PROVA SCRITTA IGS2 B

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROVA SCRITTA IGS2 B"

Transcript

1 PROVA SCRITTA IGS2 B 28 FEBBRAIO 2013 (1) Sia d 1. Si dimostri che il sottoinsieme Z P(C[x 0,...,x n ] d ) delle classi di polinomi omogenei riducibili è un chiuso proprio; si determinino le componenti irriducibili di Z e le loro dimensioni. (2) In P 1 C P2 C con coordinate ((s 0 : s 1 ), (x 0 : x 1 : x 2 )) si considerino i chiusi e le proiezioni ristrette Z 1 = V (s 0 x 2 0 s 1 x 2 1), Z 2 = V (s 2 0x 0 s 2 1x 1 ), f = p 1 Z1 : Z 1 P 1, g = p 1 Z2 : Z 2 P 1. Si determinino le fibre di f e g, le eventuali fibre singolari e gli eventuali punti singolari di Z 1 e Z 2. (3) Si dimostri che A 1 C \{punto} e P1 C \{punto} non sono isomorfi a una varierà proiettiva. Prova scritta di IGS2 -B 26 giugno 2014 (1) Sia X P n C una varietà proiettiva, e F C[x 0,...,x n ] un polinomio omogeneo di grado d 1. Si dimostri che X F := X \ V P (F ) è isomorfo a una varietà affine; si dimostri che se X non è un punto, allora X V P (F ) =. (2) Nel prodotto P 2 P 2 con coordinate (s 0 : s 1 : s 2 ), (x 0 : x 1 : x 2 ), si consideri il chiuso Z (la rete di coniche) definito da: s 0 x s 1 (x 2 0 x 2 1)+s 2 x 2 2 =0. Si determinino gli eventuali punti singolari di Z. Si consideri la prima proiezione p 1 : Z P 2 ; si determinino i seguenti luoghi: W 1 := {P P 2 p 1 1 (P ) e unione di due rette distinte} P 2, W 2 := {P P 2 p 1 1 (P ) e una retta doppia} P 2. (3) Sia Y P 2 C una curva piana nonsingolare di grado d>1, definita dall equazione f(u 0,u 1,u 2 )= 0. Sia X = C(Y ) A 3 il cono affine di Y, definito dalla stessa equazione Mathematics Subject Classification. Primary 14D22, 14H51; Secondary 14H10. Key words and phrases. moduli of curves, fibration, gonality. 1

2 2 28 FEBBRAIO 2013 Si dimostri che l origine (0, 0, 0) è il solo punto singolare di X. Si consideri lo scoppiamento Â3 di A 3 nell origine (0, 0, 0), definito da  3 x y z := {((x, y, z), (u 0 : u 1 : u 2 )) rk =1} A u 0 u 1 u 3 P 2. 2 Se p 1 : Â3 A 3 denota la restrizione della prima proiezione, si consideri X lo scoppiamento di X nel vertice (0, 0, 0) definito dalla chiusura: X := p 1 1 (X \ (0, 0, 0)) Â3. Si dimostri che X 1 è non singolare, e che (facoltativo) p 1 (0, 0, 0) è isomorfo a Y, con X p 1 X : X X restrizione della prima proiezione. 17 febbraio 2015 (1) Si determini la trasformata stretta dello scoppiamento nell origine della curva piane affine e si dica se è liscia oppure singolare. V (x 2 y + xy 2 x 4 y 4 ) A 2 C, (2) In P 1 C P2 C con coordinate ((s 0 : s 1 ), (x 0 : x 1 : x 2 )) si considerino i chiusi e le proiezioni ristrette Z 1 = V (s 0 x 3 0 s 1 x 3 1), Z 2 = V (s 3 0x 0 s 3 1x 1 ), f = p 1 Z1 : Z 1 P 1, g = p 1 Z2 : Z 2 P 1. Si determinino le fibre di f e g, le eventuali fibre singolari e gli eventuali punti singolari di Z 1 e Z 2. (3) Si dimostri che A 1 C \{punto} e P1 C \{punto} non sono isomorfi a una varierà proiettiva (1) Sia f : X Y un morfismo finito suriettivo tra varietà proiettive su un campo algebricamente chiuso. Si dimostri che per ogni chiuso proprio Z X si ha f(z) = Y. (2) Si dimostri che il sottoinsieme di Z P(C[x 0,x 1,x 2 ] 3 ) costituito dalle classi di polinomi omogenei riducibili di grado 3 è un chiuso proprio e si determinino le sue componenti irriducibili con le relative dimensioni. (3) Si consideri il chiuso X di P 2 C P2 C determinato dall equazione s 0 x s 1 x 2 (x 2 x 0 )+s 2 x 2 0 =0. Si dimostri che esiste un aperto U P 2 tale che le fibre di p 1 : X P 2 sui punti di U siano coniche irriducibili piane;

3 PROVA SCRITTA IGS2 B 3 si determini e si descriva il sottoinsieme X P 2 per cui p 1 1 (q) èriducibile; (1) Sia X P n con n 2 un ipersuperficie riducibile. Si dimostri che dim X sing n 2. Sia 0 <m n e si consideri Q m = V P (x x2 m) P n. riducibile se e solo se m = 1. Si dimostri che Q m è (2) Curve piane singolari: sia P N = P(C[x 0,x 1,x 2 ] d ) con d 2 e si consideri X := {(p, [F ]) p V (F ) sing P 2 } P 2 P N. Si dimostri che X è u n c h i u s o d i P 2 P N ; si consideri la proiezione p 1 : X P 2 e si dimostri che dim X = N 1; si considerino le fibre della proiezione p 2 : X P N e si dimostri che il sottoinsieme di P N corrispondente alle curve singolari è un ipersuperficie. (3) Si consideri il chiuso X di P 1 P 2 determinato dall equazione s 0 x s 1 x 2 (x 2 x 0 )=0. Si dimostri che esiste un aperto U P 1 tale che le fibre di p 1 : X P 1 sui punti di U siano coniche irriducibili piane; si determinino i punti q di P 1 per cui p 1 1 (q) èriducibile; (1) Si dimostri che lo scoppiamento A 2 di A 2 C nell origine non è isomorfo a una varietà affine. (2) Sia n 1, N = d e siano M0,...,M N i monomi di grado d in x 0,x 1,x 2. Denotiamo con y 0,...,y N le coordinate omogenee di P N.Sia N Z = V ( M i (x 0,x 1,x 2 )y i ) P 2 P N. i=0 esiap 2 : Z P N la restrizione della seconda proiezione. Si dimostri che Z è u n c h i u s o i r r i d u c i b i l e d i P 2 P N echep 2 è un morfismo. Inoltre a =(a 0 : : a N ) P N,sia N C a = Z M i (x, y, z)a i. Si dimostri che p 1 2 (a) =C a {a}. i=0

4 4 28 FEBBRAIO 2013 (3) Sia C = {s 0 Q 0 (x 0,x 1,x 2 )+s 1 Q 1 (x 0,x 1,x 2 )} un fascio di coniche proiettive piane su C con Q 0 e Q 1 equazioni di coniche irriducibile fissate. Sia Q una conica singolare del fascio. Si dimostri che un punto singolare p di Q è singolare per il chiuso Z = V (s 0 Q 0 (x 0,x 1,x 2 )+s 1 Q 1 (x 0,x 1,x 2 )) P 1 C P2 C se e solo se p è un punto base del fascio C (cioè p Q Q C). Suggerimento: si consideri per semplicità solo il caso p =((1:t), (1 : x : y)) (1) Sia X P n con n 2 un ipersuperficie riducibile. Si dimostri che dim X sing n 2. Sia 0 <m n e si consideri Q m = V P (x x2 m) P n. riducibile se e solo se m = 1. Si dimostri che Q m è (2) Sia (p, q) P 1 C A1 C. Si dimostri che P1 C A1 C \{(p, q)} non è isomorfo a una varietà proiettiva. (3) Si dimostri che il sottoinsieme di Z P(C[x 0,x 1,x 2 ] 4 ) costituito dalle classi di polinomi omogenei riducibili di grado 4 è un chiuso proprio e si determinino le sue componenti irriducibili con le relative dimensioni (1) Si consideri la cubica nodata C = V P (x 0 x 2 2 x2 1 (x 1 + x 0 )) P 2. Si dimostri che la proiezione π (1:0:0) : C V P (x 0 ) è una mappa birazionale. (2) Sia ϕ : X Y un morfismo suriettivo di varietà quasi-proiettive. Sia Z Y un chiuso. Si dimostri che se ϕ 1 (Z) è irriducibile, allora Z è i r r i d u c i b i l e. (3) Si consideri il chiuso X di P 1 P 2 determinato dall equazione s 0 x s 1 x 2 2 =0, dove ((s 0 : s 1 ), (x 0 : x 1 : x 2 )) P 1 P 2 indicano le coordinate. Si determinino i punti di P 1 per cui le fibre della prima proiezione p 1 : X P 1 sono coniche piane riducibili; 14 ottobre 2013 (1) Sia ϕ : X Y un morfismo tra X varietà proiettiva e Y quasiproiettiva su un campo algebricamente chiuso. Si dimostri che f(x) è chiuso in Y. Si caratterizzino le varietà che sono sia affini che proiettive.

5 PROVA SCRITTA IGS2 B 5 (2) Si dimostri che P n P m e lo scoppiamento Â2 di A 2 in un punto sono varietà razionali. (3) Si consideri la varietà grassmanniana G(1, 3) P 5 C delle rette di P3. Si dimostri che i seguenti insiemi sono chiusi e si determinino le rispettive dimensioni: fissato P P 3,Γ P := {l G(1, 3) L P }; Ω:={(l, l ) l l = } G(1, 3) G(1, 3) (1) Sia f : X Y un morfismo finito suriettivo tra varietà proiettive su un campo algebricamente chiuso. Si dimostri che per ogni chiuso proprio Z X si ha f(z) = Y. (2) Sia X P n C con n 4 un ipersuperficie di grado d 2. Si dimostri che se X contiene un sottospazio proiettivo di dimensione r n/2, allora X ha punti singolari. (3) Si dimostri che il sottoinsieme W = {(l 1,l 2 ) G(1, 3) G(1, 3) l 1 l 2 = } G(1, 3) G(1, 3) è chiuso. Calcolare la dimensione di W. Si consideri P 19 = P(C[x 0,x 1,x 2,x 3 ] 3 )esiau = G(1, 3) G(1, 3) \ W.Sia Z = {(l 1,l 2, [F ]) U P 19 l 1 l 2 V (F ) P 3 } U P 19. Calcolare la dimensione di Z ededurnechep 2 : Z P 19 è dominante.

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili. Geometria Algebrica A.A. 2014 2015 Esercizi Insiemi algebrici affini, Insiemi algebrici irriducibili. Negli esercizi si suppone, se non scritto al contrario, che il campo k sia algebricamente chiuso di

Dettagli

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili. Geometria Algebrica A.A. 2017 2018 Esercizi Insiemi algebrici affini, Insiemi algebrici irriducibili. Negli esercizi si suppone, se non scritto al contrario, che il campo k sia algebricamente chiuso di

Dettagli

Geometria Algebrica Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

Geometria Algebrica Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili. Geometria Algebrica 2009 2010 Esercizi Insiemi algebrici affini, Insiemi algebrici irriducibili. Negli esercizi si suppone, se non detto al contrario, che il campo k è algebraicamente chiuso. Sia V A n

Dettagli

detta curva a forma di otto od anche lemniscata di Gerono. Studiare i punti singolari di C.

detta curva a forma di otto od anche lemniscata di Gerono. Studiare i punti singolari di C. V I LISTA DI ESERCIZI E COMPLEMENTI GEOMETRIA II, A.A. 2018/19 (1) In P 2 C con coordinate omogenee (x : y : z) sia C P2 C la curva algebrica avente equazione x 4 y 4 + xy = 0, detta svastica. Studiare

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

n+1 i=1 Sia D la superficie di Riemann della curva algebrica piana:

n+1 i=1 Sia D la superficie di Riemann della curva algebrica piana: ESERCIZI 1) Sia C una superficie di Riemann di genere 1. Sia p C. a) Dimostrare che l(2p) = 2 e l(3p) = 3. b) Siano {1, f} e {1, f, g} basi per L(2p) e L(3p), rispettivamente. Dimostrare che esistono costanti

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2015 2016 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Si dimostri che il polinomio di Fermat f(x 1,..., x n ) = x d 1 + + x d n è irriducibile in C[x

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2016 2017 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Si dimostri che il polinomio f(x, y) = x 2 y +x 5 +1 è irriducibile in C[x, y]. Sia K un campo.

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2017 2018 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Sia K un campo. Si dimostri che un polinomio f(x) K[x] di grado d, dove 2 d 3, è riducibile se

Dettagli

A.A. 2010/2011. Esercizi di Geometria II

A.A. 2010/2011. Esercizi di Geometria II A.A. 2010/2011 Esercizi di Geometria II Spazi affini, euclidei e proiettivi Preparazione all esame scritto Esercizio 1. Sia A 3 (R) il 3 spazio affine reale numerico dotato del riferimento affine standard

Dettagli

Il corso si prefigge una introduzione alle teorie e alle tecniche di base della Geometria Algebrica moderna.

Il corso si prefigge una introduzione alle teorie e alle tecniche di base della Geometria Algebrica moderna. DIPARTIMENTO DI MATEMATICA E INFORMATICA Corso di laurea magistrale in Matematica Anno accademico 2016/2017-2 anno - Curriculum A GEOMETRIA ALGEBRICA MAT/03-9 CFU - 1 semestre Docente titolare dell'insegnamento

Dettagli

22 Novembre Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non

22 Novembre Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non Primo esonero di GEOMETRIA 3 - C. L. Matematica 22 Novembre 2013 1. Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non singolare ( ) α 2. 1 0 (a) Si determini, al variare del

Dettagli

Geometria 4 (nuovo ordinamento) Esame scritto del 1/4/2004

Geometria 4 (nuovo ordinamento) Esame scritto del 1/4/2004 Esame scritto del /4/2004 Le risposte non giustificate o illeggibili non saranno corrette. A fianco di ogni domanda è indicato il punteggio. Si è ammessi all orale con un punteggio minimo di 2/33. Esercizio.

Dettagli

a.a ESAME DI GEOMETRIA PER INFORMATICA il sottospazio di R 4 costituito dalle soluzioni del x 1 +2x 2 x 4 =0 x + y 2x V = {

a.a ESAME DI GEOMETRIA PER INFORMATICA il sottospazio di R 4 costituito dalle soluzioni del x 1 +2x 2 x 4 =0 x + y 2x V = { a.a. 2005-2006 24..2007 ESAME DI GEOMETRIA PER INFORMATICA Per ogni quesito dare adeguate spiegazioni. () Sia V λ, al variare di λ R il sottospazio di R 4 costituito dalle soluzioni del x +2x 2 x 4 =0

Dettagli

e la funzione meromorfa f su C, (detta proiezione stereografica), definita da f = Y Z e h = X Z.

e la funzione meromorfa f su C, (detta proiezione stereografica), definita da f = Y Z e h = X Z. Esercizi su Superfici di Riemann e curve algebriche 1) Siano X, Y, Z coordinate omogenee in P 2 C. Sia C = {[X, Y, Z] P 2 C X 4 + XY 3 + Z 4 = 0}. Si consideri su C la funzione meromorfa f = X/Z. a)calcolare

Dettagli

Geometria I - Canale M-Z

Geometria I - Canale M-Z Geometria I - Canale M-Z Prof. P. Piccinni Prova scritta del 28 Giugno 2018 Nome e Cognome: Numero di Matricola: Norme per le prove scritte d esame 1. Scrivere subito nome, cognome, e numero di matricola

Dettagli

Appunti per il corso di Algebraic Geometry 2. Claudio Fontanari

Appunti per il corso di Algebraic Geometry 2. Claudio Fontanari Appunti per il corso di Algebraic Geometry 2 Claudio Fontanari Trento, maggio 2014 Definizione: la dimensione di Kodaira κ(x) di una varietà proiettiva X è la massima dimensione dell immagine di X in P

Dettagli

PROVA SCRITTA DI GEOMETRIA 2 MATEMATICA, 20/09/2011

PROVA SCRITTA DI GEOMETRIA 2 MATEMATICA, 20/09/2011 PROVA SCRITTA DI GEOMETRIA 2 MATEMATICA, 20/09/2011 In questo elenco, la presenza di esercizi relativi ai singoli argomenti non è correlata alla loro rilevanza, né alla ricorrenza nella prova scritta.

Dettagli

PROVA SCRITTA DI GEOMETRIA 2 CON ELEMENTI DI STORIA 2, MATEMATICA, 16/06/2017. Nome... Matricola...

PROVA SCRITTA DI GEOMETRIA 2 CON ELEMENTI DI STORIA 2, MATEMATICA, 16/06/2017. Nome... Matricola... PROVA SCRITTA DI GEOMETRIA 2 CON ELEMENTI DI STORIA 2, MATEMATICA, 16/06/2017 Nome... Matricola... Per ogni risposta, segnare V se è vera, F se è falsa. Ogni test viene valutato 3 punti se vengono date

Dettagli

Corso di Laurea in Matematica GEOMETRIA A. Seconda prova intermedia aa. 2018/ k 1 (k + 1) 1 k 1 2 A :=

Corso di Laurea in Matematica GEOMETRIA A. Seconda prova intermedia aa. 2018/ k 1 (k + 1) 1 k 1 2 A := Corso di Laurea in Matematica GEOMETRIA A Seconda prova intermedia aa. 018/019 Esercizio 1. Si consideri il piano euclideo V = E munito del prodotto scalare standard e della base ortonormale e 1, e } e

Dettagli

ESERCIZI DI RIPASSO, A.A

ESERCIZI DI RIPASSO, A.A ESERCIZI DI RIPASSO, A.A. 14-15 Per ogni risposta, segnare V se è vera, F se è falsa. Ogni test viene valutato 3 punti se vengono date tutte e sole le risposte corrette. Altrimenti, la valutazione è 0.

Dettagli

Geometria delle rette di P 3

Geometria delle rette di P 3 Università di Ferrara Facoltà di scienze matematiche, fisiche e naturali Corso di Laurea in Matematica Geometria delle rette di P 3 Relatore: Chiar.mo Prof. Massimiliano Mella Laureando: Stefano Maggiolo

Dettagli

Università degli Studi di Catania CdL in Ingegneria Industriale

Università degli Studi di Catania CdL in Ingegneria Industriale CdL in ngegneria ndustriale Prova scritta di Algebra Lineare e Geometria del 27 gennaio 2014 Usare solo carta fornita dal Dipartimento di Matematica e nformatica, riconsegnandola tutta. È vietato consultare

Dettagli

Superficie K3 e spazi di moduli. Claudio Fontanari

Superficie K3 e spazi di moduli. Claudio Fontanari Superficie K3 e spazi di moduli Claudio Fontanari Trento, maggio 2014 Definizione: la dimensione di Kodaira κ(x) di una varietà proiettiva X è la massima dimensione dell immagine di X in P N tramite la

Dettagli

Geometria 2. Università degli Studi di Trento Corso di Laurea in matematica A.A. 2010/ luglio 2011

Geometria 2. Università degli Studi di Trento Corso di Laurea in matematica A.A. 2010/ luglio 2011 Geometria 2 Università degli Studi di Trento Corso di Laurea in matematica A.A. 2010/2011 25 luglio 2011 Si svolgano i seguenti esercizi. Esercizio 1. Denotiamo con E 4 il 4 spazio euclideo numerico dotato

Dettagli

Appunti di Elementi di Geometria Algebrica. Antonino Leonardis

Appunti di Elementi di Geometria Algebrica. Antonino Leonardis Appunti di Elementi di Geometria Algebrica Antonino Leonardis 29 novembre 2006 Indice 1 Cubiche 5 1.1 Classificazione proiettiva delle curve.............. 5 1.2 Forma canonica di Weierstrass.................

Dettagli

1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009

1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009 1. Si consideri la matrice 1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009 A = ( 1 1 1 3 Sia g : R 2 R 2 R la forma bilineare e simmetrica avente A come matrice associata rispetto alla base canonica

Dettagli

Università degli Studi di Catania CdL in Ingegneria Informatica (G-Q) CdL in Ingegneria Meccanica (Lo-To)

Università degli Studi di Catania CdL in Ingegneria Informatica (G-Q) CdL in Ingegneria Meccanica (Lo-To) CdL in ngegneria nformatica (G-Q) CdL in ngegneria Meccanica (Lo-To) Prova scritta di Algebra Lineare e Geometria del 31 gennaio 2011 1 Si consideri l -spazio vettoriale V = X 2,2 tr X = 0 } ( ) e sia

Dettagli

Foglio di esercizi di Istituzioni di Geometria

Foglio di esercizi di Istituzioni di Geometria Foglio di esercizi di Istituzioni di Geometria 11 ottobre 2017 Esercizio 1 Sia M varietà differenziabile, p M e si consideri un funzionale lineare D : C (M) R tale che D(fg) = f(p)d(g) + g(p)d(f). 1. Si

Dettagli

Esame scritto di Geometria 2

Esame scritto di Geometria 2 Esame scritto di Geometria 2 Università degli Studi di Trento Corso di Laurea in matematica A.A. 2012/2013 10 giugno 2013 Si svolgano i seguenti esercizi. Esercizio 1. Sia E 3 lo spazio euclideo reale

Dettagli

CdL in Ingegneria Informatica (Orp-Z)

CdL in Ingegneria Informatica (Orp-Z) Prova scritta di Algebra Lineare e Geometria del giorno 1 Febbraio 2006 Sia f : R 4 R 4 l applicazione lineare definita dalla legge f (x, y, z, t) = (2x + (h + 3)y + (1 h)z + t, 2x + 5y + (h + 5)z + 2t,

Dettagli

Anno Accademico 2016/2017

Anno Accademico 2016/2017 Mod. 136/1 ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA Anno Accademico 2016/2017 Scuola di Scienze Matematiche, Fisiche e Naturali Corsi di Laurea o di Diploma Laurea Magistrale in Matematica - Curriculum

Dettagli

Università degli Studi di Catania CdL in Ingegneria Civile e Ambientale

Università degli Studi di Catania CdL in Ingegneria Civile e Ambientale CdL in ngegneria Civile e Ambientale Prova scritta di Algebra Lineare e Geometria del 26 gennaio 2018 Usare solo carta fornita dal Dipartimento di Matematica e nformatica, riconsegnandola tutta. 1) Siano

Dettagli

Geometria Superiore. A.A. 2014/2015 CdL in Matematica Università degli Studi di Salerno. May 28, 2015

Geometria Superiore. A.A. 2014/2015 CdL in Matematica Università degli Studi di Salerno. May 28, 2015 Geometria Superiore A.A. 2014/2015 CdL in Matematica Università degli Studi di Salerno Luca Vitagliano May 28, 2015 Programma Prerequisiti. Spazi affini. Anelli commutativi con unità. Ideali. Anelli quoziente.

