Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2017/2018 Domande-tipo di teoria sull intero programma

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2017/2018 Domande-tipo di teoria sull intero programma"

Transcript

1 Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2017/2018 Domande-tipo di teoria sull intero programma Marco Bramanti Politecnico di Milano June 7, 2018 Cap. 1. Elementi di analisi funzionale 1. Dopo aver richiamato la definizione di convergenza puntuale e uniforme per una successione di funzioni a valori reali, enunciare e dimostrare il criterio di Cauchy per la convergenza uniforme. Quindi dimostrare che lo spazio C 0 ([a, b]) è di Banach. 2. Per una successione di funzioni f n : Ω R, con Ω R n, definire le nozioni di convergenza puntuale e convergenza uniforme. Enunciare quindi (senza dimostrazione) i vari teoremi studiati che, sotto opportune ipotesi che coinvolgono il concetto di convergenza uniforme, garantiscono che certe proprietà di f n si trasferiscono al limite f. Mostrare quindi con esempi che, se viene a cadere l ipotesi di convergenza uniforme, le conclusioni dei precedenti teoremi possono venire a cadere. 3. Enunciare con precisione e dimostrare il teorema sulla continuità del limite uniforme di funzioni continue. Mostrare con opportuni contresempi la necessità delle ipotesi. 4. Fare esempi di spazi di funzioni che sono di Banach, oppure vettoriali normati ma non completi, oppure metrici ma non vettoriali, oppure vettoriali ma non normati. (Fare un esempio significa definire esplicitamente e con precisione sia l insieme di funzioni sia l eventuale norma o distanza che si considera). Le affermazioni negative ( questa non è una norma, questo spazio non è vettoriale, ecc.) vanno giustificate con opportuni esempi o considerazioni. Negli esempi, utilizzare almeno (non solo!) i seguenti spazi: C 0 (a, b), C 0 (R), C 1 [a, b], L 1 (Ω, M, µ), L p (Ω, M, µ) con p > 1 e con p < 1. 1

2 Cap. 2. Teoria della misura e dell integrazione 1. Sia (Ω, M, µ) uno spazio di misura. Si spieghi cosa significa, cioè si dica cosa sono Ω, M, µ, definendo in dettaglio i concetti coinvolti di sigma algebra e misura. Fare poi diversi esempi di spazi di misura incontrati nel corso. 2. Enunciare dettagliatamente il teorema che afferma l esistenza della misura di Lebsegue in R n e le sue proprietà. 3. In un generico spazio di misura (Ω, M, µ), illustrare come si definisce l integrale, prima per una funzione misurabile positiva e poi per una funzione di segno qualunque o a valori complessi. Richiamare le definizioni dei principali concetti coinvolti. Enunciare quindi le proprietà elementari dell integrale in questo contesto (linearità, monotonia...). 4. Enunciare il teorema della convergenza dominata per l integrale di Lebesgue e fare esempi di applicazioni teoriche di questo teorema incontrate nel corso. Confrontare con il teorema di passaggio al limite per l integrale di Riemann che si è incontrato nel corso. 5. Confronto tra integrale di Riemann e integrale di Lebesgue: enunciare il teorema che dà una condizione necessaria e suffi ciente affi nché una funzione sia Riemann integrabile; enunciare il teorema che afferma la relazione tra integrabilità secondo Riemann (in senso proprio, non generalizzato) e secondo Lebsegue. Mostrare con un contresempio che l implicazione inversa non vale. Infine, discutere la relazione tra integrale di Lebesgue e integrale di Riemann generalizzato. 6. Nel contesto della teoria dell integrale di Lebesgue, si enuncino con precisione il teorema sulla continuità di un integrale dipendente da un parametro e il teorema di derivazione sotto il segno di integrale per un integrale dipendente da un parametro, cioè una funzione del tipo F (x) = f (x, y) dy, Ω e si dimostri il teorema di derivazione. Fare anche un esempio significativo incontrato nel corso, di applicazione teorica di ciascuno dei due teoremi. 7. Si enunci con precisione il teorema di Fubini-Tonelli che consente di trattare gli integrali doppi nella teoria di Lebesgue. Si discuta poi qualche applicazione di questo teorema che si è incontrata nel corso. 8. Si definisca cosa si intende per convoluzione di due funzioni in R n e si illustrino le proprietà della convoluzione viste nel corso. In particolare, si enunci e dimostri un risultato preciso che riguarda la convoluzione di due funzioni L 1 (R n ). Si enunci poi il risultato analogo che estende il precedente a spazi L p. 9. Definire gli spazi L p (Ω) su uno spazio di misura astratto, per p [1, ) e illustrarne le principali proprietà studiate (in particolare, ma non solo, la disuguaglianza di Hölder). Cosa si può dire sugli spazi L p (Ω) per p (0, 1)? 10. Definire gli spazi L p (Ω) su uno spazio di misura astratto, per p [1, ]. Quindi illustrare le relazioni di inclusione che valgono tra spazi L p (Ω) quando Ω ha misura finita, dimostrandole. Dare la definizione degli spazi L p loc (Rn ) e spiegare che inclusione vale tra spazi L p loc (Rn ) per diversi valori di p. 2

3 Cap. 3. Operatori e funzionali lineari continui 1. Operatori lineari continui tra due spazi vettoriali normati: si enunci con precisione il teorema che sta alla base della definizione di operatore lineare continuo (equivalenza tra tre condizioni), si dia quindi questa definizione e la definizione di norma di un operatore. Si facciano diversi esempi di operatori lineari continui tra spazi di funzioni. *2. Si dia la definizione di funzionale lineare continuo su uno spazio vettoriale normato, norma di un funzionale lineare continuo, spazio duale di uno spazio vettoriale normato. Si faccia qualche esempio di funzionale lineare continuo sugli spazi di funzioni incontrati nel corso e si faccia un esempio incontrato nel corso di caratterizzazione dello spazio duale di un certo spazio vettoriale normato. Cap. 4. Spazi di Hilbert 1. Dopo aver dato la definizione di spazio vettoriale con prodotto scalare e norma indotta dal prodotto scalare, si enuncino la disuguaglianza di Cauchy- Schwartz e l uguaglianza del parallelogramma. Si dia la definizione di spazio pre-hilbertiano e spazio di Hilbert, e si facciano esempi di spazi di Hilbert e di spazi pre-hilbertiani che non sono di Hilbert. 2. Enunciare e dimostrare il teorema di Pitagora negli spazi vettoriali con prodotto scalare per un numero finito di vettori. Quindi enunciare e dimostrare la versione di teorema di Pitagora che vale in uno spazio di Hilbert per una successione di vettori. 3. Dopo aver richiamato la definizione di spazio di Hilbert e di sistema ortonormale (finito), enunciare il teorema della proiezione su un sottospazio finito dimensionale di uno spazio di Hilbert. Dare quindi la definizione di sistema ortonormale (s.o.n.) numerabile e di serie di Fourier, in uno spazio di Hilbert, rispetto a un fissato s.o.n. numerabile. Mostrare come dal teorema della proiezione seguono la disuguaglianza di Bessel e la convergenza delle serie di Fourier (a un elemento dello spazio). Infine, dare la definizione di sistema ortonormale completo (s.o.n.c.) in uno spazio di Hilbert e enunciare con precisione il teorema che riguarda la trasformata e le serie di Fourier in uno spazio di Hilbert, rispetto a un fissato s.o.n.c. Cap. 5. La trasformata di Fourier in R n 1. Dare la definizione di trasformata di Fourier di una funzione L 1 (R n ). Quindi, enunciare con precisione e dimostrare le sue proprietà che riguardano: la trasformata come operatore lineare continuo tra opportuni spazi; trasformata della derivata; derivata della trasformata (è richiesta la dimostrazione solo nel caso di derivata prima e funzioni di una variabile, ma enunciare il teorema nel caso più generale). 2. Dare la definizione di trasformata di Fourier di una funzione L 1 (R n ). Quindi, enunciare con precisione e dimostrare le sue proprietà che riguardano: 3

4 trasformata della convoluzione; identità che coinvolge fĝ; trasformata e dilatazioni; trasformata e traslazioni. 3. Dare la definizione di trasformata di Fourier di una funzione L 1 (R n ). Quindi, dopo aver enunciato con precisione le proprietà che riguardano la trasformata della derivata e la derivata della trasformata (per funzioni di una variabile), utilizzarle per calcolare esplicitamente la trasformata di Fourier della gaussiana e x2. Mostrare come da questo risultato si deduce la trasformata della gaussiana in n-variabili, e x 2 per x R n. Infine, utilizzando le formule per la trasformata della dilatazione, dedurre la trasformata di e a x 2 per a > 0 e x R n. 4. Dare la definizione di trasformata di Fourier di una funzione L 1 (R n ) e dimostrare che è un operatore lineare continuo tra opportuni spazi di funzioni. Quindi enunciare con precisione il teorema di inversione per la trasformata di Fourier su L 1 (R n ) e fare esempi e contresempi di funzioni L 1 (R) per cui si può o non si può applicare. Infine, discutere le conseguenze del teorema di inversione viste nel corso. 5. Dopo aver definito lo spazio S (R n ) delle funzioni a decrescenza rapida, enunciare e dimostrare (nel caso unidimensionale) le proprietà di questo spazio rilevanti dal punto di vista della teoria della trasformata di Fourier. 6. La trasformata di Fourier in L 2 : dopo aver definito lo spazio S (R n ) delle funzioni a decrescenza rapida e averne enunciato le proprietà rilevanti dal punto di vista della teoria della trasformata di Fourier (senza dimostrazione), dimostrare come, sfruttando queste proprietà, è possibile definire la trasformata di Fourier di una funzione L 2 (R n ). Quindi enunciare con precisione le principali proprietà della trasformata di Fourier su L 2 (R n ) e dimostrarle. 7. Dopo aver richiamato il modo in cui si definisce la trasformata di Fourier di una funzione L 2 (R n ) a partire dalla trasformata di Fourier di funzioni S (R n ), enunciare la formula esplicita (integrale) per il calcolo della trasformata di Fourier di una funzione L 2 (R n ) che non appartiene a L 1 (R n ) e dimostrarla. 8. Enunciare e dimostrare il principio di indeterminazione di Heisenberg nella versione incontrata in questo corso, relativo alla trasformata di Fourier di funzioni a decrescenza rapida, e verificare che per le funzioni gaussiane e πx2 nella disuguaglianza vale il segno di uguale. Cap. 6. Trasformata di Laplace e applicazioni 1. Dare la definizione di funzione L-trasformabile, ascissa di convergenza, semipiano di convergenza, trasformata di Laplace. Quindi, mostrare la relazione fra trasformata di Laplace e trasformata di Fourier, e dimostrare l iniettività della trasformata di Laplace. 2. Dopo aver ricordato la definizione di trasformata di Laplace e ascissa di convergenza, enunciare con precisione le proprietà della trasformata di Laplace di una funzione (comportamento all infinito, derivabilità, formula delle derivate della trasformata), e dimostrarle (per le derivate, dimostrare solo la formula per la derivata prima). 4

5 3. Dopo aver ricordato la definizione di trasformata di Laplace e ascissa di convergenza, enunciare con precisione e dimostrare le proprietà che riguardano la L-trasformata della primitiva di una funzione, della derivata e derivata n- esima di una funzione. 4. Dopo aver ricordato la definizione di trasformata di Laplace e ascissa di convergenza, enunciare con precisione e dimostrare le proprietà che riguardano la L-trasformata della convoluzione, la formula del t-shift e dell s-shift per la L-trasformata. Cap. 7. Teoria delle distribuzioni 1. Lo spazio di distribuzioni D (Ω) (con Ω aperto di R n o tutto R n ): definirlo (richiamando anche la definizione precisa dello spazio di funzioni test e della convergenza di successioni in questo spazio), fare esempi di classi di distribuzioni, dimostrando che quelle definite sono effettivamente distribuzioni. Mostrare in particolare in che senso il concetto di distribuzione generalizza quello di funzione e quello di misura. 2. Derivata di una distribuzione T D (R). Arrivare alla definizione di questo concetto in modo che nel caso particolare di distribuzioni indotte da funzioni C 1 (R) la derivata distribuzionale coincida con la derivata classica e dimostrare che la derivata di una distribuzione è effettivamente una distribuzione. Mostrare poi come dalla definizione segue la formula di calcolo per la derivata n-esima di una distribuzione. Infine, mostrare come il discorso precedente si generalizza a distribuzioni D (Ω) (con Ω aperto di R n o tutto R n ). 3. Dopo aver richiamato la definizione di derivata di una distribuzione in D (R), ricavare (con i calcoli dettagliati) la derivata distribuzionale delle funzioni x e u (x) (gradino) in D (R). Enunciare poi con precisione il teorema che mostra come si calcola la derivata distribuzionale di una funzione regolare a tratti che presenta qualche punto angoloso, oppure di cuspide, oppure di discontinuità a salto. 4. Le operazioni di traslazione, dilatazione, riflessione, moltiplicazione per una funzione, di una distribuzione in D (R): mostrare come si arriva alle definizioni di queste operazioni in modo che siano un estensione degli analoghi concetti per le funzioni. Esemplificare poi queste operazioni nel caso della distribuzione T = δ x0 con x 0 R. 5. Le formule di derivazione per la traslata, dilatata, riflessa di una distribuzione T e per il prodotto gt con g funzione regolare: enunciarle e dimostrarle. 6. Discutere il problema di definire la convoluzione di due distribuzioni in modo da estendere la definizione di convoluzione di funzioni e mostrare come si arriva alla definizione di distribuzione a supporto compatto e di convoluzione di distribuzioni, sotto opportune ipotesi. Fare esempi di classi di distribuzioni a supporto compatto. Enunciare e dimostrare il teorema sulla derivata della convoluzione distribuzionale e sulla convoluzione di una distribuzione con la δ di Dirac. (E suffi ciente trattare il caso unidimensionale, cioè funzioni di 5

6 una variabile). Infine, illustrare l utilizzo dei risultati precedenti in relazione al concetto di soluzione fondamentale dell operatore di Laplace in R Discutere il problema di definire la trasformata di Fourier di una distribuzione e mostrare come si arriva a restringere l insieme delle distribuzioni. Dare la definizione di convergenza nello spazio di Schwartz delle funzioni a decrescenza rapida e la definizione di distribuzione temperata. Fare esempi di classi di distribuzioni temperate e enunciare il risultato sulla chiusura dello spazio delle distribuzioni temperate rispetto a varie operazioni. Infine, dare la definizione di trasformata di Fourier di una distribuzione temperata. 8. Dopo aver richiamato la definizione di distribuzione temperata e trasformata di Fourier di una distribuzione temperata, enunciare il teorema sulle proprietà della trasformata di Fourier sullo spazio S (R) : trasformata della traslata, dilatata, del prodotto per un esponenziale complesso, della derivata; derivata della trasformata; trasformata di una (opportuna) convoluzione. In particolare, dimostrare le due relazioni che riguardano la trasformata della derivata e la derivata della trasformata. (E suffi ciente trattare il caso unidimensionale, cioè funzioni di una variabile). 9. Dopo aver richiamato la definizione di distribuzione temperata e trasformata di Fourier di una distribuzione temperata, dimostrare (con i calcoli dettagliati) come si calcolano le trasformate di Fourier di: delta di Dirac, esponenziale complesso, funzioni seno e coseno, funzione x k. (E suffi ciente trattare il caso unidimensionale, cioè funzioni di una variabile). 10. Dare la definizione di limite di una successione di distribuzioni, somma di una serie di distribuzioni, e fare esempi di queste operazioni. Dimostrare il risultato sullo scambio di limite (o serie) di distribuzioni e derivazione. Infine, dare la definizione di limite di una successione di distribuzioni temperate e dimostrare come da questa si dimostra lo scambio di limite (o serie) di distribuzioni temperate con l operatore trasformata di Fourier (ossia: dimostrare la continuità dell operatore trasformata di Fourier sullo spazio delle distribuzioni temperate). 11. Dopo aver richiamato la definizione di limite di una successione di distribuzioni temperate, e somma di una serie di distribuzioni temperate, definire il treno di impulsi e dimostrare che è una distribuzione temperata, ottenendolo come trasformata di un opportuna serie convergente di distribuzioni temperate. Quindi dimostrare la formula di calcolo della trasformata di Fourier del treno di impulsi 1, giustificando i passaggi citando gli opportuni risultati. Cap. 8. Applicazioni alla teoria dei filtri e del campionamento 1. Introdurre il concetto di filtro, dopo aver richiamato il concetto di sistema, le proprietà rilevanti (coinvolte nella definizione di filtro) che un sistema può avere o non avere, definendo con cura il quadro funzionale richiesto per ognuna delle proprietà. Quindi, enunciare il teorema fondamentale dei filtri. 6

7 2. Enunciare e dimostrare il teorema fondamentale dei filtri, dopo aver richiamato le definizioni dei concetti coinvolti. 3. Dare la definizione di filtro causale (o realizzabile), e mostrare la relazione tra causalità del filtro e proprietà della sua funzione caratteristica. Dare la definizione di filtro ideale passa-basso o passa-alto, mostrare che questi filtri ideali non sono realizzabili. Fare esempi di funzioni di risposta del filtro in ampiezza che possono descrivere un filtro (reale, non ideale) passa-basso o passaalto. 4. Dimostrare che, in un circuito RC, il sistema che associa alla tensione di ingresso x (t) la tensione V (t) ai capi del condensatore, che soddisfa l equazione RCV (t) + V (t) = x (t), è: -un filtro; -un filtro realizzabile; -un filtro passa-basso, spiegando cosa significano le varie affermazioni. 5. Dimostrare che, in un circuito RC, il sistema che associa alla tensione di ingresso x (t) la tensione V (t) ai capi della resistenza, che soddisfa l equazione V (t) + V (t) RC = x (t), è: -un filtro; -un filtro realizzabile; -un filtro passa-alto, spiegando cosa significa. 5. Dopo aver brevemente introdotto il problema a cui risponde il Teorema di Shannon, enunciare e dimostrare questo teorema. 7

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2018/2019 Domande-tipo di teoria su tutto il programma

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2018/2019 Domande-tipo di teoria su tutto il programma Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2018/2019 Domande-tipo di teoria su tutto il programma Marco Bramanti Politecnico di Milano June 26, 2019 Cap. 1. Elementi di analisi funzionale

Dettagli

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sull intero programma

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sull intero programma Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sull intero programma Marco Bramanti Politecnico di Milano June 22, 2017 Cap. 1. Elementi di analisi funzionale

Dettagli

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano April 20, 2017 Cap. 1. Elementi di analisi funzionale

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso Marco Bramanti Politecnico di Milano December 20, 2017 Parte 3. Teoria della misura e dell

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla seconda metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla seconda metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla seconda metà del corso Marco Bramanti Politecnico di Milano January 23, 2017 Parte 3. Teoria della misura e dell

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2018/2019 Domande-tipo di teoria

Corso di Metodi Matematici per l Ingegneria A.A. 2018/2019 Domande-tipo di teoria Corso di Metodi Matematici per l Ingegneria A.A. 2018/2019 Domande-tipo di teoria Marco Bramanti Politecnico di Milano December 18, 2018 Prima metà del programma (domande di teoria della prima prova in

Dettagli

Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 2019 A.A. 2018/2019. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 2019 A.A. 2018/2019. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 19 A.A. 18/19. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 018 A.A. 017/018. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande

Dettagli

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Maggio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Maggio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Maggio 7 A.A. 6/7. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria

Dettagli

Esame di Analisi Funzionale e Trasformate Secondo appello. 28 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Secondo appello. 28 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Secondo appello. 28 Luglio 217 A.A. 216/217. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom 1 Dom 2 Dom Es 1 Es 2 Es Tot. Punti Domande di teoria

Dettagli

Esame di Analisi Funzionale e Trasformate Seconda prova in itinere. Giugno 2019 A.A. 2018/2019. Prof. M. Bramanti Tema A

Esame di Analisi Funzionale e Trasformate Seconda prova in itinere. Giugno 2019 A.A. 2018/2019. Prof. M. Bramanti Tema A Esame di Analisi Funzionale e Trasformate Seconda prova in itinere. Giugno 9 A.A. 8/9. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom Es Es Es Tot. Punti Domande di teoria rispondere

Dettagli

Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 2018 A.A. 2017/2018. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 2018 A.A. 2017/2018. Prof. M. Bramanti Esame di Analisi Funionale e Trasformate Primo appello. Luglio 28 A.A. 27/28. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom 2 Dom 3 Es Es 2 Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Esame di Metodi Matematici per l Ingegneria Seconda prova in itinere. Gennaio 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Seconda prova in itinere. Gennaio 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Seconda prova in itinere. Gennaio 18 A.A. 17/18. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande

Dettagli

Esame di Analisi Funzionale e Trasformate Secondo appello. Agosto 2018 A.A. 2017/2018. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Secondo appello. Agosto 2018 A.A. 2017/2018. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Secondo appello. Agosto 08 A.A. 07/08. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 2019 A.A. 2018/2019. Prof. M. Bramanti Tema A

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 2019 A.A. 2018/2019. Prof. M. Bramanti Tema A Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 09 A.A. 08/09. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla prima metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla prima metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano December 20, 2017 Parte 1. Elementi di analisi funzionale.

Dettagli

Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (prima parte)

Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (prima parte) Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 214/215 (prima parte) April 15, 215 1 Domande aperte 1.1 Modelli di erenziali 1. Dedurre, dalla legge di Coulomb dell elettrostatica,

Dettagli

Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame

Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame Le seguenti domande teoriche sono domande-tipo da esame. L elenco di domande

Dettagli

Esame di Analisi Funzionale e Trasformate Primo appello. 12 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Primo appello. 12 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 07 A.A. 06/07. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere a

Dettagli

Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (seconda parte)

Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (seconda parte) Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (seconda parte) June 1, 2015 1 Domande aperte 1.1 Equazione della corda vibrante e delle onde in dimensione superiore

Dettagli

Esame di Analisi Funzionale e Trasformate Terzo appello. Gennaio 2019 A.A. 2017/2018. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Terzo appello. Gennaio 2019 A.A. 2017/2018. Prof. M. Bramanti Esame di Analisi Funionale e Trasformate Tero appello. Gennaio 19 A.A. 17/18. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom Es 1 Es Es Tot. Punti Domande di teoria rispondere a

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2015/2016 Domande-tipo di teoria sulla prima metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2015/2016 Domande-tipo di teoria sulla prima metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 215/216 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano November 4, 215 Parte 1. Richiami di analisi funzionale 1.

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano October 28, 2016 1. Elementi di analisi funzionale 1.1.

Dettagli

Esame di Metodi Matematici per l Ingegneria Primo appello. Febbraio 2019 A.A. 2018/2019. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Primo appello. Febbraio 2019 A.A. 2018/2019. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Primo appello. Febbraio 9 A.A. 8/9. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Argomento della lezione N. 2. Argomento della lezione N. 1. Argomento della lezione N. 11. Argomento della lezione N. 12

Argomento della lezione N. 2. Argomento della lezione N. 1. Argomento della lezione N. 11. Argomento della lezione N. 12 C. Presilla Modelli e Metodi Matemacici della Fisica a.a. 2015/2016 1 Argomento della lezione N. 1 Argomento della lezione N. 2 Argomento della lezione N. 11 Argomento della lezione N. 12 Fondamenti assiomatici.

Dettagli

Registro delle lezioni

Registro delle lezioni Complementi di Analisi Matematica - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Registro delle lezioni Laura Poggiolini e Gianna Stefani 2 ottobre 2006, 2 ore, LP Il campo dei

Dettagli

Argomento della lezione N. 11. Argomento della lezione N. 12. Argomento della lezione N. 13. Argomento della lezione N. 14

Argomento della lezione N. 11. Argomento della lezione N. 12. Argomento della lezione N. 13. Argomento della lezione N. 14 C. Presilla Modelli e Metodi Matemacici della Fisica a.a. 2016/2017 1 Argomento della lezione N. 1 Argomento della lezione N. 2 Argomento della lezione N. 11 Argomento della lezione N. 12 Fondamenti assiomatici.

Dettagli

Esame di Analisi Funzionale e Trasformate Seconda prova in itinere. 12 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Seconda prova in itinere. 12 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Seconda prova in itinere. Luglio 07 A.A. 06/07. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Argomento della lezione N. 1. Argomento della lezione N. 2. Argomento della lezione N. 12. Argomento della lezione N. 11

Argomento della lezione N. 1. Argomento della lezione N. 2. Argomento della lezione N. 12. Argomento della lezione N. 11 C. Presilla Modelli e Metodi Matemacici della Fisica a.a. 2011/2012 2 Argomento della lezione N. 1 Fondamenti assiomatici. L unità immaginaria Argomento della lezione N. 2 Moduli e coniugati. Disuguaglianza

Dettagli

Esame di Analisi Funzionale e Trasformate Quinto appello. Febbraio 2018 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Quinto appello. Febbraio 2018 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Quinto appello. Febbraio 28 A.A. 26/27. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom 2 Dom 3 Es Es 2 Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Esame di Metodi Matematici per l Ingegneria Quarto appello. Agosto 2018 A.A. 2017/2018. Prof. M. Bramanti

Esame di Metodi Matematici per l Ingegneria Quarto appello. Agosto 2018 A.A. 2017/2018. Prof. M. Bramanti Esame di Metodi Matematici per l Ingegneria Quarto appello. Agosto 018 A.A. 017/018. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti A. 6 punti). Per una

Dettagli

Esame di Metodi Matematici per l Ingegneria Primo appello. Febbraio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Primo appello. Febbraio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Primo appello. Febbraio 7 A.A. /7. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui Corso di Metodi Matematici per l Ingegneria A.A. 26/27 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui Marco Bramanti Politecnico di Milano December 4, 26 Esercizi

Dettagli

Esame di Analisi Funzionale e Trasformate Terzo appello. 6 Settembre 2017 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Terzo appello. 6 Settembre 2017 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Terzo appello. 6 Settembre 217 A.A. 216/217. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom 1 Dom 2 Dom 3 Es 1 Es 2 Es 3 Tot. Punti Domande di teoria

Dettagli

Esame di Metodi Matematici per l Ingegneria Appello 5. 6 settembre 2017 A.A. 2016/2017. Prof. M. Bramanti

Esame di Metodi Matematici per l Ingegneria Appello 5. 6 settembre 2017 A.A. 2016/2017. Prof. M. Bramanti Esame di Metodi Matematici per l Ingegneria Appello 5. 6 settembre 17 A.A. 16/17. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A MODELLI e METODI MATEMATICI della FISICA Programma dettagliato del corso - A.A. 2017-18 Lezione 1, 28 febbraio 2018: Introduzione ai numeri complessi. Rappresentazione cartesiana e polare. Radice n-esima

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2015/2016 Esercizi su teoria della misura e dell integrazione di Lebesgue

Corso di Metodi Matematici per l Ingegneria A.A. 2015/2016 Esercizi su teoria della misura e dell integrazione di Lebesgue Corso di Metodi Matematici per l Ingegneria A.A. 5/6 Esercizi su teoria della misura e dell integrazione di Lebesgue Marco Bramanti Politecnico di Milano December 3, 5 A. Esercizi su spazi di misura Esercizio

Dettagli

Convergenza per funzioni tra spazi metrici. Funzioni uniformemente continue e Lipschitz continue. Esempi. somma e prodotto, il campo C dei numeri

Convergenza per funzioni tra spazi metrici. Funzioni uniformemente continue e Lipschitz continue. Esempi. somma e prodotto, il campo C dei numeri Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Fondamenti assiomatici del sistema di numeri L unita immaginaria. Convergenza per funzioni

Dettagli

2. Si esponga il problema della migliore approssimazione in norma, e si dica in quali spazi esso ha certamente soluzione, e quale è questa soluzione.

2. Si esponga il problema della migliore approssimazione in norma, e si dica in quali spazi esso ha certamente soluzione, e quale è questa soluzione. COMPLEMENTI DI MATEMATICA Corso di Laurea Magistrale in Ingegneria Elettrotecnica CM98sett.tex 6..2009 - lunedì (2 ore) Esercitazione del 6..2009 Risolvere tre esercizi per pagina, a scelta.. Si definisca

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A MODELLI e METODI MATEMATICI della FISICA Programma dettagliato del corso - A.A. 2018-19 Lezione 1, 25 febbraio 2019: Organizzazione del corso. Introduzione ai numeri complessi. Rappresentazione cartesiana

Dettagli

Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Introduzione al corso.

Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Introduzione al corso. Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Introduzione al corso. Il campo C dei numeri complessi. Fondamenti assiomatici del

Dettagli

Equazioni differenziali

Equazioni differenziali Analisi Matematica 2 Ing. Elettronica, a.a. 2017/2018. Politecnico di Milano Domande teoriche tipo per la prova orale Prof. M. Bramanti Si ricorda che il programma dettagliato del corso, con le indicazioni

Dettagli

Quesiti di Metodi Matematici per l Ingegneria

Quesiti di Metodi Matematici per l Ingegneria Quesiti di Metodi Matematici per l Ingegneria Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Metodi Matematici per l Ingegneria. Per una buona preparazione é consigliabile

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

3 ore Integrali di Fresnel Serie bilatere. Sviluppo in serie di Laurent. Teorema di Laurent, sviluppabilità in serie bilatera.

3 ore Integrali di Fresnel Serie bilatere. Sviluppo in serie di Laurent. Teorema di Laurent, sviluppabilità in serie bilatera. Lezioni Svolte Curve (14 ore) Presentazione del corso. Funzioni a valori vettoriali. Definizione di limite e di funzione continua. Curve (arco di curva parametrica). Definizione di curva continua, semplice

Dettagli

1. Lunedì 26/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Lunedì 26/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2016/2017 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 13 dicembre 2016 1. Lunedì 26/09/2016, 11 13. ore:

Dettagli

Esame di Metodi Matematici per l Ingegneria Appello Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti

Esame di Metodi Matematici per l Ingegneria Appello Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti Esame di Metodi Matematici per l Ingegneria Appello 3. Luglio 07 A.A. 06/07. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere a 3

Dettagli

Esame di Metodi Matematici per l Ingegneria

Esame di Metodi Matematici per l Ingegneria Esame di Metodi Matematici per l Ingegneria Prof. M. Bramanti Politecnico di Milano, A.A. 25/6 Appello del 27 settembre 26 Cognome: Nome N matr. o cod. persona: Domande di teoria rispondere a tre domande

Dettagli

Corso di laurea in STM Analisi di Fourier

Corso di laurea in STM Analisi di Fourier Corso di laurea in STM Analisi di Fourier 2016-17 Dettaglio delle lezioni svolte e programma del corso 07/03 Ortogonalità in L 2 del sistema trigonometrico. Sviluppo di Fourier in forma reale e complessa.

Dettagli

1. Martedì 29/09/2015, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 29/09/2015, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2015/2016 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 18 dicembre 2015 1. Martedì 29/09/2015, 12 14. ore:

Dettagli

Esercizi del Corso di Istituzioni di Analisi Superiore, I modulo

Esercizi del Corso di Istituzioni di Analisi Superiore, I modulo sercizi del Corso di Istituzioni di Analisi Superiore, I modulo 1. sercizi su massimo e minimo limite 1. lim inf a n lim sup a n 2. Se a n b n per ogni n N, allora lim inf a n lim inf b n. Vale anche lim

Dettagli

CORSO DI LAUREA IN MATEMATICA ANALISI MATEMATICA 6, A.A PRIMA PARTE DEL CORSO

CORSO DI LAUREA IN MATEMATICA ANALISI MATEMATICA 6, A.A PRIMA PARTE DEL CORSO CORSO DI LAUREA IN MATEMATICA ANALISI MATEMATICA 6, A.A. 2009 2010 PRIMA PARTE DEL CORSO F. ZANOLIN, UNIVERSITÀ DEGLI STUDI DI UDINE, DIPARTIMENTO DI MATEMATICA E INFORMATICA, VIA DELLE SCIENZE 206, 33100

Dettagli

Indice 1 Spazi a dimensione finita... 1 1.1 Primi esempi di strutture vettoriali... 1 1.2 Spazi vettoriali (a dimensione finita)...... 3 1.3 Matrici come trasformazioni lineari...... 5 1.4 Cambiamenti

Dettagli

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2013/2014 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 18 dicembre 2013 1. Martedì 1/10/2013, 12 14. ore:

Dettagli

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2016/2017 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2016 1. Martedì 27/09/2016,

Dettagli

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2 Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2018/2019 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 19 dicembre 2018 1. Mercoledì 26/09/2018, 15 17. ore:

Dettagli

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2017 A.A. 2017/2018. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2017 A.A. 2017/2018. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2017 A.A. 2017/2018. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom 1 Dom 2 Dom 3 Es 1 Es 2 Es 3 Tot. Punti

Dettagli

PROGRAMMA DI ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A

PROGRAMMA DI ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A PROGRAMMA DI ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A. 2017-18 Le indicazioni dei capitoli e dei paragrafi si riferiscono al libro: C.D. Pagani, S. Salsa. Analisi Matematica

Dettagli

1. Mercoledì 27/09/2017, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Mercoledì 27/09/2017, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2017/2018 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2017 1. Mercoledì 27/09/2017,

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA II - INGEGNERIA ELETTRONICA. ANNO ACCADEMICO (PROF. D. PUGLISI)

DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA II - INGEGNERIA ELETTRONICA. ANNO ACCADEMICO (PROF. D. PUGLISI) DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA II - INGEGNERIA ELETTRONICA. ANNO ACCADEMICO 2015-2016 (PROF. D. PUGLISI) 12-10-2015 Successioni di Funzioni Successioni di funzioni. Convergenza puntuale.

Dettagli

Analisi a più variabili: Integrale di Lebesgue

Analisi a più variabili: Integrale di Lebesgue Analisi a più variabili: Integrale di Lebesgue 1 Ripasso delle definizioni di Algebre, σ-algebre, misure additive, misure σ-additive, Proprietà della misura astratta, misura esterna. Definizione (Insieme

Dettagli

Indice analitico. distanza, 2 discreta, 2 disuguaglianza triangolare, 2. simmetria, 2 disuguaglianza di Bessel, 101

Indice analitico. distanza, 2 discreta, 2 disuguaglianza triangolare, 2. simmetria, 2 disuguaglianza di Bessel, 101 Indice analitico condizione di Cauchy, 14 continuità, 13 convergenza di una successione crescente di funzioni semplici verso una funzione sommabile, 127 inl p (E) implica in L q (E) sep>qe m(e) < +, 95

Dettagli

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2 Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2017/2018 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2017 1. Lunedì 25/09/2017, 11 13. ore:

Dettagli

ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A

ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A. 2016-17 Programma Provvisorio del corso di Analisi Matematica A Il programma che segue è solo indicativo. Il programma definitivo

Dettagli

PROGRAMMA DI ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A

PROGRAMMA DI ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A PROGRAMMA DI ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A. 2018-19 Le indicazioni dei capitoli e dei paragrafi si riferiscono al libro: C.D. Pagani, S. Salsa. Analisi Matematica

Dettagli

Esercizi per il corso di Analisi 6.

Esercizi per il corso di Analisi 6. Esercizi per il corso di Analisi 6. 1. Si verifichi che uno spazio normato (X, ) è uno spazio vettoriale topologico con la topologia indotta dalla norma. Si verifichi poi che la norma è una funzione continua

Dettagli

1. Mercoledì 1/10/2014, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Mercoledì 1/10/2014, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2014/2015 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 16 dicembre 2014 1. Mercoledì 1/10/2014, 15 17. ore:

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007 Prova scritta del 23 gennaio 2007 Esercizio 1. Sia f : R R una funzione misurabile e non negativa; si consideri la successione di funzioni f n (x) = max3f(x) 2n, 0}, x R, n N. Provare che se f è integrabile

Dettagli

Programma del Corso di Metodi Matematici per l Ingegneria

Programma del Corso di Metodi Matematici per l Ingegneria Corso di Laurea in Ingegneria Elettronica Anno Accademico 2000/2001 Programma del Corso di Metodi Matematici per l Ingegneria Integrale di Lebesgue I limiti della teoria dell integrazione secondo Cauchy-Riemann.

Dettagli

Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate

Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate Indice breve I PARTE I Elementi di base Capitolo 1 Introduzione 1 Capitolo 2 Funzioni 34 PARTE II Funzioni di una variabile Capitolo 3 Introduzione alle proprietà locali e al concetto di limite 73 Capitolo

Dettagli

Esame di Metodi Matematici per l Ingegneria

Esame di Metodi Matematici per l Ingegneria Esame di Metodi Matematici per l Ingegneria Prof. M. Bramanti Politecnico di Milano, A.A. / Appello del 6 febbraio Cognome: Nome N matr. o cod. persona: Parte. Esercizi Esercizio Calcolare lim n!+ n e

Dettagli

CALCOLO DELLE PROBABILITÀ I. a.a. 2016/2017. Informatica. Leggere attentamente le seguenti note

CALCOLO DELLE PROBABILITÀ I. a.a. 2016/2017. Informatica. Leggere attentamente le seguenti note CALCOLO DELLE PROBABILITÀ I. a.a. 2016/2017. Informatica Leggere attentamente le seguenti note Modalità d esame. L esame consta di uno scritto con esercizi (bisogna prenotarsi su infostud). Chi passa questo

Dettagli

Serie e Trasformata di Fourier

Serie e Trasformata di Fourier Serie e Trasformata di Fourier Corso di Analisi Funzionale Prof. Paolo Nistri Cancelli, D Angelo, Giannetti Polinomio di Fourier Si consideri la successione costituita dalle restrizioni delle funzioni

Dettagli

Appendice B ANALISI FUNZIONALE. 1 Spazi di Banach

Appendice B ANALISI FUNZIONALE. 1 Spazi di Banach Appendice B ANALISI FUNZIONALE In questo capitolo si introducono gli spazi di Banach e di Hilbert, gli operatori lineari e loro spettro. Inoltre si discutono gli operatori compatti su uno spazio di Hilbert.

Dettagli

Domande da 6 punti. Prima parte del programma

Domande da 6 punti. Prima parte del programma Domande da 6 punti Prima parte del programma Domanda. Dare la definizione di arco di curva continua, di sostegno di una curva, di curva chiusa, di curva semplice e di curva piana fornendo qualche esempio.

Dettagli

ANALISI UNO (A.A. 2008/2009, Docente: S. Finzi Vita) Programma svolto settimanalmente

ANALISI UNO (A.A. 2008/2009, Docente: S. Finzi Vita) Programma svolto settimanalmente ANALISI UNO (A.A. 2008/2009, Docente: S. Finzi Vita) Programma svolto settimanalmente 2-6 Marzo (8 ore) Gli assiomi dei numeri reali. Osservazioni sull assioma di continuità: altre formulazioni e loro

Dettagli

Programma di Analisi Matematica 2

Programma di Analisi Matematica 2 Programma di Analisi Matematica 2 Corso di Laurea in Matematica A.A. 2013/14 1. Somme superiori ed inferiori di Riemann 2. L integrale definito 3. Teorema di caratterizzazione dell funzioni integrabili

Dettagli

A.A. 2015/16 REGISTRO ELETTRONICO DELLE LEZIONI

A.A. 2015/16 REGISTRO ELETTRONICO DELLE LEZIONI A.A. 2015/16 ISTITUZIONI DI ANALISI SUPERIORE 12 crediti, I semestre Docenti: Prof. Gennaro Infante per i primi 6 crediti ed io per i rimanenti 6 crediti. REGISTRO ELETTRONICO DELLE LEZIONI IMPORTANTE:

Dettagli

Università degli Studi di Udine Anno Accademico 2016/2017

Università degli Studi di Udine Anno Accademico 2016/2017 Università degli Studi di Udine Anno Accademico 2016/2017 Dipartimento di Scienze Matematiche, Informatiche e Fisiche Corso di Laurea in Matematica Programma del Analisi Matematica II primo modulo e parte

Dettagli

Canale Basile - Programma minimo

Canale Basile - Programma minimo 24 maggio 2019 Programma minimo. Rispetto al programma completo mancano alcuni interi argomenti, e di alcuni argomenti più complessi viene richiesta la conoscenza dei risultati, senza le dimostrazioni.

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

A.A. 2015/2016 Corso di Analisi Matematica 2

A.A. 2015/2016 Corso di Analisi Matematica 2 A.A. 2015/2016 Corso di Analisi Matematica 2 Stampato integrale delle lezioni (Appendice di Teoria della Misura) Massimo Gobbino Indice Lezione 131. Introduzione alla teoria della misura: motivazioni.

Dettagli

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI LIBRETTO DELLE LEZIONI DEL CORSO DI MODELLI E METODI MATEMATICI DELLA FISICA CORSI DI LAUREA TRIENNALI IN FISICA

Dettagli

Canale Basile - Programma completo

Canale Basile - Programma completo 24 maggio 2019 Attenzione: il blu e l'asterisco segnalano le dierenze tra il programma completo e quello minimo. Tutti gli argomenti elencati fanno parte del programma completo. Indice Equazioni della

Dettagli

Premessa. Milano, Settembre '93.

Premessa. Milano, Settembre '93. Premessa Questo testo raccoglie il materiale da me utilizzato, da qualche anno, per le esercitazioni del corso di Analisi III tenuto dal prof. Carlo Pagani presso la facoltà di Ingegneria del Politecnico

Dettagli

Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa

Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa 1. Elementi di spazi metrici e di topologia 1.1 Completezza di R. Richiami: Estremo superiore,

Dettagli

Analisi Matematica II. (1) Topologia di R n

Analisi Matematica II. (1) Topologia di R n Programma d esame di Analisi Matematica II e Complementi di Analisi Matematica per i corsi di laurea triennale in Ingegneria Chimica ed Ingegneria dell Energia Anno Accademico 2018/2019 (1) Topologia di

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

Programma di Analisi Matematica 2

Programma di Analisi Matematica 2 Programma di Analisi Matematica 2 Corso di Laurea in Matematica A.A. 2015/16 1. Integrali impropri del primo tipo 2. Integrali impropri del secondo tipo 3. Teorema del confronto per gli integrali impropri

Dettagli

2 Introduzione ai numeri reali e alle funzioni

2 Introduzione ai numeri reali e alle funzioni 1 CORSO DI LAUREA in Fisica Canale A-CO (canale 4) docente P. Vernole Il programma d esame comprende tutti gli argomenti svolti durante il corso. Dopo ogni sezione sono indicate le parti delle Dispense

Dettagli

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier)

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Spazi Vettoriali e Funzionali 1. Risposte: (a) Spazio vettoriale complesso. (b) Spazio vettoriale reale. (c) Non

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 2 gennaio 214 Studiare la convergenza puntuale e uniforme della serie di potenze n=1 n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

Teoria della misura Esercizi. 1. Teoremi di convergenza sotto il segno di integrale. n 1 + n 2 x 2. f n (x) =

Teoria della misura Esercizi. 1. Teoremi di convergenza sotto il segno di integrale. n 1 + n 2 x 2. f n (x) = Teoria della misura 215-215 Esercizi 1. Teoremi di convergenza sotto il segno di integrale Esercizio 1. Calcolare il Per ogni intero positivo n sia f n : R + R la funzione definita da n 1 + n 2 x 2. lim

Dettagli

Quesiti di Analisi Matematica II

Quesiti di Analisi Matematica II Quesiti di Analisi Matematica II Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica II. Per una buona preparazione è consigliabile allenarsi a rispondere

Dettagli

iv Indice c

iv Indice c Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale

Dettagli