V n. =, e se esiste, il lim An
|
|
|
- Antonio Orlando
- 9 anni fa
- Visualizzazioni
Transcript
1 Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto. Determnare, per n : Vn Vn -la legge con cu vara l rapporto An =, e se esste, l lm An = lm. V n n V - la resstenza complessva della rete vsta dall ngresso, espressa n forma parametrca. - la corrente totale assorbta dalla rete, almentata dalla d.d.p. V. 4- la potenza totale assorbta dalla rete, almentata dalla d.d.p. V. Fg. -Per valor d n pccol, fno a 4 o, la rete è facle da studare, ma va va che n cresce l espressone che fornsce l rapporto rchesto dal testo, dventa sempre pù volumnosa e qund non facle da gestre. Bsogna capre se la frazone contnua che s scrverà è convergente, ed eventualmente calcolare l valore d convergenza. Inzamo a studare la rete per n = 0, n =, n =, e cos va fno ad n = 4, e vedamo cosa c rservano nostr calcol. La rete può essere mmagnata composta dalla parte d snstra che nza dal nodo 0, al quale vene applcato la d.d.p. V, fno al nodo consderato n, dopo aver aggunto n squadre. I rapport ottenut sono numer pur e coè admensonal, e non dpendono dal valore d Per prm valor d n seguono seguent calcol: V0 V n = 0 A = 0 V = V = (tensone d uscta uguale a tensone d ngresso) V n = A = V = = (tensone d uscta uguale a metà della tensone d ngresso) V V V V n = A = = = = = = = V V V V (tensone d uscta uguale ad un qunto della tensone d ngresso). A vene nterpretato come l prodotto d due rapport, l prmo de qual è stato calcolato nel caso precedente e vale, mentre l altro va calcolato tenendo conto d due partzon consecutve, e vale. Quest rsultat verranno usat anche ne prossm cas. S tratta d aggungere alla catena d prodott ottenut un nuovo rapporto, che ha una partzone n pù rspetto al caso precedente e cos s procede mentre cresce n. Catana l Gugno 006 a cura del prof. Slvestro Carota
2 Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT n = V V V V V V A = = = = V V V V V V = = = = = (tensone d uscta uguale ad un tredcesmo della tensone d ngresso) V4 V4 V V V n= 4 A4 = = = V V V V V V = = V Catana l Gugno 006 a cura del prof. Slvestro Carota
3 Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT Catana l Gugno 006 a cura del prof. Slvestro Carota = = = =
4 Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT = = = = = = = = 4 4 tensone d ngresso). (tensone d uscta uguale ad un trentaquattresmo della Ogn volta che s aggunge una squadra, la formula precedente s deve moltplcare per una coppa d frazon, che secondo quanto svolto prma è d tpo rcorsvo. Il rsultato fnale è dato dalla frazone ottenuta prendendo per numeratore l e per denomnatore, l denomnatore dell ultma frazone scrtta. Osservando bene l ultmo rsultato ottenuto, s comprende come costrure la coppa d frazon che bsogna aggungere per n= e cos va. Per rendere generale l crtero, a partre da n = 0 l fattore lo possamo scrvere anche cos: =. Scché per n = 4 s rscrve l rsultato: V4 V4 V V V A4 = = = = V V V V V 4 4 Inzando dalla prma frazone della prma coppa, e coè da, l crtero con l quale s scrve la seconda frazone è l seguente: l numeratore della frazone successva è uguale al denomnatore d quella precedente, mentre l denomnatore della successva è uguale alla somma tra numeratore e denomnatore della precedente. Oppure l fattore -esmo al numeratore è dato dalla somma de due fattor precedent, e al denomnatore s hanno gl stess fattor, ma sfalsat ndetro d un posto. La successone d quest fattor è nota come successone d Fbonacc. Allora, la coppa d fattor Catana l Gugno 006 a cura del prof. Slvestro Carota 4
5 Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT frazonar che dobbamo aggungere alla espressone precedente, per ottenere quella relatva al caso n = è data dalla: = Qund la formula completa per n = sarà: V V V4 V V V 4 A = = = = ; 0,04 V V V V V V per n = 6 sarà : V6 V6 V V4 V V V 4 A6 = = = V V V V V V V = 0, ; La tabella seguente mostra la sequenza de calcol che portano a rsultat dell ultma colonna, e che rappresentano la funzone cercata, e la resstenza della rete al varare d n. Catana l Gugno 006 a cura del prof. Slvestro Carota
6 Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT I contenut delle celle della precedente tabella sono rportat n charo qu d seguto: Nelle celle della colonna A-A0 sono rportat numer natural che ndcano l valore d n. Nella cella B= è rportato l numeratore della prma frazone della formula (). Nella cella C= è rportato l denomnatore della prma frazone della formula (). Nella cella D s scrve la formula: D=C così s mpone che l denomnatore della prma frazone è uguale al numeratore della seconda frazone della formula (). Nella cella E s scrve la formula E=BC così s mpone che l denomnatore della seconda frazone è uguale alla somma del numeratore e del denomnatore della prma frazone della formula (). Nella cella F della colonna F s assegna l valore, mentre nelle celle da F a F0 è mpostata la formula F=/E, che rappresenta l prodotto effettvo della (). Nella cella B s rporta l contenuto della cella E, scrvendo B=E. Nella cella C s scrve la formula C=CB. Nella cella D s scrve la formula D=C. Nella cella E s scrve la formula E=BC. Nella cella F s scrve la formula F=/E. Nelle celle della colonna G sono calcolate le resstenze, nzando dalla cella G alla quale s attrbusce l valore. In G s scrve la formula G=E/D. A questo punto s evdenzano le celle della rga C da C ad G, e facendo scorrere l area delle celle evdenzate con l tasto snstro del mouse fno al rgo corrspondente ad n=0 s copano le formule sulle celle corrspondent, ed n F e n G s ottengono rsultat cercat. Il grafco seguente rappresenta l andamento della legge cercata. L attenuazone A n s rduce a valor estremamente pccol a partre dal valore n = 6. Un aumento ulterore d n rende pratcamente nulla la tensone d uscta. Fg. Indcando nel seguente modo le frazon che costtuscono l termne n-esmo A n, la successone può assumere anche una veste pù elegante. N0 N N.. N N N. Nn An = () D D D.. D D D. D 0 n Catana l Gugno 006 a cura del prof. Slvestro Carota 6
7 Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT N =, N =, N = N N,..., N = N N, D =, D =, D = D D,..., D = D D, ma N = D, N = D,..., N = D, D = N N... 0 qund vale l seguente sstema d condzon rcorsve: N = N N D = N N che permette d rsalre al termne n-esmo della successone, medante la formula ( ) Dalla teora s può attngere alla formula esplcta che permette d rcavare l termne n-esmo -Adesso calcolamo la resstenza msurata tra l nodo 0 e la massa al varare d n. Per fare cò rferamoc alla Fg. che per nostra comodtà è rportata qu sotto. Fg. Per n = 0 la resstenza msurata è nfnta, essendo aperto l lato destro della rete. Aggungendo la prma squadra, e coè per n = la resstenza msurata vale. (Occorre aggungere la squadra completa per modfcare la resstenza msurata all ngresso, perché aggungendo la mezza squadra orzzontale la rete rmane sostanzalmente nvarata). ( ) Per n = s ha: 0 = = = = ( ) Per n = s ha, sfruttando l rsultato precedente: ( ) ( ) 0 = = = = ( ) = = ( ) Per n = 4 s ha, sfruttando rsultat precedent: ( ) ( ) ( ) ( ) 0 = = = = ( ) = ( ) ( ) ( ) Catana l Gugno 006 a cura del prof. Slvestro Carota 7
8 Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT 4 = = Proseguendo per gl altr valor d n, s otterranno valor che obbedscono alla seguente regola: ogn termne della successone può essere nterpretato come somma d con un addendo frazonaro d, scuramente mnore d stesso. Ponendo l attenzone a questo addendo s ha una successone del tpo: 4,,,,,... le frazon sono composte da numer d Fbonacc che s susseguono, ponendo- l al posto de numerator e de denomnator delle frazon poste ordnatamente, partendo dalla prma. I numer della successone d Fbonacc s possono prelevare dalla tabella d pag., nzando da: ogn termne è dato dalla somma de suo due predecessor, coè leggendol sulle due colonne D ed E, nell ordne:, D- E- D-E-D4-E4-, qund per avere ad es. la resstenza nel caso n=, basta procedere nel seguente modo: s leggono le celle D6 ed E6, coè del rgo precedente a quello d n = e s ntroducono nella formula = E6, 06E 0 0 = ;,6099. Come ben s può vedere nella colonna G della tabella, D6, 9 E 0 valor d 0 passano dal valore, al, al, e cos va verso un valore pratcamente costante a partre da n =. In effett, abbamo rtrovato una delle propretà de numer d Fbonacc, e coè che l rapporto tra due d quest numer consecutv tende, mentre cresce l ordne n cu s trovano, verso un numero costante che è legato al coeffcente che esprme la sezone aurea d un segmento, e coè: φ =,604 una propretà d questo numero è che = φ qund l suo recproco φ. corrsponde alla sua parte decmale Concludendo, la resstenza offerta dal parttore d Fg., è uguale alla quanttà: 0 = φ ;,60 =6,% e coè la resstenza totale s può nterpretare come la somma della prma resstenza della prma squadra con l parallelo della seconda resstenza della prma squadra con tutto l resto del parttore, che contrbusce, nonostante sa composto da nfnt resstor collegat n cascata, alternando sere con parallel, con una quanttà che al massmo è l 6, % d una. - la corrente assorbta da tutta la rete è data dal rapporto: V V V V I0 = = = 0,60 0( n > ) 4- la potenza assorbta da tutta la rete è data dalla relazone: V V V V P0 = = = 0,60 0( n > ) Catana l Gugno 006 a cura del prof. Slvestro Carota
* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *
* PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che
IL RUMORE NEGLI AMPLIFICATORI
IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.
S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:
S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva
Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1
Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado
Amplificatori operazionali
Amplfcator operazonal Parte 3 www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-5-) Confgurazone nvertente generalzzata Se nella confgurazone nvertente s sosttuscono le resstenze R e R con due mpedenze
Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami
Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x
LE FREQUENZE CUMULATE
LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune
RAPPRESENTAZIONE DI MISURE. carta millimetrata
carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!
5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza
5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è
Esercizi sulle reti elettriche in corrente continua (parte 2)
Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola
Macchine. 5 Esercitazione 5
ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt
SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia
SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all
RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2
RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d
Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali
Chmca Fsca - Chmca e Tecnologa Farmaceutche Lezone n. 10 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Convenzon per le soluzon real Relazon tra coeffcent d attvtà 02/03/2008 Antonno
Soluzione del compito di Fisica febbraio 2012 (Udine)
del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù
Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite
Rendmento l rendmento effettvo d un trasformatore vene defnto come: otenza erogata al carco η otenza assorbta dalla rete 1 1 1 1 Le norme defnscono l rendmento convenzonale d un trasformatore come: η otenza
urto v 2f v 2i e forza impulsiva F r F dt = i t
7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d
CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI
Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )
INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO
INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e
Calcolo della caduta di tensione con il metodo vettoriale
Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta
