..

4 Buona posizione { y (t) = f (t, y(t)) t I := [t 0, t 0 + T ] y(t 0 ) = y 0 si dice che è ben posto se esiste una unica soluzione del problema; chiamando z(t) alla soluzione del problema { z (t) = f (t, z(t)) + δ(t) t I z(t 0 ) = y 0 + δ 0 dove δ è una funzione continua in I la perturbazione (δ0, δ(t)) verifica δ 0 < ɛ e δ(t) < ɛ per ogni t I con ɛ sufficientement piccolo, allora esiste una costante K indipendente da ɛ tale che y(t) z(t) < Kɛ t I.

5 Buona posizione Sia D = {(t, y) t 0 t t 0 + T, y R} con 0 < T < +. Se f (t, y) è continua e lipschitziana nella varibile y in D allora il problema di Cauchy (1) è ben posto.

6 Esempi { y (t) = 1 + t sin(ty) t [0, 2] y(0) = 0 f (t, y) = 1 + t sin(ty) è lipschitziana nella variabile y: f (t, y 1 ) f (t, y 2 ) = t sin(ty 1 ) t sin(ty 2 ) = t 2 cos(tŷ) y 1 y 2 4 y 1 y 2. { y = y + t + 1 t [0, 10] y(0) = 1 f (t, y) = y + t + 1 è lipschitziana nella variabile y: f (t, y 1 ) f (t, y 2 ) = y 1 + y 2 = y 1 y 2.

7 Esempi In questo secondo esempio possiamo verificare la buona posizione. { y = y + t + 1 t [0, 10] y(t) = e t + t y(0) = 1 Siano δ e δ 0 due costanti. { z = z + t δ t [0, 10] z(0) = 1 + δ 0 z(t) = (1 + δ 0 δ)e t + t + δ Se δ < ɛ e δ 0 < ɛ allora z(t) y(t) = (δ 0 δ)e t + δ δ (1 e t ) + δ 0 e t 2ɛ per ogni t [0, 10].

8 Risoluzione numerica del problema di Cauchy Fissato 0 < T < +, sia I = (t 0, t 0 + T ). L intervallo I si divide in N sottointervalli di ampieza h = T /N. Sia t n = t 0 + nh, con n = 0, 1,..., N, la successione dei nodi di discretizzazione di I in sottointervalli I n = [t n 1, t n ], n = 1,..., N. Nella risoluzione numerica del problema di Cauchy calcolaremo una successione di valori u n, con n = 0, 1,..., N tali che u n approssimi y(t n ).

9 Eulero esplicito Dallo sviluppo di Taylor y(t + h) = y(t) + hy (t) + h2 2 y (ξ) usando l equazione differenziale segue che y(t n+1 ) = y(t n ) + h f (t n, y(t n )) + O(h 2 ) Metodo di Eulero esplicito { un+1 = u n + h f (t n, u n ) n = 0,..., N 1 u 0 = y 0

10 Eulero implicito Usando adesso lo sviluppo di Taylor segue y(t h) = y(t) hy (t) + h2 2 y (ξ) y (t) = y(t) y(t h) h + O(h) y (t n+1 ) = f (t n+1, y(t n+1 )) = y(t n+1) y(t n ) h y(t n+1 ) = y(t n ) + h f (t n+1, y(t n+1 )) + O(h 2 ) + O(h) Metodo di Eulero implicito { un+1 = u n + hf (t n+1, u n+1 ) n = 0,..., N 1 u 0 = y 0

11 Punto medio Consideriamo adesso i due sviluppi di Taylor y(t + h) = y(t) + hy (t) + h2 2 y (t) + h3 6 y (ξ), y(t h) = y(t) hy (t) + h2 2 y (t) h3 6 y (ζ). Prendendo la differenza y(t + h) y(t h) = 2hy (t) + h3 6 (y (ξ) + y (ζ)) y (t) = y(t + h) y(t h) 2h + O(h 2 )

12 Punto medio y (t) = y(t + h) y(t h) 2h + O(h 2 ) y (t n ) = f (t n, y(t n )) = y(t n+1) y(t n 1 ) 2h + O(h 2 ) y(t n+1 ) = y(t n 1 ) + 2h f (t n, y(t n )) + O(h 3 ) Metodo del punto medio u n+1 = u n 1 + 2h f (t n, u n ) n = 1,..., N 1 u 0 = y 0 u 1 = y 1

13 Crank-Nicolson Dall equazione differenziale y (t) = f (t, y(t)), integrando fra t n e t n+1 y(t n+1 ) y(t n ) = tn+1 t n y (t) dt = tn+1 t n f (t, y(t)) dt. Usando il metodo del trapezio per approssimare l integrale y(t n+1 ) y(t n ) = h 2 [f (t n, y(t n )) + f (t n+1, y(t n+1 ))] + O(h 3 ) Metodo di Crank-Nicolson { un+1 = u n + h 2 [f (t n, u n ) + f (t n+1, u n+1 )] n = 0,..., N 1 u 0 = y 0

14 Metodi di Taylor Consideriamo lo sviluppo di Taylor della funzione soluzione (ad esempio fino al termine di secondo ordine) y(t + h) = y(t) + h y (t) + h2 2 y (t) + O(h 3 ) Usando l equazione differenziale Quindi y (t) = f (t, y(t)) y (t) = f t (t, y(t)) + y (t) f y (t, y(t)). y(t n+1 ) = y(t n ) + h f (t n, y(t n )) + h2 2 [f t(t n, y(t n )) + f (t n, y(t n )) f y (t n, y(t n ))] + O(h 3 )

15 Metodi di Taylor Metodo di Taylor di ordine 2 u n+1 = u n + h f (t n, u n ) + h2 2 [f t(t n, u n ) + f (t n, u n )f y (t n, u n )] n = 0,..., N 1 u 0 = y 0 Il metodo di Eulero esplicito è il metodo di Taylor di ordine 1. Usando lo sviluppo fino al termine di ordine 3, 4,..., si ottengono i metodi di Taylor di ordine 3, 4,...

16 Risoluzione numerica del problema di Cauchy Metodi ad un passo Eulero esplicito Eulero implicito Crank-Nicolson Taylor Metodi a più passi Punto medio Metodi espliciti Eulero esplicito Punto medio Taylor Metodi impliciti Eulero implicito Crank-Nicolson

Metodi a più passi. Esempi

Metodi a più passi. Esempi . Esempi Metodo del punto medio y(t n+1 ) = y(t n 1 ) + t n+1 t n 1 f (t, y(t)) dt = y(t n 1 ) + 2hf (t n, y(t n )) + O(h 3 ) u n+1 = u n 1 + 2hf (t n, u n ) Metodo di Simpson y(t n+1 ) = y(t n 1 ) + t

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2010-2011 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 5 Equazioni differenziali ordinarie: metodi espliciti 25 Novembre 215 Esercizi di implementazione Un equazione differenziale

Dettagli

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema

Dettagli

METODO DI EULERO ESPLICITO

METODO DI EULERO ESPLICITO METODO DI EULERO ESPLICITO { u0 dato u n+1 = u n + hf (t n, u n ) 0 n N h 1 (1) Scrivere una function [tn,un]=eulero esp(odefun,tspan,y0,nh) INPUT: odefun: espressione della f tspan=[t0,t]: vettore di

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 6 Equazioni differenziali ordinarie: metodi impliciti 3 Novembre 26 Esercizi di implementazione Un equazione differenziale

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

Mattia Zanella [email protected] www.mattiazanella.eu

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu [email protected] www.mattiazanella.eu Department of Mathematics and Computer Science, University of Ferrara, Italy Ferrara, 1 Maggio 216 Programma della lezione Seminario II Equazioni differenziali

Dettagli

Metodi numerici per equazioni differenziali ordinarie. Calcolo Numerico a.a. 2008/2009

Metodi numerici per equazioni differenziali ordinarie. Calcolo Numerico a.a. 2008/2009 Metodi numerici per equazioni differenziali ordinarie Calcolo Numerico a.a. 2008/2009 ODE nei problemi dell ingegneria 1 Le leggi fondamentali della fisica, della meccanica, dell elettricità e della termodinamica

Dettagli

Esercitazioni di Analisi e Simulazione dei Processi Chimici

Esercitazioni di Analisi e Simulazione dei Processi Chimici Esercitazioni di Analisi e Simulazione dei Processi Chimici Metodi numerici per la risoluzione di sistemi di equazioni differenziali ordinarie Antonio Brasiello Email: [email protected] Tel. 081 76 82537

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Introduzione Il calcolo di integrali si presenta assai di frequente nelle applicazioni della matematica, ad esempio come misura dell area sottesa da una curva, o alla lunghezza di

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2013-2014 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il Problema di Cauchy: y (t) = f(t,y(t)) t I, y(t 0 ) = y

Dettagli

METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November 30, 2004

METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November 30, 2004 METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November, Nell approssimare numericamente un problema di Cauchy, puo capitare di essere interessati a valori della soluzione in punti

Dettagli

Esercizi Svolti di Analisi Numerica

Esercizi Svolti di Analisi Numerica Esercizi Svolti di nalisi Numerica Esercizi Svolti di nalisi Numerica Gli esercizi che proponiamo qui di seguito si riferiscono ai contenuti del libro. M. Perdon, Elementi di nalisi Numerica, Pitagora

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Fondamenti di Calcolo Numerico. Appunti relativi alla soluzione numerica di un problema di Cauchy

Fondamenti di Calcolo Numerico. Appunti relativi alla soluzione numerica di un problema di Cauchy Fondamenti di Calcolo Numerico Appunti relativi alla soluzione numerica di un problema di Cauchy Claudia Fassino ([email protected]) Premessa Queste dispense riassumono le mie lezioni relative alla

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi con soluzione

EQUAZIONI DIFFERENZIALI Esercizi con soluzione EQUAZIONI DIFFERENZIALI Esercizi con soluzione 1. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = 1 (b) y + y = e x (c) y 2y = x 2 + x (d) 3y

Dettagli

1 Equazioni Differenziali

1 Equazioni Differenziali Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

SPAZI METRICI COMPLETI

SPAZI METRICI COMPLETI Capitolo 1 SPAZI METRICI COMPLETI Sia dato uno spazio metrico (X, d). Definizione 1.1 Una successione {x n } si dice successione di Cauchy se ε > 0 n 0 n, m n 0 = d(x n x m ) < ε (1.1) Esercizio 1.1 Dimostrare

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati 2 Metodi numerici

Dettagli

Assoluta stabilità e metodi multipasso. Assoluta stabilità

Assoluta stabilità e metodi multipasso. Assoluta stabilità Assoluta stabilità e metodi multipasso Elena Loli Piccolomini-metodi multipasso p.1/33 Assoluta stabilità La convergenza è un concetto fondamentale: non avrebbe senso un metodo non convergente. la convergenza

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati 2 Metodi numerici

Dettagli

Appendici Definizioni e formule notevoli Indice analitico

Appendici Definizioni e formule notevoli Indice analitico Indice 1 Serie numeriche... 1 1.1 Richiami sulle successioni................................. 1 1.2 Serie numeriche........................................ 4 1.3 Serie a termini positivi...................................

Dettagli

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli