Esercizi di Macchine a Fluido

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di Macchine a Fluido"

Transcript

1 Università degli Studi di Udine Facoltà di Ingegneria Esercizi di Macchine a Fluido a cura di L. Casarsa Esercizi proposti nelle prove scritte dell esame di Macchine I e II modulo dai docenti G.L Arnulfi, P. Giannattasio e P. Pinamonti 1

2 Esercizi sulle Macchine Motrici Idrauliche 2

3 SCELTA TURBINA IDRAULICA (Appello del , esercizio N 1) Testo In una centrale idroelettrica è installata una turbina collegata con un alternatore con p = 22 coppie polari. Il salto geodetico è H g = 14 m e la portata è Q = 70 m 3 /s. La turbina ha un diametro massimo della girante di D g = 3.5 m ed è attraversata da acqua con velocità meridiana uniforme pari a c m = 10 m/s. Supponendo che le perdite nelle tubazioni dell impianto siano di H perdite = 2 m e scegliendo dei valori opportuni per i rendimenti, si determini: tipo di turbina, potenza utile, diametro al mozzo, triangoli di velocità al diametro medio della girante (in particolare calcolare gli angoli palari). Svolgimento Tipo di turbina Per determinare il tipo di turbina è necessario calcolare il numero caratteristico di macchina k definito come: k = ω Q0.5 (gh) 0.75 (1) dove ω è la velocità angolare, Q la portata volumetrica e H il salto netto. Dato il numero di coppie polari dell alternatore collegato alla macchina, è possibile calcolare il numero di giri della turbina: n = 120 f = 136 g/min con f = 50Hz (2) 2p e quindi la velocità angolare ω = 2πn = rad/s (3) 60 Il salto netto è invece definito dalla differenza tra il salto geodetico e le perdite nelle tubazioni: H = H g H perdite = 12 m (4) Sostituendo nell equazione 1, si ottiene k = 3.34 che rientra nel campo delle turbina ad elica. Potenza utile La potenza utile P u è data dal prodotto della potenza teorica trasferibile dal fluido alla macchina (P th ) per il rendimento effettivo della macchina, dato dal prodotto dei rendimenti meccanico, volumetrico ed idraulico: P u = P th η e = ρgqh η m η v η id (5) Assumendo 0.98 per il rendimento meccanico e volumetrico e 0.92 come rendimento idraulico, si ottiene P u = 8240 KW. Diametro al mozzo Assunto il rendimento volumetrico, è possibile calcolare la reale portata che attraversa la macchina: Q = Q η v = 68.6 m 3 /s (6) La portata è inoltre calcolabile dall area di passaggio fra le pale della girante e la velocità meridiana, assunta uniforme come da ipotesi: Q = c m π 4 (D2 g D 2 m) (7) 3

4 dove D g e D m sono i rispettivamente i diametri della girante all estremità e al mozzo. Il diametro al mozzo risulta quindi pari a : D m = Dg 2 4Q = m (8) πc m Triangoli di velocità I triangoli di velocità vanno calcolati al diametro medio: D = D g + D m 2 La velocità periferica al diametro medio è espressa da: (9) u = u 1 = u 2 = ω D 2 = m/s (10) La componente periferica in ingresso, c 1u è calcolabile dal lavoro idraulico tramite la formula di Eulero (si assume che la velocità in uscita dalla turbina sia assiale): c 1u = gh id u = ghη id u = 8.09 m/s (11) La velocità assoluta in ingresso alla girante è quindi pari a (vedi fig.1): c 1 = c 2 1u + c2 m = m/s (12) La componente tangenziale della velocità relativa è calcolabile come segue: w 1u = u c 1u = 5.3 m/s (13) da cui è possibile calcolare direttamente l angolo palare in ingresso: β 1 = arctan c m c 1u = 62.1 (14) La velocità relativa in uscita è data direttamente da (nell ipotesi di flusso assiale, vedi fig. 1): e quindi l angolo palare in uscita è pari a: w 2 = u 2 + c 2 m = m/s (15) β 2 = arcsin C m W 2 = 36.8 (16) 4

5 Figura 1: Triangoli di velocità al diametro medio ella girante ANALISI DIMENSIONALE TURBINE IDRAULICHE (Appello del , esercizio N 1) Testo Due turbine idrauliche simili e funzionanti in condizioni di similitudine fluidodinamica hanno le seguenti caratteristiche: I turbina : n 1 = 250 g/min; H 1 = 20 m; η e1 = 0.87; Q 1 = 25 m 3 /s II turbina : H 2 = 20 m; diametro pari a metà di quello della I turbina Determinare il numero caratteristico di macchina, la potenza utile delle due turbine, la velocità di rotazione e la portata della seconda. Svolgimento Numero caratteristico di macchina É possibile calcolare il numero caratteristico di macchina delle due turbine direttamente dai dati della prima: k = ω Q0.5 = 2.5 (17) (gh) 0.75 Potenza utile delle due turbine La potenza utile è definita come: P e = η e ρgqh Per la prima turbina vale quindi: P e1 = η e1 ρgq 1 H 1 = 4.27 MW (18) Poichè le due turbine simili ammettono lo stesso salto utile e medesimo rendimento effettivo (le due macchine simili lavorano in condizioni di similitudine fluidodinamica), allora vale la seguente relazione fra le potenze utili delle due macchine: P e2 P e1 = Q 2 Q 1 = D2 2 D 2 1 5

6 Pertanto, la potenza utile della seconda turbina vale: P e2 = P e1 D2 2 D 2 1 = 1.07 MW (19) Velocità di rotazione e portata della seconda turbina Consideriamo la definizione di cifra di potenza: λ = P e ρω 3 D 5 Per le due macchine simili vale: λ 1 = λ 2. Esprimendo la velocità angolare ω in funzione del numero di giri ω = 2πn/60, si ha: P n 2 = n 1 3 e2 D1 5 P e1 D2 5 = 500 g/min (20) La portata della seconda macchina si può ottenere dall eguaglianza delle cifre di flusso ϕ = Q ωd 3 : Q 2 = Q 1 ω2 ω 1 D 3 2 D 3 1 = Q 1 n2 n 1 D 3 2 D 3 1 = 6.25 m 3 /s (21) TURBINA PELTON (Appello , esercizio N 1) Testo Si consideri una turbina Pelton operante con caduta netta H = 500 m, portata Q = 4 m 3 /s e con due induttori, i = 2. La turbina sia collegata ad un alternatore otto coppie polari, 2p = 16. Ipotizzando un rapporto u/c 1 = 0.48 e scegliendo opportuni valori per i rendimenti/coefficienti di perdita, calcolare: numero caratteristico di macchina, potenza utile, diametro dei getti, diametro medio della girante, triangoli della velocità. Svolgimento Numero caratteristico di macchina Il numero caratteristico di macchina k è definito come: Il numero di giri di rotazione della macchina: k = ω Q0.5 (gh) 0.75 (22) n = 120 f 2p = 375 g/min f = 50Hz (23) e quindi la velocità angolare: ω = 2πn = rad/s (24) 60 Sostituendo quindi in eq. 22, si ottiene k = 0.134, valore che appartiene al range tipico per le turbine Pelton. 6

7 Diametro dei getti Il diametro dei getti dei due induttori può essere calcolato dall espressione della portata: Q = i c 1 πd2 4 dove c 1 è la velocità in uscita dall induttore, espressa da: (25) c 1 = ϕ 2gH (26) Assumendo 0.97 come valore per il coefficiente di perdita ϕ, si ottiene c 1 = 96.1 m/s e quindi, dall eq. 25, si calcola d pari a: 4Q d = = m (27) c 1 π i Diametro medio della girante Poichè dai dati di macchina risulta che u/c 1 = 0.48, la velocità periferica u vale u = c = m/s. Il diametro medio della girante si ricava dall espressione della velocità periferica: D = 2u ω = m (28) Triangoli di velocita Per definire completamente il triangolo di velocità in ingresso rimane da calcolare solo la velocità relativa w 1 (vedi fig. 2): w 1 = c 1 u = 50 m/s (29) La velocità periferica in uscita è calcolabile da quella in ingresso assumendo un opportuno valore per il coefficiente di perdita ψ: w 2 = ψ w 1 = 48 m/s ψ = 0.96 (30) Assumendo che la velocità assoluta in uscita c 2 non abbia componente periferica (c 2u = 0, vedi fig. 2): c 2 = w2 2 u = 13.2 m/s (31) mentre l angolo relativo di uscita: β 2 = arcsin w 2 u = 16.3 (32) Potenza utile La potenza utile è definita dal prodotto della potenza teorica P th trasferibile dal fluido alla macchina per il rendimento effettivo η e dato dal prodotto dei rendimenti idraulico, volumetrico e meccanico: P u = P th η e = ρgqh η id η v η m (33) 7