Dettagli

ESERCIZI DI GEOMETRIA B. 2. Date le matrici

ESERCIZI DI GEOMETRIA B. 2. Date le matrici ESERCIZI DI GEOMETRIA B 1. Sia T : R 3 R 3 l endomorfismo definito da T (x, y, z) = (x + 3y z, 4y z, y + 2z). Si determini una matrice di Jordan J ed una base B di R 3 tale che la matrice associata a T

Dettagli

Corso di Laurea in Matematica - A.A. 2003/2004 Geometria Analitica I Esonero - 21 novembre 2003 (Proff. Marco Manetti e Riccardo Salvati Manni)

Corso di Laurea in Matematica - A.A. 2003/2004 Geometria Analitica I Esonero - 21 novembre 2003 (Proff. Marco Manetti e Riccardo Salvati Manni) I Esonero - 21 novembre 2003 Esercizio 1. Per ogni n>0 sia B n M n (R) la matrice simmetrica di coefficienti b ij = i + j 2, i,j =1,...,n. Determinare rango e segnatura di B 1,B 2 e B 3. Soluzione. Si

Dettagli

Provadiprova 1 - aggiornamento del 23 Ottobre 2013

Provadiprova 1 - aggiornamento del 23 Ottobre 2013 Università di Trento - Corso di Laurea in Ingegneria Civile e Ambientale Analisi matematica - a.a. 03-4 - Prof. Gabriele Anzellotti Provadiprova - aggiornamento del 3 Ottobre 03 a) Curve: rappresentazione

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a

Vi prego di segnalare ogni inesattezza o errore tipografico a ESERCIZI DI GEOMETRIA 4 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Geometria proiettiva Esercizio 1. Dire quali tra le seguenti coordinate omogenee dei punti in P 2 rappresentano

Dettagli

Definizione 1.1 Un insieme algebrico affine è l insieme degli zeri in A n dei polinomi appertenenti a un qualche sottoinsieme S C[x 1,..., x n ].

Definizione 1.1 Un insieme algebrico affine è l insieme degli zeri in A n dei polinomi appertenenti a un qualche sottoinsieme S C[x 1,..., x n ]. Capitolo 4 Varietà algebriche In questo capitolo tratteremo di alcune nozioni elementari di geometria algebrica che useremo principalmente nello studio delle realizzazioni proiettive delle superfici di

Dettagli

CdL in Ingegneria Informatica (A-F), (G-Q)

CdL in Ingegneria Informatica (A-F), (G-Q) CdL in ngegneria nformatica (A-F), (G-Q) Prova scritta di Algebra Lineare e Geometria del giorno 31 Gennaio 2007 Sia V il sottospazio vettoriale di R 4 generato dai vettori v 1 = (2, 1, 2, 0), v 2 = (2,

Dettagli

Geometria 3 A.A Esercizi

Geometria 3 A.A Esercizi Geometria 3 A.A. 2012 2013 Esercizi Omotopia di applicazioni contiue. Si dimostri che lo spazio X = {x R 2 : x 1} è connesso. Siano x, y punti di uno spazio topologico X. Si dimostri che le applicazioni

Dettagli

CLASSE Ingegneria Informatica (G-La)

CLASSE Ingegneria Informatica (G-La) CLASSE ngegneria nformatica (G-La) Prova scritta di Algebra assegnata il 9 Novembre 2002 Durata della prova: due ore. Sia f : R 4 R 4 l endomorfismo definito dalle relazioni f (e 1 ) = v 1, f (e 2 ) =

Dettagli

Esame di Matematica 3 (laurea in Matematica) prova scritta del 3 luglio 2008 Compito A

Esame di Matematica 3 (laurea in Matematica) prova scritta del 3 luglio 2008 Compito A Esame di Matematica 3 (laurea in Matematica prova scritta del 3 luglio 28 Compito A ESERCIZIO. Si consideri la proiettività, f : P 3 (R P 3 (R, di matrice 3 3 A = 2 3 3 nel riferimento canonico {e,...,

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

Geometria e Topologia I - 15 lug 2008 (14:30 - U1-02) 1/10. Cognome:... Nome:... Matricola:...

Geometria e Topologia I - 15 lug 2008 (14:30 - U1-02) 1/10. Cognome:... Nome:... Matricola:... Geometria e Topologia I - 5 lug 2008 (4:0 - U-02) /0 Cognome:................ Nome:................ Matricola:................ (Dare una dimostrazione esauriente di tutte le risposte.) () Si determinino

Dettagli

Algebra lineare Geometria 1 15 luglio 2009

Algebra lineare Geometria 1 15 luglio 2009 Algebra lineare Geometria 1 15 luglio 2009 Esercizio 1. Nello spazio vettoriale reale R 3 [x] si considerino l insieme A k = {1 + x, k + (1 k)x 2, 1 + (k 1)x 2 + x 3 }, il vettore v k = k + kx x 3 e la

Dettagli

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 A I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 ESERCIZIO 1. Si consideri il seguente sistema di equazioni lineari x + y + 2z = 1 2x + ky + 4z = h 2x 2y + kz = 0 (a) Determinare,

Dettagli

Università di Pisa Geometria e Algebra Lineare per Ingegneria Aerospaziale, Ingegneria Meccanica, Ingegneria della Sicurezza

Università di Pisa Geometria e Algebra Lineare per Ingegneria Aerospaziale, Ingegneria Meccanica, Ingegneria della Sicurezza Scritto n.1 del 2010 Esercizio 1. Discutere il seguente sistema reale h x + y + h z = h 2 x + (1 h) z = 3 h 2 h x + y + h z = h h 2 Esercizio 2. Risolvere exp 2 z + ( 1 + i 3) expz + z ( exp 2 z + ( 1

Dettagli

Esame scritto di Geometria 2

Esame scritto di Geometria 2 Esame scritto di Geometria Università degli Studi di Trento Corso di laurea in Matematica A.A. 013/014 Settembre 014 Esercizio 1 Sia P 3 lo spazio proiettivo reale tridimensionale dotato del riferimento

Dettagli

SUPERFICI DI RIEMANN (settima parte) anno acc. 2008/2009

SUPERFICI DI RIEMANN (settima parte) anno acc. 2008/2009 (settima parte) anno acc. 2008/2009 Divisori molto ampi Sia X una superficie di Riemann compatta, D Div(X) un divisore su X e Φ D l applicazione associata. Si dice che D è molto ampio se Φ = Φ D è un immersione

Dettagli

Geometria affine e proiettiva

Geometria affine e proiettiva Geometria affine e proiettiva Laura Facchini 7 aprile 20 Esercizio. Sia E 4 il 4-spazio euclideo numerico dotato del riferimento cartesiano standard di coordinate (x, y, z, w. Siano P (0, 0,,, P (, 2,,,

Dettagli

GE210 Geometria e algebra lineare 2 A.A. 2018/2019

GE210 Geometria e algebra lineare 2 A.A. 2018/2019 GE210, I Semestre, Crediti 9 GE210 Geometria e algebra lineare 2 A.A. 2018/2019 Prof. Angelo Felice Lopez 1. Forme bilineari e forme quadratiche Forme bilineari, simmetriche ed antisimmetriche. Esempi:

Dettagli

un sistema di coordinate affini su T e f K[x 1,..., x n ]. Studieremo i sottoinsiemi di T definiti come segue:

un sistema di coordinate affini su T e f K[x 1,..., x n ]. Studieremo i sottoinsiemi di T definiti come segue: Capitolo 10 Ipersuperfici Sia T uno spazio affine sul campo K. Sia X : T un sistema di coordinate affini su T e f K[x 1,..., x n ]. Studieremo i sottoinsiemi di T definiti come segue: V (f) := {p T f(x(p))

Dettagli

La Geometria della Superficie di Veronese

La Geometria della Superficie di Veronese UNIVERSITÀ DEGLI STUDI DI ROMA TRE FACOLTÀ DI SCIENZE M.F.N. Sintesi della Tesi di Laurea in Matematica di Francesca Mazzini La Geometria della Superficie di Veronese Relatore Prof. Edoardo Sernesi Il

Dettagli

Esercizi Algebra dicembre 2016

Esercizi Algebra dicembre 2016 Esercizi Algebra 2 20 dicembre 2016 Sia a un elemento di un anello R. Consideriamo R = R[x]/(ax 1). Denotiamo con ϕ la mappa data componendo R R[x] con la proiezione R[x] R. Provare che Ker(ϕ) := {b R

Dettagli

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8 Geometria e Topologia I 22 Giugno 2005 (U-0, 9:00 :00) [PROVA PARZIALE]/8 Correzione 0 () In A 3 (R) siano dati i tre punti A =, B = 0, C =. 0 (a) A B e C sono allineati? Dipendenti? (b) Dimostrare che

Dettagli

Prova di geometria differenziale del , I parte VERSIONE A

Prova di geometria differenziale del , I parte VERSIONE A Prova di geometria differenziale del 26-2-204, I parte VERSIONE A Attenzione: riportare i dati personali su ogni foglio consegnato Esercizio.. Si descriva l atlante stereografico sulla sfera S 2 (), con

Dettagli

GENERALITA SULLE CURVE DIFFERENZIABILI

GENERALITA SULLE CURVE DIFFERENZIABILI Capitolo 1 GENERALITA SULLE CURVE DIFFERENZIABILI Definizione 1. Sia I un intervallo aperto della retta euclidea E 1 e sia α : I E n, con n 2, un applicazione differenziabile. La sua immagine C = α(i)

Dettagli

Superfici Algebriche Razionali

Superfici Algebriche Razionali Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica Tesi di Laurea Specialistica in Matematica Sintesi presentata da Paola Stolfi Superfici Algebriche Razionali Relatore Prof.

Dettagli

GEOMETRIA 28 Giugno minuti

GEOMETRIA 28 Giugno minuti GEOMETRIA 28 Giugno 2017 90 minuti A Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata corretta nella

Dettagli

Esercitazioni di Geometria A: curve algebriche

Esercitazioni di Geometria A: curve algebriche Esercitazioni di Geometria A: curve algebriche 24-25 maggio 2016 Esercizio 1 Sia P 2 il piano proiettivo complesso munito delle coordinate proiettive (x 0 : x 1 : x 2 ). Sia r la retta proiettiva di equazione

Dettagli

Laurea in Matematica Esercitazioni di Geometria 2-9 gennaio 2014

Laurea in Matematica Esercitazioni di Geometria 2-9 gennaio 2014 Laurea in Matematica Esercitazioni di Geometria - 9 gennaio 014 1. Una cubica irriducibile del piano proiettivo P C) priva di punti singolari possiede a) non più di tre flessi; b) più di tre flessi ma

Dettagli

Superfici Cubiche di P 3

Superfici Cubiche di P 3 Superfici Cubiche di P 3 Consideriamo nello spazio proiettivo P 3 (K), su un campo K algebricamente chiuso, gli insiemi algebrici proiettivi del tipo S=V(F) con F K[X,Y,Z,T] omogeneo di grado tre. Questi

Dettagli

REGISTRO DELLE ESERCITAZIONI

REGISTRO DELLE ESERCITAZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE ESERCITAZIONI del Corso UFFICIALE di GEOMETRIA A tenute dal prof. Domenico AREZZO nell anno accademico

Dettagli

Esercizi di Algebra Superiore. φ : k[x 1,..., X n ] k[t] φ(x i ) = t a i.,..., X n t a n X0 X 1 X 3 2 X 1 X 2 X 0 X 2 3.

