FUNZIONI CONTINUE - ESERCIZI SVOLTI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FUNZIONI CONTINUE - ESERCIZI SVOLTI"

Transcript

1 FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità della funzione [sin x] (parte intera di sin x) 4) Disegnare il grafico e studiare i punti discontinuità della funzione M(sin x) (mantissa di sin x) 5) Disegnare il grafico e studiare i punti di discontinuità della funzione x 5x 3 x 4x+3 6) Disegnare il grafico e studiare i punti di discontinuità della funzione x+3 3x +x 3 7) Determinare k R in modo che la funzione x + 4x se x 1 x + k se x < 1 sia continua su R 1

2 FUNZIONI CONTINUE - ESERCIZI SVOLTI 8) Determinare a, b R in modo che la funzione log(1 + x) se 1 < x 0 a sin x + b cos x se 0 < x < π x se x π sia continua sul suo dominio 9) Determinare il dominio e studiare la continuità della funzione log(1+x ) 3 sin x 10) Determinare il dominio e studiare la continuità della funzione M( cos x) 11) Disegnare il grafico e studiare la continuità della funzione ] x[ 1 x se x 0 1 se x = 0 1) Disegnare il grafico e studiare la continuità della funzione x sin x se x 0 1 se x = 0

3 FUNZIONI CONTINUE - ESERCIZI SVOLTI 3 SOLUZIONI 1) Per verificare che x è continua in x 0, con x 0 0, conviene esprimere la differenza f(x) f(x 0 ) in modo da maggiorarla, se possibile, con la differenza x x 0 o con una funzione di x x 0 In questo caso, razionalizzando, abbiamo x = ( x x 0 )( x x 0 ) x + = x x 0 x + Tenendo conto che x 0 per ogni x 0, x x 0 = x x 0 x + x x 0 Fissato ora ε > 0, cerchiamo di determinare δ > 0, tale che da x x 0 < δ segua f(x) f(x 0 ) < ε Sfruttando la disuguaglianza precedentemente provata, basta determinare δ > 0, tale che da x x 0 < δ segua x x 0 < ε Quest ultima condizione equivale a x x 0 < x 0 ε, pertanto basta scegliere δ x 0 ε ) Si vuole verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 Operando come nell esercizio precedente, cerchiamo di esprimere la differenza f(x) f(x 0 ) in modo da maggiorarla, se possibile, con la differenza x x 0 o con una funzione di x x 0 In questo caso, abbiamo 1 x 1 = x 0 x x 0 xx 0 Supponiamo che x 0 > 0 (per x 0 < 0 il procedimento è simile); poichè f non è definita in 0, conviene scegliere x in un intorno di x 0 che non contenga 0 Se scegliamo, per esempio l intorno di centro x 0 e raggio x 0 /, I =] x 0, 3 x 0[, allora per ogni x I si ha Pertanto, per ogni x I si ha x x 0 > x 0 x 0 = x 0 1 x 1 x 0 x = < x 0 x x 0 xx 0 Fissato ora ε > 0, cerchiamo di determinare δ > 0, tale che da x x 0 < δ segua f(x) f(x 0 ) < ε Sfruttando la disuguaglianza precedentemente provata, basta determinare δ > 0, tale che da x x 0 < δ segua x 0 x x 0 < ε x 0

4 4 FUNZIONI CONTINUE - ESERCIZI SVOLTI Quest ultima condizione equivale a x x 0 < ε x 0 ; affinchè essa sia soddisfatta per x I basta quindi scegliere δ min{ε x 0, x 0 } 3) Si vuole disegnare il grafico e studiare i punti di discontinuità della funzione [sin x] (parte intera di sin x) Conviene osservare che, poichè sin x è periodica, di periodo π, anche f ha la stessa proprietà Pertanto è sufficiente limitarsi a studiare f in un intervallo di ampiezza π Consideriamo, ad esempio, x [ π, π] Tenendo conto che [n] = n per ogni n intero, segue che sin x per x = π, π/, 0, π/, π Inoltre [y] = 0 per ogni y [0, 1[, quindi 0 per ogni x tale che sin x [0, 1[, ovvero per ogni x [0, π] \ {π/} Analogamente, essendo [y] = 1 per ogni y [ 1, 0[, segue 1 per ogni x tale che sin x [ 1, 0[, ovvero per x ] π, 0[ Possiamo pertanto disegnare il grafico richiesto, e verificare che vi sono punti di discontinuità In ±π e 0 la funzione f ha discontinuità di prima specie, in quanto lim 0, lim x ±π 1, x ±π + In x 0 = π lim 1, lim f ha una discontinuità eliminabile, in quanto 0, + lim 0 e f( π x π ) = 1 4) Come nel caso precedente la funzione M(sin x) (mantissa di sin x) risulta periodica di periodo π Consideriamo pertanto il problema posto nell intervallo [ π, π] Per tracciare il grafico ricordiamo che M(n) = 0 per ogni intero n, da cui segue 0 per ogni x tale che sin x sia intero, ovvero per x = π, π/, 0, π/, π Inoltre, poichè da y ]0, 1[ segue M(y) = y, allora per gli x tali che sin x ]0, 1[, ovvero per x ]0, π[\{π/}, si ha sin x Invece, da y ] 1, 0[ segue M(y) = y+1, e quindi per x ]π, 0[\{ π/}, si ha sin x+1 Si osserva ora che f ha punti di discontinuità di prima specie, per x = π, 0, π/, π Infatti lim 0, lim x ±π 1, x ±π + In x = π lim 1, lim 0 + la funzione f ha invece un punto di discontinuità eliminabile, poichè lim 1, e f( π x π ) = 0

5 FUNZIONI CONTINUE - ESERCIZI SVOLTI 5 5) Per disegnare il grafico e studiare i punti di discontinuità della funzione x 5x 3 x 4x+3, occorre preliminarmente determinarne il dominio Poichè il denominatore si annulla per x = 1, 3 si ha subito che dom(f) = R\{1, 3} Poichè anche il numeratore si annulla per x = 3 possiamo decomporre numeratore e denominatore, ottenendo (x 3)(x + 1) (x 3)(x 1) = x + 1 x 1 = + 3 x 1 per ogni x R \ {1, 3} Il grafico di f si può ricavare facilmente da quello di g(x) = 1/x mediante traslazioni e cambiamenti di scala Per quanto riguarda i punti di discontinuità, x = 3 è un punto di discontinuità eliminabile, in quanto non appartiene al dominio, ma esiste finito il limite lim x 3 lim ( + 3 ) = 7 x 3 x 1 Per x = 1, punto esterno al dominio di f, si ha invece lim, lim x 1 + x 1 + Con abuso di linguaggio si usa dire anche che 1 è punto di discontinuità di seconda specie Il grafico di f è riportato in figura Fig 1: Grafico di f, (esercizio 5) 6) Si vuole disegnare il grafico e studiare i punti di discontinuità della funzione x+3 3x +x 3 L esercizio è simile al precedente Si verifica facilmente che dom(f) = R \ { 3, 0}, e per tali punti 1 x

6 6 FUNZIONI CONTINUE - ESERCIZI SVOLTI In x = 3 si ha una discontinuità eliminabile, in quanto esiste finito mentre in x = 0 si ha lim 1 x 3 9, lim +, ovvero una discontinuità di seconda specie Il grafico di f è riportato in figura Fig : Grafico di f, (esercizio 6) 7) Per determinare k R in modo che la funzione x + 4x se x 1 x + k se x < 1 sia continua su R, si può cominciare ad osservare che f(x) è continua per ogni x 1, in quanto composta da funzioni continue (in questo caso, polinomi) Basta quindi studiare la continuità in x = 1 Perchè f sia continua in x = 1 occorre che i limiti destro e sinistro di f(x) per x 1 siano finiti ed uguali al valore f(1) Calcoliamo quindi lim x 1 lim + k) = k 1, ( x x 1 lim lim + 4x) = 6 x 1 + x 1 +(x Imponendo la condizione k 1 = 6 troviamo k = 7, che è il valore cercato Per ogni altro valore di k la funzione f corrispondente risulta discontinua in x = 1

7 FUNZIONI CONTINUE - ESERCIZI SVOLTI 7 8) Per determinare a, b R in modo che la funzione log(1 + x) se 1 < x 0 a sin x + b cos x se 0 < x < π x se x π sia continua sul suo dominio, osserviamo innanzitutto che dom(f) =] 1, + [ Inoltre, negli intervalli aperti ] 1, 0[, ]0, π [, ] π, + [ la funzione f(x) è continua in quanto composizione di funzioni continue (logaritmo, polinomi, seno e coseno) Resta quindi da studiare la continuità nei punti di raccordo x = 0 e x = π In ciascuno di tali punti si ha continuità se i limiti destro e sinistro sono finiti ed uguali al valore assunto da f Calcoliamo pertanto lim lim log(1 + x) = 0, lim lim sin x + b cos x) = b (a Ne segue che f è continua in 0 se e solo se b = 0 Inoltre lim lim (a sin x + b cos x) = a, lim x π x π lim x = π x π x π, da cui risulta che f è continua in x = π se e solo se a = π 9) La funzione log(1+x ) 3 sin x è definita su tutto R, in quanto per ogni x R si ha 1+x 1 > 0 e 3 sin x > 0 Per ogni x R essa è continua, in quanto composta da funzioni continue 10) La funzione M( cos x) è definita su tutto R Per ogni x R essa è continua, in quanto composta dalla funzione g(x) = cos x, che è continua per ogni x R, e ha per immagine Im (g) = [1/4, 3/4], e dalla funzione M(x) che è continua per ogni x [1/4, 3/4] 11) La funzione ] x[ 1 x se x 0 1 se x = 0 è discontinua nei punti x = 1/n, per ogni n intero (positivo o negativo) ed ha in tali punti discontinuità di prima specie In tutti gli altri punti di R è continua

8 8 FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) La funzione x sin x se x 0 1 se x = 0 è discontinua per x = 0, dove ha una discontinuità eliminabile, in quanto In tutti gli altri punti di R è continua Il grafico di f è riportato in figura 3 lim 0, f(0) = Fig 3: Grafico di f, (esercizio 1)

APPELLO C AM1C 19 Gennaio f(x) = log( x + 2) x

APPELLO C AM1C 19 Gennaio f(x) = log( x + 2) x Esercizio 1. Sia data la funzione f(x) = log( x + 2) x (a )Determinarne: insieme di esistenza e di derivabilità, limiti ed eventuali asintoti, eventuali punti angolosi o di cuspide, eventuali massimi e

Dettagli

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN.

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN. Esercizi riassuntivi - B. Di Bella 1 Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica 1. Sia A = n IN ] 1 n + 1, 1 [. n a) Determinare il derivato e l interno di A; b) stabilire

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Esercitazione su grafici di funzioni elementari

Esercitazione su grafici di funzioni elementari Esercitazione su grafici di funzioni elementari Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 8 Novembre 0. Come tali sono ben lungi dall essere esenti da errori, invito

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Esercitazione su grafici di funzioni elementari e domini di funzioni

Esercitazione su grafici di funzioni elementari e domini di funzioni Esercitazione su grafici di funzioni elementari e domini di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Ottobre 0. Come tali sono ben lungi dall essere esenti

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI CONTINUE Sia f : domf R una funzione e sia x 0 domf (esista cioè f(x 0 ) R) Possono verificarsi due casi: il

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 6 settembre 5 iv Indice Numeri reali Ordine fra numeri reali Funzioni reali 4 Radici aritmetiche 7 4 Valore assoluto 9 5 Polinomi 6 Equazioni 7 Disequazioni

Dettagli

Continuità di funzioni

Continuità di funzioni Continuità di funzioni Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 2 novembre 2015 Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva

Dettagli

LA DEFINIZIONE DI LIMITE FINITO IN UN PUNTO

LA DEFINIZIONE DI LIMITE FINITO IN UN PUNTO LA DEFINIZIONE DI LIMITE FINITO IN UN PUNTO 2 INTERVALLI Limitati: Chiuso: a x b [a;b] Aperto: a

Dettagli

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = tan(2x 2 + 3y 2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = tan(2x 2 + 3y 2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito del 7-9- - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

INTEGRALI IMPROPRI. Esercizi svolti. dx ; 2. Verificare la convergenza del seguente integrale improprio e calcolarne il valore:

INTEGRALI IMPROPRI. Esercizi svolti. dx ; 2. Verificare la convergenza del seguente integrale improprio e calcolarne il valore: INTEGRALI IMPROPRI Esercizi svolti. Usando la definizione, calcolare i seguenti integrali impropri: a b c d e / +5 d ; arctan + d ; 8+ 4 5/ +e + d ; 9 +8 + + d. d ;. Verificare la convergenza del seguente

Dettagli

CONTINUITA. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Limiti di funzioni - Funzioni continue cap3b.pdf 1

CONTINUITA. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Limiti di funzioni - Funzioni continue cap3b.pdf 1 CONTINUITA c Paola Gervasio - Analisi Matematica - A.A. 208/9 Limiti di funzioni - Funzioni continue cap3b.pdf Ricordiamo la definizione di limite lim 0 f () = l R: I ε (l), I δ ( 0 ) : dom(f ) I δ ( 0

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006 Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti April 5, 6 ESERCIZI. Studiare la convergenza della serie numerica al variare di γ IR.. Calcolare l integrale π n=

Dettagli

6. Asintoti e continuità

6. Asintoti e continuità 6. Asintoti e continuità Davide Catania [email protected] Esercitazioni di Analisi Matematica 1 Asintoti Continuità Asintoto orizzontale: la retta y = l è l asintoto orizzontale a + (o destro) di

Dettagli

LIMITI - ESERCIZI SVOLTI

LIMITI - ESERCIZI SVOLTI LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±

Dettagli

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 + Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere

Dettagli

LA DEFINIZIONE DI LIMITE FINITO IN UN PUNTO

LA DEFINIZIONE DI LIMITE FINITO IN UN PUNTO LA DI LIMITE FINITO IN UN PUNTO 1 LA Quando x si avvicina a x 0, f(x) si avvicina a f(x 0 ) o a un altro valore reale l? Quando x si avvicina a x 0, f(x) si avvicina a un valore l che è proprio f(x 0 )

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

23 INVERTIBILITÀ E CONTINUITÀ

23 INVERTIBILITÀ E CONTINUITÀ 23 INVERTIBILITÀ E CONTINUITÀ Ricordiamo che se A, B sono insiemi e f : A B è una funzione iniettiva, ovvero a 1 a 2 = fa 1 ) fa 2 ), allora la relazione gb) = a fa) = b definisce una funzione g : Im f

Dettagli

ESERCITAZIONE: FUNZIONI GONIOMETRICHE

ESERCITAZIONE: FUNZIONI GONIOMETRICHE ESERCITAZIONE: FUNZIONI GONIOMETRICHE e-mail: [email protected] web: www.dm.unipi.it/ tommei Circonferenza goniometrica La circonferenza goniometrica è una circonferenza di raggio unitario centrata nell

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x Studi di funzione D. Barbieri Esercizi Esercizio Esercizio Studiare comportamento asintotico e monotonia di f(x) = x + x4 + 4x Studiare il comportamento asintotico di f(x) = + x x + + e x Esercizio 3 Determinare

Dettagli

6. LIMITI. Definizione - Funzioni continue - Calcolo dei limiti

6. LIMITI. Definizione - Funzioni continue - Calcolo dei limiti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 6. LIMITI Definizione - Funzioni continue - Calcolo dei limiti A. A. 2014-2015 L.Doretti 1 IDEA INTUITIVA DI LIMITE I Caso: comportamento di una

Dettagli

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio A. Figà Talamanca 14 ottobre 2010 2 0.1 Ancora limiti di funzioni di variabile reale Esercizio 1 Sia f(x) = [sin x] definita nell insieme [0,

Dettagli

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono. Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di

Dettagli

Esercizi sulle equazioni logaritmiche

Esercizi sulle equazioni logaritmiche Esercizi sulle equazioni logaritmiche Per definizione il logaritmo in base a di un numero positivo x, con a > 0 e a 1, è l esponente che occorre dare alla base a per ottenere il numero x. In simboli log

Dettagli

Lezioni sullo studio di funzione.

Lezioni sullo studio di funzione. Lezioni sullo studio di funzione. Schema. 1. Calcolare il dominio della funzione D(f).. Comportamento della funzione agli estremi del dominio. Ad esempio se D(f) = [a, b] si dovrà calcolare f(a) e f(b),

Dettagli

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni Analisi matematica I e applicazioni Operazioni sugli sviluppi di Taylor e applicazioni 2 2006 Politecnico di Torino 1 e applicazioni Formule di Taylor con resto di Peano: caso e n =0 n =1 Formule di Taylor

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti. Risolvere la disequazione x x +. è soddisfatta x IR ]. Disegnare i grafici di (a) y = x + x + 3 ; (b) y = x x

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

SVILUPPI DI TAYLOR Esercizi risolti

SVILUPPI DI TAYLOR Esercizi risolti Esercizio 1 SVILUPPI DI TAYLOR Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx log1

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito FORMULARIO: tavola degli integrali indefiniti Definizione Proprietà dell integrale indefinito Integrali indefiniti fondamentali Integrali notevoli Integrali indefiniti riconducibili a quelli immediati:

Dettagli

Esercizi sulle funzioni

Esercizi sulle funzioni Esercizi sulle funzioni Esercizio. Siano f, g : R R definite da x x g ln x. Determinare le funzioni composte f g e g f, specificandone gli insiemi di definizione. Def(f) = [, ], Def(g) = (0, + ). f g :

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

LICEO LINGUISTICO NINNI CASSARÁ. Classe VA. Studio di Funzioni. prof. Alessio Cangemi

LICEO LINGUISTICO NINNI CASSARÁ. Classe VA. Studio di Funzioni. prof. Alessio Cangemi LICEO LINGUISTICO NINNI CASSARÁ Classe VA Studio di Funzioni prof. Alessio Cangemi Di seguito saranno schematizzati gli step fondamentali per tracciare il grafico probabile di una funzione f(x). 1 Ricerca

Dettagli