8 Trattandosi di una turbina ad azione, il rendimento volumetrico si assume unitario; il rendimento meccanico si stima pari a 0.97, mentre il rendimento idraulico può essere calcolato direttamente dalla sua definizione e dall espressione del salto idraulico secondo Eulero: η i = H id H = u c 1 1 g H Pertanto, la potenza utile risulta pari a P u = KW = 0.90 (34) NOTA Per il calcolo della potenza utile, il rendimento idraulico poteva anche essere assunto. Così facendo, la velocità di uscita dagli induttori c 1 doveva essere calcolata non dalla eq. 26 ma dalla definizione del salto idraulico secondo Eulero: H id = u c 1 g = η id H (35) Figura 2: Triangoli di velocità all ingresso (sx) e all uscita (dx) della girante TURBINA FRANCIS (Appello del , esercizio N 1) Testo Effettuare il dimensionamento di massima di una turbina Francis che debba elaborare una portata Q = 21 m 3 /s, fornendo una potenza all albero P e = 40 MW. Disegnare in scala i triangoli di velocità e le sezioni meridiana e trasversale della macchina. Allegati: diagrammi 3-7; tabella 1. Svolgimento La potenza utile all albero è definita come: P e = η e ρghq (36) 8

9 dove η e è il rendimento effettivo dato dal prodotto del rendimento idraulico η id per quello volumetrico η v e meccanico η m. Assumendo η id = 0.94; η v = 0.98 e η m = 0.95 (η e = 0.875), si può calcolare H dall equazione (36): H = P e = 222 m (37) η e ρgq Dal diagramma in fig. (3) si può quindi determinare il numero di giri caratteristico riferito alla potenza n p = 105. Dalla definizione di n p, esprimendo la potenza utile in CV (P e = 40 MW = CV ) si può risalire al numero di giri della turbina: n = n ph 1.25 Pe = 386 g/min (38) La velocità di sincrono inferiore più vicina si ha per 8 coppie polari (2p = 16): n = 120f 2p = 375 g/min f = 50 Hz (39) Il nuovo valore di n p sarà quindi: mentre il numero caratteristico di giri riferito alla portata: n p = n P e = 102 (40) H1.25 n q = nq0.5 = 30 (41) H0.75 valore che appartiene al range tipico delle turbine Francis (20-120). Dal grafico in figura (4) è possibile determinare i diametri della sezione meridiana, essendo i parametri k i definiti come: k i = u i = πd in 2gH 60 (42) 2gH Per la turbina considerata si ottiene: D = D 1 = m; D 2 = m e D 3 = m (vedi fig. 8). Dal grafico in fig. (5) si ricavano gli altri parametri geometrici: B/D = 0.13 B = m P/D = P = m La posizione del punto A si determina dall equazione della portata una volta nota la velocità c 2m I triangoli di velocità vanno calcolati lungo la linea di flusso media. Bisogna quindi prima calcolare i diametri e le velocità medie: D 1 = D + D 1 2 = m u 1 = πd 1n 60 = m/s D 2 = D 2 + D 3 2 = m u 2 = πd 2n 60 = 30 m/s 9

10 La velocità meridiana in ingresso si calcola direttamente dall espressione della portata, assumendo per il coefficiente di ingombro palare ξ 1 = 0.95: c m1 = η vq πd 1 Bξ 1 = 10.8 m/s (43) In uscita, per porsi nelle condizioni di massimo rendimento della macchina, si assume c 2u = 0, ovvero c 2m = c 2. Dal grafico in fig. (6), noto il valore di n p, si possono determinare le velocità assolute in ingresso e uscita dalla girante: k ce = 0.69 c 1 = k ce 2gH = 45.5 m/s k cu = 0.14 c 2 = k cu 2gH = 9.24 m/s Per il triangolo della velocità in ingresso vale (vedi fig. 20): c u1 = c 2 1 c2 m1 = 44.2 m/s w 1 = c 2 m1 + (c u1 u 1 ) 2 = m/s α 1 = arcsin c m1 = 13.7 β 1 = 90 + arccos c m1 = 93.5 c 1 w 1 Per il triangolo in uscita si ha invece: w 2 = u c2 2 = 31.4 m/s β 2 = arctan c 2 = 17.1 u 2 Dal diagramma (7) si valuta il range di variazione del numero di pale della girante Z g : Z gmax = 21; Z gmin = 13. Assumiamo Z g = 17. Il diametro della circonferenza dei perni palari del distributore è: D cp = 1.3D = m. Dalla tabella 1, per il valore di D cp in questione, si ha che il numero di pale del distributore è Z d = 24. In fine, è possibile verificare il rendimento idraulico assunto: η id = H id gh = u 1c 1 gh = 0.88 che è un valore troppo basso. Si dovrebbe quindi procedere con una successiva iterazione del dimensionamento utilizzando il valore appena calcolato nell equazione (37). D cp 800mm Z d = 12 D cp = mm Z d = 16 D cp = mm Z d = D cp 2400mm Z d = 24 Tabella 1: Numero di pale del distributore in funzione del diametro dei perni palari 10

11 H max n p Figura 3: Caduta massima k i k 2 k 0.8 k k n p Figura 4: Dimensioni sezione meridiana 11

12 B/D P/D n p Figura 5: Dimensioni sezione meridiana K ce K cu n p Figura 6: Velocità specifiche di ingresso e uscita macchina 12

13 Z g Max Min n p Figura 7: Numero di pale della girante Figura 8: Sezione meridiana 13

14 TURBINA AD ELICA (Appello del , esercizio N 1) Testo Si esegua il calcolo di una turbina idraulica tipo elica con i seguenti dati funzionali: caduta netta H = 20 m; portata Q = 18 m 3 /S. Scegliendo un opportuna velocità di rotazione si calcolino in particolare la potenza utile, il numero caratteristico di macchina, i diametri esterno e interno della girante e i triangoli di velocità al diametro medio (u, c m, c 1u, β 1, β 2 ). Allegato: diagramma statistico parametri di progetto. Svolgimento Scelta velocità di rotazione Assumiamo che la girante della turbina sia collegata ad un alternatore con otto coppie polari (2p = 16). Il numero di giri della macchina è quindi: n = 120f 2p = 375 g/min f = 50Hz (44) Potenza utile Per calcolare la potenza utile è necessario stimare i valori dei rendimenti: η id = 0.96 η v = 0.99 η m = 0.89 Il rendimento effettivo della macchina risulta quindi pari a: η e = η id η v η m = 0.89 (45) La potenza utile è quindi ora calcolabile attraverso la potenza teorica trasferibile dal fluido alla macchina per il rendimento effettivo: P u = P th η e = ρgqh η e = 3143 KW (46) Numero caratteristico di macchina Il numero caratteristico di macchina k è definito come: k = ω Q0.5 2πn = (gh) Q 0.5 = 3.18 (47) (gh) 0.75 valore che ricade nel range tipico per le turbine ad elica. Diametri di mozzo ed estremità Dal diagramma statistico allegato si possono ricavare i parametri di progetto per il mozzo (k um ) e per l estremità palare (k ug ): k ug = 1.75 u g = k ug 2gH = m/s k um = 0.7 u m = k um 2gH = m/s 14

15 Dalle velocità periferiche, noto il numero di giri, è quindi possibile calcolare i diametri: D g = u g 60 πn = m D m = u m 60 πn = m Triangoli di velocità al diametro medio Per prima cosa, calcoliamo il diametro e la corrispondente velocità periferica: D = D g + D m 2 = m u = u 1 = u 2 = πdn = m/s 60 Calcoliamo poi le componenti meridiane della velocità assoluta: c m = c m1 = c m2 = 4Qη v π Dg 2 Dm 2 = 8.66 m/s (48) Assumendo che la velocità in assoluta in uscita dalla macchina non assuma componente periferica (c 2u = 0), allora è possibile calcolare la componente periferica della velocità assoluta in ingresso c 1u dall espressione del lavoro idraulico euleriano: c 1u = gh id u Gli angoli palari risultano quindi (vedi fig. 9): = ghη id u = 7.76 m/s (49) c m β 1 = arctan( ) = 19.6 u c 1u β 2 = arctan( c m u ) = 27.7 Figura 9: Triangoli di velocità al diametro medio 15

16 Figura 10: Diagramma statistico parametri di progetto turbina ad elica 16

17 Esercizi sulle Macchine Operatrici Idrauliche 17

18 CAVITAZIONE POMPE (Appello del , esercizio N 1) Testo Una pompa invia una portata Q = 16 dm 3 /s di acqua ad un serbatoio sopraelevato di 8 m. In aspirazione il diametro è d a = 100 mm e la pressione è di p a = 35 KP a; in mandata il diametro è d m = 65 mm e la pressione p m = 250 KP a. La velocità di rotazione è di n = 24.5 g/s. Verificare l eventuale presenza di cavitazione e calcolare le perdite di carico dell impianto. Assumere tensione di vapore pari a p v = 20 KP a. Si consideri inoltre per la pompa σ = k 4/3. Svolgimento Verifica cavitazione Lo schema dell impianto è riportato in fig. 11. Per verificare la presenza di cavitazione si devono valutare i rispettivi NPSH della pompa e dell impianto e verificare che: (NP SH) disponibile = (NP SH) impianto > (NP SH) pompa = (NP SH) richiesto L NPSH della pompa si calcola come: dove H m è la prevalenza manometrica: (NP SH) pompa = σ H m (50) H m = z m z a + p m p a ρg + c2 m c 2 a 2g (51) Le velocità in mandata e aspirazione possono essere calcolate dalla formula per la portata: c m = 4Q πd 2 m = 4.82 m/s c a = 4Q πd 2 = 2.04 m/s a Pertanto, dall equazione 51, assumendo z m z a = 0, si ottiene H m = m. Per il calcolo di σ è necessario calcolare il numero caratteristico di macchina: k = L NPSH della pompa risulta quindi pari a: ωq0.5 = (52) (gh) 0.75 (NP SH) pompa = σ H = k 4/3 H = 1.3 m (53) L NPSH dell impianto è invece calcolabile come: La pompa quindi non cavita. (NP SH) impianto = p a ρg + c2 a 2g p v ρg = 1.74 m (54) 18

19 Perdite di carico dell impianto Essendo i serbatoi di mandata e aspirazione aperti all atmosfera, allora la prevalenza totale H t è definita da: H t = H g + H tubazioni H m dove H g è l altezza geodetica (differenza di quota fra serbatoio di monte e aspirazione, H g = 8 m) e H tubazioni è la perdita di carico nelle tubazioni. Si ottiene quindi: H tubazioni = H m H g = m (55) Figura 11: Schema dell impianto 19

20 POMPA VOLUMETRICA (Appello del , esercizio N 1) Testo Si consideri una pompa a stantuffo bicilindrica con le seguenti caratteristiche funzionali: potenza assorbita P ass = 2500 KW, velocità di rotazione n = 150 g/min, cilindrata totale V c = 25 dm 3, rapporto corsa diametro c/d = 1.4. La pompa aspira acqua da un serbatoio aperto all atmosfera e la manda ad un serbatoio in pressione posto a una quota più elevata di 50 m. Assumendo un valore per il rendimento effettivo di η e = 0.83, per il rendimento volumetrico di η v = 0.95 e per le perdite di carico nelle tubazioni di H tub = 500 m, calcolare: diametro e corsa dei cilindri, velocità media dello stantuffo, portata media fornita, prevalenza manometrica e pressione raggiunta nel serbatoio di mandata. Assumendo un grado di irregolarità dell 8% calcolare il valore del volume medio delle casse d aria. Svolgimento Diametro e corsa dei cilindri La cilindrata unitaria è definita come: V u c = πd2 4 c = πd3 4 ( c D ) = V c 2 Essendo noto il rapporto c/d, il diametro dello stantuffo è pari a: 4V D = u 3 c = m (57) π (c/d) (56) e quindi la corsa: c = (c/d) D = m (58) Velocità media dello stantuffo La velocità media è calcolabile come: v m = c n 30 = 1.57 m/s (59) Portata media fornita La portata media è definita attraverso la velocità media come segue: dove z è il numero dei cilindri. Q m = z v m πd2 4 η v = m 3 /s (60) Prevalenza manometrica La prevalenza manometrica H m si può calcolare attraverso l espressione della potenza assorbita: H m = P ass η e ρgq = 3555 m (61) 20

21 Pressione serbatoio di mandata Trascurando le velocità dei peli liberi nei due serbatoi, la prevalenza manometrica H m è uguale alla prevalenza totale H t, definita dalla seguente espressione: H t = H m = p m p a ρg + H g + H tub (62) dove H g è la prevalenza geodetica (dislivello fra il serbatoio di monte e valle, 50 m). La pressione relativa nel serbatoio di mandata sarà quindi pari a (la pressione relativa nel serbatoio di aspirazione è nulla p a = 0): p m = ρg(h m H g tub ) = 29.5 MP a (63) Volume medio cassa d aria Il grado di irregolarità nella cassa d aria è così definito: δ irr = V V mca (64) dove V mca è il volume medio della cassa d aria e V è la variazione di volume ammessa nella cassa d aria. Per una pompa bicilindrica a semplice effetto come quella del caso considerato vale: V = 0.21 V u c = m 3 (65) Pertanto, il volume medio della cassa d aria risulta pari a: V mca = V δ irr = m 3 (66) DIMENSIONAMENTO DI UNA POMPA CENTRIFUGA (Appello del , esercizio N 1) Testo Una pompa trasferisce una portata d acqua pari a Q = 0.04 m 3 /s da un bacino posto a 2 m sotto il livello della pompa ad un altro posto 50 m sopra. I bacini sono aperti all atmosfera. Il diametro delle tubazioni è di d = 150 mm. Le perdite di carico nelle tubazioni siano pari a 17 volte l energia cinetica nelle tubazioni. La pompa ruoti a 1500 g/min. Determinare: prevalenza manometrica della pompa, numero caratteristico di macchina, dimensioni della sezione meridiana e angolo palare in uscita (scegliendo opportuni valori per il rendimento idraulico e volumetrico della pompa). Allegato: diagramma statistico parametri di progetto. Svolgimento Prevalenza manometrica della pompa 21

22 Nota la portata che la pompa smaltisce e il diametro delle tubazioni, è possibile calcolare la velocità del fluido nei condotti: La perdita di pressione nelle tubazioni è quindi pari a: v t = 4Q = 2.26 m/s (67) πd2 H t = 17 v2 t 2g La prevalenza manometrica fornita dalla pompa risulta quindi pari a: = m/s (68) H m = H g + H t = m/s (69) dove H g è l altezza geodetica (dislivello totale fra il serbatoio di monte e valle). Numero caratteristico di macchina Il numero caratteristico di macchina è definito come: k = ωq0.5 = (70) (gh m ) 0.75 Sezione meridiana Per determinare la geometria della sezione meridiana si deve utilizzare il diagramma statistico allegato. Dal valore di k si ricava k u2 = 1 e quindi la velocità periferica in uscita: e quindi il diametro esterno della girante: u 2 = k u2 2gH m = m/s (71) D 2 = 2u 2 ω = 60u 2 πn Noto D 2, dal diagramma si ricavano tutte le altre dimensioni: D 1 D 2 = 0.35 D 1 = m D 1 D 2 = 0.2 D 1 = m b 2 D 2 = 0.02 b 2 = m La sezione meridiana è così completamente determinata. = m (72) Angolo palare in uscita La velocità meridiana è calcolabile dall espressione della portata, una volata assunti opportuni valori per il rendimento volumetrico e per il coefficiente di ingombro palare. Nell ipotesi di η v = 0.98 e ξ 2 = 0.99: c 2m = Q πd 2 b 2 ξ 2 = Q πd 2 b 2 ξ 2 η v = 3.9 m/s (73) 22

23 Ipotizzando che la velocità in ingresso non abbia componente periferica (c 1u = 0), e assumendo un opportuno valore per il rendimento idraulico (η v = 0.85),la componente periferica della velocità in uscita si determina direttamente dall espressione euleriana del salto idraulico: c 2u = gh id u 2 = gh id u 2 η id = m/s (74) L angolo della velocità relativa in uscita sarà quindi: c 2m β 2 = arctan( ) = 15.5 (75) u 2 2 2u Figura 12: Diagramma statistico parametri di progetto pompa centrifuga 23

24 POMPA ASSIALE (Appello del , esercizio N 1) Testo Si consideri una pompa assiale con portata d acqua fornita Q = 0.5 m 3 /s e prevalenza manometrica H = 8 m. Utilizzando il diagramma statistico allegato e assumendo valori opportuni per i rendimenti, calcolare la potenza assorbita, la velocità di rotazione, il numero caratteristico di macchina e i diametri interno e esterno della girante. Determinare inoltre i triangoli di velocità (in particolare gli angoli palari di girante e diffusore/raddrizzatore) in corrispondenza del diametro medio. Svolgimento Potenza assorbita La potenza assorbita è definita da: P ass = 1 η e ρgqh (76) Il rendimento effettivo η e si può determinare dal grafico in figura (14), una volta noto il numero caratteristico di giri riferito alla potenza n p. Quest ultimo, è ricavabile dal primo grafico allegato (figura 13) in funzione della prevalenza massima H max. Assumendo H m = H max, si ottiene n p = 920 a cui corrisponde un rendimento effettivo di η e = La potenza assorbita vale quindi P ass = KW = CV. Velocità di rotazione Dalla definizione di n p si ricava: n = n ph 1.25 P 0.5 ass = 1544 g/min con P ass in CV (77) Nota: si può supporre un collegamento diretto della pompa con un motore elettrico a due coppie polari (2p = 4) e scegliere n = 1500 g/min. Numero caratteristico di macchina Il numero caratteristico di macchina è definito come: k = ωq0.5 2πn = (gh) Q 0.5 = 4.34 (78) (gh) 0.75 valore che appartiene al range tipico delle pompe assiali (2 6). Diametri esterno ed interno della girante Dal grafico in figura (13) si ricava anche: Il diametro esterno vale quindi: k ue = 2.5 u e = k ue 2gH = 31.3 m/s b/d e = 0.24 b = 0.24 D e D e = u e 60 πn = m (79) 24

25 e il diametro interno: D i = D e 2b = D e ( ) = m (80) Triangoli di velocità al diametro medio Il diametro medio vale: D m = D i + D p 2 La velocità periferica al diametro medio: = m (81) u 1 = u 2 = u = πn 60 D m = 23.8 m/s (82) La velocità di attraversamento della macchina, assunta costante, si determina dall equazione della portata: c m1 = c m2 = c m = 4Q π(d 2 e D 2 i ) = 4Q η v π(de 2 Di 2 = 6.12 m/s (83) ) assumendo un rendimento volumetrico η v = Nell ipotesi di assenza di predistributore (c 1u = 0), la componente periferica della velocità assoluta in uscita è direttamente calcolabile dall espressione del lavoro idraulico secondo Eulero: c 2u = gh id u = gh η id u (84) Se assumiamo un rendimento meccanico pari a η m = 0.97, il rendimento idraulico vale: η id = e quindi dall eq. (84): c 2u = 3.7 m/s. Dai triangoli di velocità in figura (15) si ha: η e η v η m = 0.90 (85) β 1 = arctan( c m u ) = 14.4 (86) c m β 2 = arctan( ) = 16.9 (87) c u c 2u α 2 = arctan( c m c 2u ) = 58.8 (88) 25

26 Figura 13: Diagramma statistico pompe assiali Figura 14: Rendimento effettivo pompe assiali Figura 15: Triangoli di velocità al diametro medio 26

27 Esercizi sui Compressori e Ventilatori 27

28 COMPRESSORE VOLUMETRICO (Appello del , esercizio N 2) Testo Un compressore alternativo monocilindrico di cilindrata V c = 100 cm 3 e volume nocivo V n = 5 cm 3 è mosso da un motore elettrico a uno coppia polare. Comprime aria dall ambiente (p 1 = p a = P a) a p 3 = 800 KP a. L esponente delle politropiche (sia di compressione che di espansione) è m = 1.3. Il rendimento politropico è η p = Calcolare la portata, la potenza assorbita e il rendimento isotermo. Svolgimento Portata La portata di un compressore volumetrico alternativo è definita dalla seguente relazione: ṁ = ρ a V c n 60 λ v (89) dove ρ a è la densità dell aria nelle condizioni di aspirazione (p a = P a; T a = 293 K; ρ a = 1.2 Kg/m 3 ), V c è la cilindrata, n il numero di giri e λ v il coefficiente di riempimento. Poichè il motore elettrico a cui è accoppiato il compressore ha una sola coppia polare, allora n = 3000 g/min. Il coefficiente di riempimento, riferito all espansione politropica, si calcola come: dove ε n è il grado di spazio morto: λ v = V c V 0 V 0 = 1 V 0 V c = 1 (ρ 1/m c 1)ε n = (90) ε n = V n V c = 0.05 (91) e ρ c è il rapporto di compressione: La portata quindi vale: ṁ = 4.83 g/s. ρ c = p 3 p 1 = 7.89 (92) Potenza assorbita La potenza assorbita è definita come segue: P ass = nl i 60 η m (93) Per il rendimento meccanico η m assumiamo 0.98, mentre il lavoro interno L i si può calcolare dalla definizione di rendimento politropico: η p = L p L i L i = L p η p Il lavoro politropico L p vale: L p = m m 1 p 1V 1 (ρ 1 1 m c 1) m m 1 p 3V 3 (1 ρ 1 m 1 c ) = J/ciclo (94) 28

29 dove V 3 = V n = 5 cm 3 e V 1 = V c + V n = 105 cm 3. Quindi il lavoro interno: L i = L p η p = J/ciclo (95) e la potenza assorbita: P ass = n L i 60 η m = 1134 W (96) Rendimento isotermo Il lavoro isotermo vale: L t = p 1 V 1 ln ρ c p 3 V 3 ln ρ c = 13.7 J/ciclo (97) e quindi il rendimento isotermo: η t = L t L i = 0.61 (98) Figura 16: Ciclo termodinamico nel piano p-v COMPRESSORE ASSIALE (Appello del , esercizio N 2) Testo Uno stadio di compressore assiale (girante seguita da diffusore) riceve aria a p 1 = 1 bar e T 1 = 288 K con velocità assoluta in ingresso girante c 1 = 150 m/s assiale. La velocità periferica della girante al raggio medio è u = 250 m/s, la componente assiale della velocità rimane costante attraverso lo stadio, la deflessione della corrente nelle palette mobili è ε = β 1 β 2 = 15, la velocità in uscita dal diffusore è assiale. All uscita dal diffusore lo spigolo delle palette ha lunghezza radiale l 3 = 0.2 m e il diametro medio è d 3 = 1.3 m Il rendimento politropico dello stadio è η p = Determinare i triangoli di velocità al raggio medio e la potenza assorbita dallo stadio. 29

30 Svolgimento Triangoli di velocità al raggio medio Uno schema dei profili palari al raggio medio e dei corrispondenti triangoli di velocità è riportato in fig. 17. Dai dati forniti risulta: c assiale = c 1 = c a1 = c a2 = c a3 = c 3 È quindi possibile calcolare direttamente la velocità relativa e il corrispondente angolo di flusso (e palare) in ingresso alla girante: w 1 = u 2 + c a1 = u 2 + c 1 = m/s (99) β 1 = arctan u c a 1 = arctan u c 1 = (100) Data la deflessione imposta al flusso dai palettaggi rotorici, ε, l angolo di uscita dalla girante vale: β 2 = β 1 ε = (101) La velocità relativa all uscita della girante è data da: w 2 = c 2a cos β 2 = c 1 cos β 2 = m/s (102) La componente periferica della velocità assoluta è invece determinata come segue: c 2u = u w 2u = u w 2 sin β 2 = 105 m/s (103) e quindi l angolo del flusso assoluto vale (angolo palare di ingresso del diffusore): α 2 = arctan c u2 c a2 = arctan c u2 c 1 = 35 (104) La velocità della corrente assoluta è: c 2 = c 22u + c2a2 = c 2 2u + c2 1 = m/s (105) In uscita dal diffusore il flusso è assiale per ipotesi e quindi si ha banalmente c 3 = c a3 = c 1 = 150 m/s. Potenza assorbita dallo stadio La potenza assorbita dallo stadio è definita come: P ass = ṁ L i η m (106) dove η m è il rendimento meccanico dello stadio che si può assumere pari a Il lavoro interno L i è calcolabile dall espressione di Eulero: L i = u (c 2u c 1u ) = u c 2u = 15.6 KJ/Kg (107) La portata si può invece calcolare all uscita del diffusore dove sono note le dimensioni dei vani palari: ṁ = ξρ 3 c a3 πd 3 l 3 (108) 30

31 dove ξ è il coefficiente di ingombro palare che qui si assume pari a Per calcolare la densità dell aria all uscita dello stadio è necessario conoscere la corrispondente temperatura e pressione. Il lavoro interno L i è anche pari al salto entalpico sull intero stadio, essendo c 1 = c 3 ; quindi: T 3 = T 1 + L i c p = K con c p = KJ Kg K (109) La pressione all uscita dello stadio si calcola invece attraverso l equazione della trasformazione politropica di compressione nello stadio: La densità risulta quindi pari a: p 3 = p 1 ( T 3 T 1 ) k k 1 ηp = bar (110) ρ 3 = p 3 RT 3 = Kg/m 3 con R = 287 J/KgK (111) Dall equazione (108) la portata risulta ṁ = Kg/s e la potenza assorbita (eq. 106) P ass = KW. Figura 17: Triangoli di velocità e profili palari al diametro medio 31

Esercizi sui Compressori e Ventilatori

Esercizi sui Compressori e Ventilatori Esercizi sui Compressori e Ventilatori 27 COMPRESSORE VOLUMETRICO (Appello del 08.06.1998, esercizio N 2) Testo Un compressore alternativo monocilindrico di cilindrata V c = 100 cm 3 e volume nocivo V

Dettagli

Esercizi non risolti

Esercizi non risolti Esercizi non risolti 69 Turbina idraulica (Pelton) Effettuare il dimensionamento di massima di una turbina idraulica con caduta netta di 764 m, portata di 2.9 m 3 /s e frequenza di rete 60 Hz. Turbina

Dettagli

Esercizi di Macchine a Fluido

Esercizi di Macchine a Fluido Università degli Studi di Udine Facoltà di Ingegneria Esercizi di Macchine a Fluido a cura di L. Casarsa Esercizi proposti nelle prove scritte dell esame di Macchine I e II modulo dai docenti G.L Arnulfi,

Dettagli

ENERGIA INTERNA ENERGIA INTERNA SPECIFICA. e = E/m = cv T ENTALPIA. H = E + pv ENTALPIA SPECIFICA. h = H/m = cp T h = e + pv = e + p/d L-1

ENERGIA INTERNA ENERGIA INTERNA SPECIFICA. e = E/m = cv T ENTALPIA. H = E + pv ENTALPIA SPECIFICA. h = H/m = cp T h = e + pv = e + p/d L-1 L - SISTEMI APERTI ENERGIA INTERNA E = n Cv T E = m cv T (Cv molare = J/kmol C) (cv massico = J/kg C) ENERGIA INTERNA SPECIFICA e = E/m = cv T ENTALPIA H = E + pv H = n Cp T H = m cp T (Cp molare = J/kmol

Dettagli

Esercizi di Fisica Tecnica 2013-2014. Termodinamica

Esercizi di Fisica Tecnica 2013-2014. Termodinamica Esercizi di Fisica Tecnica 2013-2014 Termodinamica TD1 In un sistema pistone-cilindro, 1 kg di gas ( = 1,29 ed R * = 190 J/(kg K)) si espande da 5 bar e 90 C ad 1 bar. Nell'ipotesi che la trasformazione

Dettagli

Valutazioni di massima sui motori a combustione interna

Valutazioni di massima sui motori a combustione interna Valutazioni di massima sui motori a combustione interna Giulio Cazzoli v 1.0 Maggio 2014 Indice Elenco dei simboli 3 1 Motore ad accensione comandata 4 1.1 Dati........................................

Dettagli

CORSO di. MACCHINE e SISTEMI ENERGETICI. per allievi meccanici (2 anno) Prof: Dossena, Osnaghi, Ferrari P. RACCOLTA DI ESERCIZI.

CORSO di. MACCHINE e SISTEMI ENERGETICI. per allievi meccanici (2 anno) Prof: Dossena, Osnaghi, Ferrari P. RACCOLTA DI ESERCIZI. CORSO di MACCHINE e SISTEMI ENERGETICI per allievi meccanici (2 anno) Prof: Dossena, Osnaghi, Ferrari P. RACCOLTA DI ESERCIZI con soluzione 5 Aprile 2004 AA: 2003-2004 DOMANDE TEORICHE 1. Descrivere molto

Dettagli

CORSO DI MACCHINE E SISTEMI ENERGETICI A.A. 2014/2015 --- Prova di valutazione intermedia del 9 Gennaio 2015

CORSO DI MACCHINE E SISTEMI ENERGETICI A.A. 2014/2015 --- Prova di valutazione intermedia del 9 Gennaio 2015 CORSO DI MACCHINE E SISTEMI ENERGETICI A.A. 2014/2015 --- Prova di valutazione intermedia del 9 Gennaio 2015 C= prima lettera del cognome C = 0 Nome e Cognome Matricola Corso di Studio A B C D E F G H

Dettagli

Indice. XI Prefazione

Indice. XI Prefazione Indice XI Prefazione 3 Capitolo 1 Introduzione alle macchine a fluido e ai sistemi energetici 3 1.1 Introduzione storica 9 1.2 Fonti di energia 19 1.3 Macchine a fluido e sistemi energetici 25 Capitolo

Dettagli

COMPONENTI TERMODINAMICI APERTI

COMPONENTI TERMODINAMICI APERTI CAPITOLO NONO COMPONENTI TERMODINAMICI APERTI Esempi applicativi Vengono di seguito esaminati alcuni componenti di macchine termiche che possono essere considerati come sistemi aperti A) Macchina termica

Dettagli

Esercizio 20 - tema di meccanica applicata e macchine a fluido- 2002

Esercizio 20 - tema di meccanica applicata e macchine a fluido- 2002 Esercizio 0 - tema di meccanica applicata e macchine a fluido- 00 er regolare il regime di rotazione di un gruppo elettrogeno, viene calettato sull albero di trasmissione del motore un volano in ghisa.

Dettagli

Esercitazioni del corso di MACCHINE. per Allievi Energetici. a.a. 2013/14

Esercitazioni del corso di MACCHINE. per Allievi Energetici. a.a. 2013/14 Corso di Macchine a fluido Dipartimento di Energia, Politecnico di Milano Esercitazioni del corso di MACCHINE per Allievi Energetici a.a. 2013/14 Indice 1 Equazioni di conservazione 3 2 Impianti di sollevamento

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 1. Complementi sui sistemi termici. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 1. Complementi sui sistemi termici. Roberto Lensi Roberto Lensi 1. Complementi sui sistemi termici Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 1. Complementi sui sistemi termici Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 2. Sistemi motori gas/vapore. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 2. Sistemi motori gas/vapore. Roberto Lensi Roberto Lensi 2. Sistemi motori gas/vapore Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 2. Sistemi motori gas/vapore Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2003-04 Roberto

Dettagli

LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante

LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante IDRAULICA LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante 2 LEGGE DI STEVIN Z = ALTEZZA GEODETICA ENERGIA POTENZIALE PER UNITA DI PESO p /

Dettagli

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1 LEGGI DEI GAS / CALORI SPECIFICI Introduzione 1 1 - TRASFORMAZIONE ISOBARA (p = costante) LA PRESSIONE RIMANE COSTANTE DURANTE TUTTA LA TRASFORMAZIONE V/T = costante (m, p costanti) Q = m c p (Tf - Ti)

Dettagli

Esercizi su Impianti e Turbine a Vapore

Esercizi su Impianti e Turbine a Vapore Esercizi su Impianti e Turbine a Vapore 35 IMPIANTO A VAPORE (Appello del 01.09.98, esercizio N 3) Testo Un impianto turbina a vapore ha una potenza utile P u = 160 MW e un rendimento utile η u = 0.43.

Dettagli

PROBLEMA 1. Soluzione. Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4)

PROBLEMA 1. Soluzione. Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4) PROBLEMA 1 Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4) Deve possedere un elevato calore latente, cioè, deve evaporare asportando molto calore dall ambiente

Dettagli

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi.

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi. IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi. Negli ultimi anni, il concetto di risparmio energetico sta diventando di fondamentale

Dettagli

CORSO DI SISTEMI ENERGETICI II - A.A. 2014-2015 Prof. Ing. Giorgio Cau

CORSO DI SISTEMI ENERGETICI II - A.A. 2014-2015 Prof. Ing. Giorgio Cau CORSO DI SISTEMI ENERGETICI II A.A. 20142015 Prof. Ing. Giorgio Cau VALUTAZIONE DELLE PRESTAZIONI DI UN IMPIANTO DI COGENERAZIONE E VERIFICA DEGLI INDICI ENERGETICI AI SENSI DELLA DELIBERA AEEG 42/02 Caratteristiche

Dettagli

Impianti motori termici

Impianti motori termici Impianti motori termici Classificazione: impianto motore termico con turbina a vapore il fluido evolvente nell impianto è acqua in diversi stati di aggregazione impianto motore termico con turbina a gas

Dettagli

MACCHINE Lezione 8 Impianti idroelettrici e Turbine Idrauliche

MACCHINE Lezione 8 Impianti idroelettrici e Turbine Idrauliche MACCHINE Lezione 8 Impianti idroelettrici e Turbine Idrauliche Dr. Paradiso Berardo Laboratorio Fluidodinamicadelle delle Macchine Dipartimento di Energia Politecnico di Milano Generalità Impianti idroelettrici

Dettagli

Indice. 8 novembre 2015. 1 La similitudine idraulica per le pompe 2. 2 Esercizi sulla similitudine idraulica 3

Indice. 8 novembre 2015. 1 La similitudine idraulica per le pompe 2. 2 Esercizi sulla similitudine idraulica 3 8 novembre 2015 Indice 1 La similitudine idraulica per le pompe 2 2 Esercizi sulla similitudine idraulica 3 3 Pompe inserite in un impianto Esercizi 5 1 1 La similitudine idraulica per le pompe L applicazione

Dettagli

RICHIAMI DI TERMOCHIMICA

RICHIAMI DI TERMOCHIMICA CAPITOLO 5 RICHIAMI DI TERMOCHIMICA ARIA TEORICA DI COMBUSTIONE Una reazione di combustione risulta completa se il combustibile ha ossigeno sufficiente per ossidarsi completamente. Si ha combustione completa

Dettagli

Pompe di circolazione

Pompe di circolazione Corso di IMPIANTI TECNICI per l EDILIZIA Pompe di circolazione per gli impianti di riscaldamento Prof. Paolo ZAZZINI Dipartimento INGEO Università G. D Annunzio Pescara www.lft.unich.it Pompe di circolazione

Dettagli

Compressori volumetrici a) Compressori alternativi

Compressori volumetrici a) Compressori alternativi Compressori volumetrici a) Compressori alternativi Il parametro fondamentale per la valutazione di un compressore alternativo è l efficienza volumetrica: η v = (Portata volumetrica effettiva) / (Volume

Dettagli

Prima Prova Scritta. Traccia n. 1 Descrivere le diverse tipologie di macchine elettriche impiegate nelle centrali di produzione dell energia.

Prima Prova Scritta. Traccia n. 1 Descrivere le diverse tipologie di macchine elettriche impiegate nelle centrali di produzione dell energia. Allegato 1 al Verbale n. 1 Università degli Studi Mediterranea di Reggio Calabria Sezione A Settore industriale Sessione: Novembre 2006, 2 a Sessione Il candidato svolga uno dei seguenti temi: Prima Prova

Dettagli

Lezione IX - 19/03/2003 ora 8:30-10:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro.

Lezione IX - 19/03/2003 ora 8:30-10:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro. Lezione IX - 9/03/003 ora 8:30-0:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro. Ciclo di Carnot Si consideri una macchina termica semplice che compie trasformazioni reversibili,

Dettagli

Generalità sulle elettropompe

Generalità sulle elettropompe Generalità sulle elettropompe 1) Introduzione Ne esistono diverse tipologie ma si possono inizialmente suddividere in turbopompe e pompe volumetriche. Le prime sono caratterizzate da un flusso continuo

Dettagli

CAPITOLO 5 IDRAULICA

CAPITOLO 5 IDRAULICA CAPITOLO 5 IDRAULICA Cap. 5 1 FLUIDODINAMICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO'

Dettagli

Impianto di Sollevamento Acqua

Impianto di Sollevamento Acqua CORSO DI FISICA TECNICA e SISTEMI ENERGETICI Esercitazione 3 Proff. P. Silva e G. Valenti - A.A. 2009/2010 Impianto di Sollevamento Acqua Dimensionare un impianto di sollevamento acqua in grado di soddisfare

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Ministero dell Istruzione dell Università e della Ricerca

Ministero dell Istruzione dell Università e della Ricerca Ministero dell Istruzione dell Università e della Ricerca ESAME DI STATO DI ISTITUTO TECNICO NAUTICO 2014 CORSO SPERIMENTALE Progetto NAUTILUS Indirizzo : APPARATI E IMPIANTI MARITTIMI Tema di : MACCHINE

Dettagli

Stagisti: Bottaini Federico, Konica Francesco Tutor aziendali: Calistri Cesare, Ferri Leonardo Tutor scolastico: Carosella Vincenzo

Stagisti: Bottaini Federico, Konica Francesco Tutor aziendali: Calistri Cesare, Ferri Leonardo Tutor scolastico: Carosella Vincenzo Stagisti: Bottaini Federico, Konica Francesco Tutor aziendali: Calistri Cesare, Ferri Leonardo Tutor scolastico: Carosella Vincenzo 1 Prefazione Lo scopo principale di queste cabine è quello di ottenere

Dettagli

Motori endotermici I MOTORI ENDOTERMICI. Corso di Laurea Scienze e Tecnologie Agrarie

Motori endotermici I MOTORI ENDOTERMICI. Corso di Laurea Scienze e Tecnologie Agrarie Corso di Laurea Scienze e Tecnologie Agrarie Motori endotermici Dipartimento Ingegneria del Territorio - Università degli Studi di Sassari I MOTORI ENDOTERMICI Il motore converte l energia termica del

Dettagli

ALLEGATO II. Calcolo della produzione da cogenerazione

ALLEGATO II. Calcolo della produzione da cogenerazione ALLEGATO II Calcolo della produzione da cogenerazione I - Calcolo dell energia elettrica da cogenerazione 1. Per calcolare il risparmio di energia primaria di una unità di cogenerazione, occorre anzitutto

Dettagli

SOLUZIONE ESAME DI STATO TEMA NR.1 TECNICO DEI SISTEMI ENERGETICI ANNO 2015

SOLUZIONE ESAME DI STATO TEMA NR.1 TECNICO DEI SISTEMI ENERGETICI ANNO 2015 SOLUZIONE ESAME DI STATO TEMA NR.1 TECNICO DEI SISTEMI ENERGETICI ANNO 2015 PREFAZIONE AL TEMA Nella parte sottostante è rappresentato lo schema circuitale dell impianto idraulico, dove, vengono raffigurate:

Dettagli

Esercizi sulle Macchine Operatrici Idrauliche

Esercizi sulle Macchine Operatrici Idrauliche Esercizi sulle Macchine Operatrici Idrauliche 17 CAVITAZIONE POMPE (Appello del 06.12.02, esercizio N 1) Testo Una pompa invia una portata Q = 16 dm 3 /s di acqua ad un serbatoio sopraelevato di 8 m. In

Dettagli

Formulario di Fisica Tecnica Matteo Guarnerio 1

Formulario di Fisica Tecnica Matteo Guarnerio 1 Formulario di Fisica Tecnica Matteo Guarnerio 1 CONVENZIONI DI NOTAZIONE Calore scambiato da 1 a 2. Calore entrante o di sorgente. Calore uscente o ceduto al pozzo. CONVERSIONI UNITÀ DI MISURA PIÙ FREQUENTI

Dettagli

CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA

CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA 1 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA I MOTORI A COMBUSTIONE INTERNA SONO MACCHINE MOTRICI E POSSONO ESSERE BASATI SU

Dettagli

P5=2,5 atm 5. P3=3 atm. P6=4 atm

P5=2,5 atm 5. P3=3 atm. P6=4 atm V [m3/h] 3 a.a. 2012-13 APPROVVIGIONAMENTO IDRICO DIMENSIONAMENTO RETE IDRICA APERTA n. 1 Dimensionare tramite il metodo a velocità costante la seguente rete di distribuzione dell acqua industriale, del

Dettagli

Scelta e verifica dei motori elettrici per gli azionamenti di un mezzo di trazione leggera

Scelta e verifica dei motori elettrici per gli azionamenti di un mezzo di trazione leggera Scelta e verifica dei motori elettrici per gli azionamenti di un mezzo di trazione leggera Si consideri un convoglio ferroviario per la trazione leggera costituito da un unità di trazione, la quale è formata

Dettagli

BILANCI DI ENERGIA. Capitolo 2 pag 70

BILANCI DI ENERGIA. Capitolo 2 pag 70 BILANCI DI ENERGIA Capitolo 2 pag 70 BILANCI DI ENERGIA Le energie in gioco sono di vario tipo: energia associata ai flussi entranti e uscenti (potenziale, cinetica, interna), Calore scambiato con l ambiente,

Dettagli

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I processi termodinamici che vengono realizzati nella pratica devono consentire la realizzazione di uno scambio di energia termica o di energia

Dettagli

ESERCITAZIONE N. 1 (11 Ottobre 2007) Verifica di un impianto di pompaggio

ESERCITAZIONE N. 1 (11 Ottobre 2007) Verifica di un impianto di pompaggio ESERCITAZIONE N. 1 (11 Ottobre 2007) Verifica di un impianto di pompaggio È dato un pozzo con piano campagna H posto a 90 m s.l.m., dal quale l acqua è sollevata verso un serbatoio il cui pelo libero H

Dettagli

Complementi di Termologia. I parte

Complementi di Termologia. I parte Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si

Dettagli

Università di Roma Tor Vergata

Università di Roma Tor Vergata Università di oma Tor Vergata Facoltà di Ingegneria Dipartimento di Ingegneria Industriale Corso di: TEMOTECNIC 1 IMPINTI DI ISCLDMENTO D CQU: DIMENSIONMENTO Ing. G. Bovesecchi gianluigi.bovesecchi@gmail.com

Dettagli

Università degli Studi Mediterranea di Reggio Calabria Facoltà di Ingegneria Esame di Stato per l Abilitazione all Esercizio della Professione di

Università degli Studi Mediterranea di Reggio Calabria Facoltà di Ingegneria Esame di Stato per l Abilitazione all Esercizio della Professione di Esame di Stato per l Abilitazione all Esercizio della Professione di Ingegnere Traccia di Meccanica Vecchio Ordinamento Sessione: Novembre 2005, 2 a Sessione Descrivere sinteticamente i manovellismi con

Dettagli

Indice: TAELLE DI AVVOLGIMENTO... 10 AVVOLGIMENTO RETTANGOLARE EMBRICATO TIPO A... 11 AVVOLGIMENTO FRONTALE EMBRICATO TIPO A... 11

Indice: TAELLE DI AVVOLGIMENTO... 10 AVVOLGIMENTO RETTANGOLARE EMBRICATO TIPO A... 11 AVVOLGIMENTO FRONTALE EMBRICATO TIPO A... 11 Progettazione di un motore asincrono trifase con rotore a gabbia semplice Indice: MISURAZIONI EFFETTUATE SULLO STATORE... 2 FORMA DELLE CAVE E DEI DENTI DELLO STATORE:... 2 IN BASE AL TIPO DI CAVA E DI

Dettagli

POLITECNICO DI TORINO

POLITECNICO DI TORINO POLITENIO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE Prima sessione ANNO 009 Settore INDUSTRIALE - lasse 33/S Ingegneria Energetica e nucleare Terza prova (prova pratica

Dettagli

Esercizi sui Motori a Combustione Interna

Esercizi sui Motori a Combustione Interna Esercizi sui Motori a Combustione Interna 6 MOTORE 4TEMPI AD ACCENSIONE COMANDATA (Appello del 08.0.000, esercizio N ) Un motore ad accensione comandata a 4 tempi di cilindrata V 000 cm 3, funzionante

Dettagli

Studio di fattibilità di conversione di un deltaplano da motore termico a motore elettrico

Studio di fattibilità di conversione di un deltaplano da motore termico a motore elettrico ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA Studio di fattibilità di conversione di un deltaplano da motore termico a motore elettrico Tesi

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 8. Sistemi Termici Operatori. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 8. Sistemi Termici Operatori. Roberto Lensi Roberto Lensi 8. Sistemi Termici Operatori Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 8. Sistemi Termici Operatori Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2005-06 Roberto

Dettagli

SISTEMA DI POMPAGGIO (introduzione)

SISTEMA DI POMPAGGIO (introduzione) SISTEMA DI POMPAGGIO (introduzione) Si utilizzano le pompe, per il sollevamento dell acqua dai pozzi e per inviarla ai serbatoi o inviarla ad una rete di distribuzione e comunque per trasferire l acqua

Dettagli

Turbine idrauliche 1/8. Classificazione

Turbine idrauliche 1/8. Classificazione Classificazione Turbine idrauliche 1/8 Una turbina è una macchina che estrae energia da un fluido in possesso di un carico idraulico sufficientemente elevato. Tale carico (o caduta) è generato dal dislivello

Dettagli

Produzione di energia elettrica

Produzione di energia elettrica Produzione di energia elettrica LE CENTRALI IDROELETTRICHE Classe 3 Ael a.s. 2011-2012 la dispensa si trova sul sito www.webalice.it/s.pollini nella sezione scuola www.webalice.it/s.pollini 1 L energia

Dettagli

14.4 Pompe centrifughe

14.4 Pompe centrifughe 14.4 Pompe centrifughe Le pompe centrifughe sono molto diffuse in quanto offrono una notevole resistenza all usura, elevato numero di giri e quindi facile accoppiamento diretto con i motori elettrici,

Dettagli

Ciclo Rankine. Macchina tipica di un ciclo a vapore

Ciclo Rankine. Macchina tipica di un ciclo a vapore di Piraccini Davide OBBIETTIVI : Inserire un impianto ORC (Organic Rankine Cycle) nel ciclo di bassa pressione della centrale Enel di Porto Corsini e studiare la convenienza tramite il confronto dei rendimenti

Dettagli

352&(662',&20%867,21(

352&(662',&20%867,21( 352&(662',&20%867,21( Il calore utilizzato come fonte energetica convertibile in lavoro nella maggior parte dei casi, è prodotto dalla combustione di sostanze (es. carbone, metano, gasolio) chiamate combustibili.

Dettagli

SOLUZIONE ESAME DI STATO ITIS INDIRIZZO MECCANICA - PROGETTO BROCCA ANNO 1996

SOLUZIONE ESAME DI STATO ITIS INDIRIZZO MECCANICA - PROGETTO BROCCA ANNO 1996 SOLUZIONE ESAME DI STATO ITIS INDIRIZZO MECCANICA - PROGETTO BROCCA ANNO 1996 PREFAZIONE AL TEMA Nella parte sottostante è rappresentato lo schema circuitale dell impianto idraulico, dove, vengono raffigurate:

Dettagli

Il lavoro nelle macchine

Il lavoro nelle macchine Il lavoro nelle macchine Corso di Impiego industriale dell energia Ing. Gabriele Comodi I sistemi termodinamici CHIUSO: se attraverso il contorno non c è flusso di materia in entrata ed in uscita APERTO:

Dettagli

CC C T U Gruppo turbogas 3

CC C T U Gruppo turbogas 3 Corso di IMPIANI di CONVERSIONE dell ENERGIA L energia, fonti, trasformazioni i ed usi finali Impianti a vapore I generatori di vapore Impianti turbogas Cicli combinati e cogenerazione Il mercato dell

Dettagli

ESERCITAZIONI FISICA TECNICA. Prof. Fabio Polonara Prof. Gianni Cesini. Corso di Ingegneria Meccanica

ESERCITAZIONI FISICA TECNICA. Prof. Fabio Polonara Prof. Gianni Cesini. Corso di Ingegneria Meccanica ESERCITAZIONI FISICA TECNICA Prof. Fabio Polonara Prof. Gianni Cesini Corso di Ingegneria Meccanica 2 TERMODINAMICA APPLICATA Termodinamica degli stati 3 ESERCIZIO TA-T8 Utilizzando il piano P-T e le tabelle

Dettagli

/ * " 6 7 -" 1< " *,Ê ½, /, "6, /, Ê, 9Ê -" 1/ " - ÜÜÜ Ìi «V Ì

/ *  6 7 - 1<  *,Ê ½, /, 6, /, Ê, 9Ê - 1/  - ÜÜÜ Ìi «V Ì LA TRASMISSIONE DEL CALORE GENERALITÀ 16a Allorché si abbiano due corpi a differenti temperature, la temperatura del corpo più caldo diminuisce, mentre la temperatura di quello più freddo aumenta. La progressiva

Dettagli

La combustione ed i combustibili

La combustione ed i combustibili La combustione ed i combustibili Concetti di base Potere calorifico Aria teorica di combustione Fumi: volume e composizione Temperatura teorica di combustione Perdita al camino Combustibili Gassosi Solidi

Dettagli

1. determinare la potenza convenzionale di 10 prese monofasi da 10 A, V=220V determinare la potenza convenzionale di 5 prese trifasi da 16 A, V=400V

1. determinare la potenza convenzionale di 10 prese monofasi da 10 A, V=220V determinare la potenza convenzionale di 5 prese trifasi da 16 A, V=400V 1 1. determinare la potenza convenzionale di 10 prese monofasi da 10 A, V=220V determinare la potenza convenzionale di 5 prese trifasi da 16 A, V=400V 2. determinare la potenza convenzionale di 5 motori

Dettagli

Politecnico di Bari I Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Meccanica ENERGIA EOLICA

Politecnico di Bari I Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Meccanica ENERGIA EOLICA Politecnico di Bari I Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Meccanica ENERGIA EOLICA turbine eoliche ad asse verticale VAWT A.A. 2008/09 Energie Alternative Prof.B.Fortunato

Dettagli

CENTRALI TERMOELETTRICHE

CENTRALI TERMOELETTRICHE CENTRALI TERMOELETTRICHE Le centrali termoelettriche sono impianti che utilizzano l energia chimica dei combustibili per trasformarla in energia elettrica. Nelle centrali termoelettriche la produzione

Dettagli

PROBLEMA 1. Soluzione

PROBLEMA 1. Soluzione PROBLEMA 1 Prendendo come riferimento la pressione atmosferica di 1013 mbar agente sulla superficie libera di un corso d acqua, risulta che la pressione idrostatica sott acqua raddoppia a una profondità

Dettagli

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti.

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Solvente (componente presente in maggior quantità) SOLUZIONE Soluti

Dettagli

Impianti di produzione e distribuzione di aria compressa

Impianti di produzione e distribuzione di aria compressa Impianti di distribuzione di aria compressa 1 Applicazioni dell aria compressa L impiego dell aria compressa negli stabilimenti è ormai generalizzato per il comando, la regolazione di utenze e come forza

Dettagli

MACCHINE IDRAULICHE Le macchine idrauliche si suddividono in. ELEMENTI DI IDRODINAMICA (3 a PARTE)

MACCHINE IDRAULICHE Le macchine idrauliche si suddividono in. ELEMENTI DI IDRODINAMICA (3 a PARTE) ELEMENTI DI IDRODINAMICA (3 a PARTE) PERDITE DI CARICO NEI TUBI Le tubature comunemente utilizzate in impiantistica sono a sezione circolare e costante, con conseguente velocità del liquido uniforme e

Dettagli

ESAMI DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI INGEGNERE. I a Sessione 2014 SEZIONE A PROVA PROGETTUALE SEZIONE INDUSTRIALE

ESAMI DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI INGEGNERE. I a Sessione 2014 SEZIONE A PROVA PROGETTUALE SEZIONE INDUSTRIALE ESAMI DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI INGEGNERE I a Sessione 2014 SEZIONE A PROVA PROGETTUALE SEZIONE INDUSTRIALE Tema 1 Il candidato deve procedere al dimensionamento e

Dettagli

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA Termodinamica TERMODINAMICA Cosa è la termodinamica? La termodinamica studia la conversione del calore in lavoro meccanico Prof Crosetto Silvio 2 Prof Crosetto Silvio Il motore dell automobile trasforma

Dettagli

Fresco con il sol e 60% de risparmio energetico. SOLARCOOL TECNOLOGIA Spiegazione termodinamica

Fresco con il sol e 60% de risparmio energetico. SOLARCOOL TECNOLOGIA Spiegazione termodinamica Fresco con il sol e 60% de risparmio energetico SOLARCOOL TECNOLOGIA Spiegazione termodinamica L efficienza del sistema Solar Cool è possibile grazie ad un effetto fisico del flusso di massa, che è un

Dettagli

Classificazione delle pompe. Pompe rotative volumetriche POMPE ROTATIVE. POMPE VOLUMETRICHE si dividono in... VOLUMETRICHE

Classificazione delle pompe. Pompe rotative volumetriche POMPE ROTATIVE. POMPE VOLUMETRICHE si dividono in... VOLUMETRICHE Classificazione delle pompe Pompe rotative volumetriche POMPE VOLUMETRICHE si dividono in... POMPE ROTATIVE VOLUMETRICHE Pompe rotative volumetriche Principio di funzionamento Le pompe rotative sono caratterizzate

Dettagli

CALCOLO ELETTRICO DELLE LINEE ELETTRICHE

CALCOLO ELETTRICO DELLE LINEE ELETTRICHE CALCOLO ELETTRICO DELLE LINEE ELETTRICHE Appunti a cura dell Ing. Stefano Usai Tutore del corso di ELETTROTECNICA per meccanici e chimici A. A. 2001/ 2002 e 2002/2003 Calcolo elettrico delle linee elettriche

Dettagli

Dimensionamento di massima di una compressore volumetrico alternativo

Dimensionamento di massima di una compressore volumetrico alternativo Dimensionamento di massima di una compressore volumetrico alternativo Giulio Cazzoli Giugno 2013 v1.0 Si chiede di eettuare il dimensionamento di massima di un compressore volumetrico alternativo che aspiri

Dettagli

Motori commerciali Tra le varie applicazioni del motore Stirling, esistono anche motori commerciali, realizzati e testati in laboratorio. Tra questi possiamo illustrarne alcuni: Stirling Power System V160

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

A. Maggiore Appunti dalle lezioni di Meccanica Tecnica

A. Maggiore Appunti dalle lezioni di Meccanica Tecnica Il giunto idraulico Fra i dispositivi che consentono di trasmettere potenza nel moto rotatorio, con la possibilità di variare la velocità relativa fra movente e cedente, grande importanza ha il giunto

Dettagli

Esame di Stato di Istituto Tecnico Industriale A.S. 2004/2005

Esame di Stato di Istituto Tecnico Industriale A.S. 2004/2005 Esame di Stato di Istituto Tecnico Industriale A.S. 2004/2005 Indirizzo: Elettrotecnica e automazione Tema di: Elettrotecnica Una macchina in corrente continua, funzionante da dinamo con eccitazione indipendente,

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

Applicazioni del secondo principio. ovvero. Macchine a vapore a combustione esterna: Macchine a vapore a combustione interna: Ciclo Otto, ciclo Diesel

Applicazioni del secondo principio. ovvero. Macchine a vapore a combustione esterna: Macchine a vapore a combustione interna: Ciclo Otto, ciclo Diesel Termodinamica Applicazioni del secondo principio ovvero Macchine a vapore a combustione esterna: macchina di Newcomen e macchina di Watt Macchine a vapore a combustione interna: Ciclo Otto, ciclo Diesel

Dettagli

Applicazioni della Termochimica: Combustioni

Applicazioni della Termochimica: Combustioni CHIMICA APPLICATA Applicazioni della Termochimica: Combustioni Combustioni Il comburente più comune è l ossigeno dell aria Aria secca:! 78% N 2 21% O 2 1% gas rari Combustioni Parametri importanti:! 1.Potere

Dettagli

POMPA DI CALORE CICLO FRIGORIFERO A COMPRESSIONE DI VAPORE

POMPA DI CALORE CICLO FRIGORIFERO A COMPRESSIONE DI VAPORE POMPA DI CALORE CONDENSATORE = + L T = + L C ORGANO DI ESPANSIONE LIQUIDO COMPRESSORE T COND. E D T 1 VAPORE T EVAP. A B T 2 Schema a blocchi di una macchina frigorifera EVAPORATORE Dal punto di vista

Dettagli

CAPITOLO 1 CICLO RANKINE (CICLO A FLUIDO BIFASE) TURBINE A VAPORE

CAPITOLO 1 CICLO RANKINE (CICLO A FLUIDO BIFASE) TURBINE A VAPORE CAPITOLO 1 CICLO RANKINE (CICLO A FLUIDO BIFASE) TURBINE A VAPORE 1 CICLO RANKINE IL CICLO TERM ODINAM ICO RANKINE E COMPO STO DA Q UATTRO TRASFO RM AZIO NI PRINCIPALI (COMPRESSIO NE, RISCALDAM ENTO, ESPANSIO

Dettagli

ANALISI E VALUTAZIONE DEL RISPARMIO ENERGETICO SULLE POMPE CENTRIFUGHE REGOLATE MEDIANTE INVERTER

ANALISI E VALUTAZIONE DEL RISPARMIO ENERGETICO SULLE POMPE CENTRIFUGHE REGOLATE MEDIANTE INVERTER ANALISI E VALUTAZIONE DEL RISPARMIO ENERGETICO SULLE POMPE CENTRIFUGHE REGOLATE MEDIANTE INVERTER Drivetec s.r.l. Ufficio Tecnico INTRODUZIONE Riferendoci ad una macchina operatrice centrifuga come una

Dettagli

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 22 settembre 2014 per le sedi di Milano Bovisa e Piacenza Proff. Consonni S., Chiesa P.,

Dettagli

IMPIANTI DI CLIMATIZZAZIONE: TERMODINAMICA DEI CICLI FRIGORIFERI AD ARIA ED ACQUA. Ing. Attilio Pianese (commissione Energia e Impianti)

IMPIANTI DI CLIMATIZZAZIONE: TERMODINAMICA DEI CICLI FRIGORIFERI AD ARIA ED ACQUA. Ing. Attilio Pianese (commissione Energia e Impianti) IMPIANTI DI CLIMATIZZAZIONE: TERMODINAMICA DEI CICLI FRIGORIFERI AD ARIA ED ACQUA Ing. Attilio Pianese (commissione Energia e Impianti) SCOPO DEGLI IMPIANTI DI CONDIZIONAMENTO Gli impianti di condizionamento

Dettagli

anidride carbonica: il refrigerante del futuro?

anidride carbonica: il refrigerante del futuro? 1 anidride carbonica: il refrigerante del futuro? prof. ing. Fabio POLONARA 2 ANIDRIDE CARBONICA CO 2 R744 è abbondante e poco costosa è un refrigerante naturale, senza alcun impatto ambientale globale

Dettagli

Tali fluidi, utilizzati in prossimità del punto di produzione, o trasportati a distanza, possono essere utilizzati per diversi impieghi:

Tali fluidi, utilizzati in prossimità del punto di produzione, o trasportati a distanza, possono essere utilizzati per diversi impieghi: LA COGENERAZIONE TERMICA ED ELETTRICA 1. Introduzione 2. Turbine a Gas 3. Turbine a vapore a ciclo combinato 4. Motori alternativi 5. Confronto tra le diverse soluzioni 6. Benefici ambientali 7. Vantaggi

Dettagli

FILTRO A TESSUTO. Allegato n. Azienda. Punto di emissione n. Temperatura emissione (K) Altezza geometrica di emissione (m)

FILTRO A TESSUTO. Allegato n. Azienda. Punto di emissione n. Temperatura emissione (K) Altezza geometrica di emissione (m) REGIONE EMILIA-ROMAGNA Allegato n. Azienda ASSESSORATO AMBIENTE E DIFESA DEL SUOLO FILTRO A TESSUTO Punto di emissione n. Temperatura emissione (K) Altezza geometrica di emissione (m) Portata massima di

Dettagli

CICLO FRIGORIFERO PER RAFFREDDAMENTO

CICLO FRIGORIFERO PER RAFFREDDAMENTO CICLO FRIGORIFERO PER RAFFREDDAMENTO REGIONE CALDA Liquido saturo o sottoraffreddato Q out 3 2 Vapore surriscaldato valvola di espansione condensatore compressore P c evaporatore 4 1 Miscela bifase liquidovapore

Dettagli

Lezione estd 29 pagina 1. Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica

Lezione estd 29 pagina 1. Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica Lezione estd 29 pagina 1 Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica Lezione estd 29 pagina 2 Esercizio 3, 5 luglio 2005 Una macchina di Carnot produce

Dettagli

Temi per la prova orale di Fisica Tecnica 2014-2015

Temi per la prova orale di Fisica Tecnica 2014-2015 I temi elencati nel seguito vogliono essere una guida alla preparazione della prova orale dell esame di Fisica Tecnica cosicché gli allievi possano raggiungere una preparazione completa sugli argomenti

Dettagli

Ventilatori. Generalità e classificazione VENTILATORI. Apparecchi per il trasporto degli aeriformi (pneumofore) e pompe da vuoto

Ventilatori. Generalità e classificazione VENTILATORI. Apparecchi per il trasporto degli aeriformi (pneumofore) e pompe da vuoto Generalità e classificazione Apparecchi per il trasporto degli aeriformi (pneumofore) e pompe da vuoto MACCHINE PNEUMOFORE BASSE P applicano energia cinetica Elicoidali In base al moto dell aria Centrifughi

Dettagli

Portata (Smc/h) U10 4500 U11 2500 U8 3000 U5 4000 U6 3500 U7 1500

Portata (Smc/h) U10 4500 U11 2500 U8 3000 U5 4000 U6 3500 U7 1500 POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE Seconda Sessione ANNO 2009 Settore INDUSTRIALE - Classe 33/S Ingegneria Energetica e nucleare Prova pratica del 14-01-2010

Dettagli

Corso di Termodinamica Applicata Esercitazione n 2

Corso di Termodinamica Applicata Esercitazione n 2 Corso di Termodinamica Applicata Esercitazione n 2 13 maggio 2013 Indice Consegna 1 1 Dati ed Ipotesi 2 2 Soluzione e Risultati 5 3 Discussione dei Risultati 20 Consegna Si consideri un impianto di condizionamento

Dettagli

IMPIANTI DI CONDIZIONAMENTO

IMPIANTI DI CONDIZIONAMENTO IMPIANTI DI CONDIZIONAMENTO Trasferimento di calore dall ambiente interno a quello esterno L aria del locale da raffrescare cede calore all unità interna del climatizzatore ed in tal modo si raffredda

Dettagli