Esercizi di Algebra Superiore. φ : k[x 1,..., X n ] k[t] φ(x i ) = t a i.,..., X n t a n X0 X 1 X 3 2 X 1 X 2 X 0 X 2 3. Esercizi di Algebra Superiore 1 Sia l omomorfismo definito da φ : k[x 1,, X n ] k[t] φ(x i ) = t a i, a i 1 Provare che Ker(φ) = (X 1 t a 1,, X n t a n ) k[x 1,, X n ] 2 Sia I l ideale di R = k[x 0,, X

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Esame di Matematica 3 (laurea in Matematica) prova scritta del 18 giugno 2008 Compito A

Esame di Matematica 3 (laurea in Matematica) prova scritta del 18 giugno 2008 Compito A Esame di Matematica 3 (laurea in Matematica prova scritta del 8 giugno 28 Compito A ESERCIZIO. Si consideri la proiettività, f : P 3 (R P 3 (R, di matrice 6 4 2 2 A = 4 2 2 2 nel riferimento canonico {e,...,

Dettagli

Geometria 3 A.A Esercizi

Geometria 3 A.A Esercizi Geometria 3 A.A. 2014 2015 Esercizi Equivalenza omo- Omotopia di applicazioni contiue. topica. Si dimostri che lo spazio X = {x R 2 : x 1} è connesso. Si dimostri che lo spazio topologico è connesso. X

Dettagli

Forme aggiunte su varietà algebriche

Forme aggiunte su varietà algebriche Forme aggiunte su varietà algebriche Luca Rizzi Università degli studi di Udine Genova 31 Maggio 2018 Famiglia di Varietà Definizione Una famiglia di varietà n-dimensionali è un morfismo proprio sommersivo

Dettagli

Ingegneria Edile - Corso di geometria - anno accademico 2009/2010

Ingegneria Edile - Corso di geometria - anno accademico 2009/2010 prova scritta del 7// TEMPO A DISPOSIZIONE: 9 minuti Esercizio. In R si considerino i punti A =, B = e la retta r passante per A e B. (i)il punto C = r? vero falso (ii) Determinare l equazione di un piano

Dettagli

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Primo compito. Si consideri la regione stokiana E di R 3 definita dalle disuguaglianze: { + y 2 a 2 0 z tan α)x b) dove

Dettagli

Appunti del Corso di. Geometria Superiore. Elementi di Teoria delle Curve Algebriche. Massimo Giulietti

Appunti del Corso di. Geometria Superiore. Elementi di Teoria delle Curve Algebriche. Massimo Giulietti Appunti del Corso di Geometria Superiore Elementi di Teoria delle Curve Algebriche Massimo Giulietti Indice Prefazione 4 Capitolo 1. Generalità sulle varietà algebriche 5 1. Varietà affini 5 2. Proprietà

Dettagli

Università degli Studi di Roma Tre Corso di Laurea in Matematica a.a. 2014/2015 GE220 Topologia Prova scritta 25/6/2015 Appello A

Università degli Studi di Roma Tre Corso di Laurea in Matematica a.a. 2014/2015 GE220 Topologia Prova scritta 25/6/2015 Appello A Università degli Studi di Roma Tre Corso di Laurea in Matematica a.a. 2014/2015 GE220 Topologia Prova scritta 25/6/2015 Appello A Nome e Cognome: Esercizio 1 Esercizio 2 Esercizio 3 Esercizio 4 Esercizio

Dettagli

Le quadriche. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u.

Le quadriche. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Le quadriche Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Definizione Una quadrica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

Geometria ed Algebra delle curve piane

Geometria ed Algebra delle curve piane 10 Settembre 2009 Sia k un campo e siano X 1,..., X n coordinate sullo spazio affine k n. La geometria algebrica ha come scopo lo studio dei sottoinsiemi S k n definiti da un sistema di equazioni polinomiali

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 9 febbraio 2007 Traccia I 1 In R 3 si consideri il sottoinsieme H = {(a, b, 2a + b) a, b R}. Stabilire se H è un sottospazio vettoriale di R 3 e, in caso affermativo, determinarne la dimensione

Dettagli

ALGEBRA LINEARE E GEOMETRIA

ALGEBRA LINEARE E GEOMETRIA ALGEBRA LINEARE E GEOMETRIA A 11 luglio 2017 60 minuti Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata

Dettagli

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento)

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento) CORSO D LAUREA in ngegneria nformatica (Vecchio Ordinamento) Prova scritta di Geometria assegnata il 19/3/2002 Sia f : R 3 R 4 l applicazione lineare la cui matrice associata rispetto alle basi canoniche

Dettagli

PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017

PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017 PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017 La prova orale deve essere sostenuta entro il 28 Febbraio 2017 A Fissato un sistema di riferimento cartesiano nello spazio si consideri la quadriche Q di equazione

Dettagli

Prova scritta di Algebra lineare e Geometria- 8 Settembre 2010

Prova scritta di Algebra lineare e Geometria- 8 Settembre 2010 CdL in Ingegneria d(el Recupero Edilizio ed Ambientale - - Ingegneria Edile-Architettura (A-L),(M-Z)- Ingegneria delle Telecomunicazioni - - Ingegneria Informatica (A-F), (R-Z) Prova scritta di Algebra

Dettagli

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3.

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3. CORSO DI MATEMATICA II Prof Paolo Papi ESERCIZI ) Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali (a) V = R 3 () W = {(x,,x 3 ) x,x 3 R} (2) W 2 = {(x,,x 3 ) x,x 3 R} (3) W 3

Dettagli

Università degli Studi di Ferrara. Sistemi lineari, singolarità delle curve piane e superfici razionali

Università degli Studi di Ferrara. Sistemi lineari, singolarità delle curve piane e superfici razionali Università degli Studi di Ferrara FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Matematica Indirizzo: Matematica Pura Sistemi lineari, singolarità delle curve piane e superfici

Dettagli

Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile) 1. Tra le seguenti matrici, eseguire tutti i prodotti possibili:

Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile) 1. Tra le seguenti matrici, eseguire tutti i prodotti possibili: Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 0 5 F = 4 2

Dettagli

Geometria 2. Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2011/ luglio 2012

Geometria 2. Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2011/ luglio 2012 Geometria Università degli Studi di Trento Corso di Laurea in Matematica A.A. 011/01 13 luglio 01 Si svolgano i seguenti esercizi. Esercizio 1. Sia P 3 R) il 3 spazio proiettivo reale dotato del riferimento

Dettagli

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1].

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1]. Geometria I 27 4 Funzioni continue Cfr: Sernesi vol II, cap I, 4 [1]. Le funzioni continue tra spazi topologici si dicono anche mappe. Si può dimostrare, esattamente come in (2.10) e in (1.10), che vale

Dettagli

SOLUZIONE della prova scritta di Algebra Lineare e Geometria assegnata giorno 1 ottobre 2012

SOLUZIONE della prova scritta di Algebra Lineare e Geometria assegnata giorno 1 ottobre 2012 Prova scritta di giorno ottobre 0 SOLUZIONE della prova scritta di Algebra Lineare e Geometria assegnata giorno ottobre 0 x ) Sia X = z u e solo se I y t una matrice in R 3, X V se e solo se esiste λ R

Dettagli

Geometria 2. Università degli Studi di Trento Corso di Laurea in matematica A.A. 2010/ giugno 2011

Geometria 2. Università degli Studi di Trento Corso di Laurea in matematica A.A. 2010/ giugno 2011 Geometria Università degli Studi di Trento Corso di Laurea in matematica A.A. 010/011 7 giugno 011 Si svolgano i seguenti esercizi. Esercizio 1. Sia E 3 il 3 spazio euclideo ordinario dotato del riferimento

Dettagli

Esercizi di preparazione alla PFB

Esercizi di preparazione alla PFB Università degli Studi Roma Tre - Corso di Laurea in Matematica Esercizi di preparazione alla PFB A.A. 0-03 - Docenti: A. Bruno e G. Gentile Tutori: Sara Lamboglia e Maria Chiara Timpone Parte : Analisi

Dettagli

Algebra lineare e geometria AA Esercitazione del 14/6/2018

Algebra lineare e geometria AA Esercitazione del 14/6/2018 Algebra lineare e geometria AA. 2017-2018 Esercitazione del 14/6/2018 1) Siano A, B due matrici n n tali che 0 < rk(a) < rk(b) = n. (a) AB è invertibile. (b) rk(ab) = nrk(b). (c) det(ab) = det(a). (d)

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

ALGEBRA LINEARE E GEOMETRIA

ALGEBRA LINEARE E GEOMETRIA ALGEBRA LINEARE E GEOMETRIA A 20 settembre 2017 60 minuti Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata

Dettagli

Università degli Studi di Catania CdL in Ingegneria Informatica (G-Q) CdL in Ingegneria Meccanica (Lo-To)

Università degli Studi di Catania CdL in Ingegneria Informatica (G-Q) CdL in Ingegneria Meccanica (Lo-To) CdL in ngegneria nformatica (G-Q) CdL in ngegneria Meccanica (Lo-To) Prova scritta di Algebra Lineare e Geometria del giorno 27 Gennaio 2010 Usare solo carta fornita dal Dipartimento di Matematica e nformatica,

Dettagli

Spazi proiettivi. 16 novembre Completamento proiettivo di uno spazio affine

Spazi proiettivi. 16 novembre Completamento proiettivo di uno spazio affine Spazi proiettivi 16 novembre 2009 1 Completamento proiettivo di uno spazio affine Definizione 1. Una geometria è una coppia ordinata (P, L) di insiemi con: 1. Ogni elemento di L è un sottoinsieme di P;

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

Introduzione alla GEOMETRIA ALGEBRICA

Introduzione alla GEOMETRIA ALGEBRICA Università degli Studi di Padova Introduzione alla GEOMETRIA ALGEBRICA Francesco Bottacin A.A. 2010/11 Indice 1 Varietà 1 1.1 Varietà affini.......................... 1 1.1.1 Insiemi algebrici.....................

Dettagli

Corso di Matematica 2 (mod.a) per la Laurea in Matematica - esercizi per casa del 6 ottobre Cognome... Nome... Matricola...

Corso di Matematica 2 (mod.a) per la Laurea in Matematica - esercizi per casa del 6 ottobre Cognome... Nome... Matricola... 6.1.25-M2A-E1 Corso di Matematica 2 (mod.a per la Laurea in Matematica - esercizi per casa del 6 ottobre 25 Lo studente è tenuto a consegnare l elaborato svolto e firmato non più tardi di Lunedì 1 ottobre

Dettagli

Esame di GEOMETRIA 27 giugno ore 11

Esame di GEOMETRIA 27 giugno ore 11 Esame di GEOMETRIA 27 giugno 2011 - ore 11 Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata corretta

Dettagli