04 Aritmetica del calcolatore
|
|
|
- Bernardo Paoletti
- 9 anni fa
- Visualizzazioni
Transcript
1 Aritmetica del calcolatore
2 Numeri a precisione finita - con un numero finito di cifre - non godono della proprietà di chiusura - le violazioni creano due situazioni distinte: - overflow - underflow Pagina 2
3 Numeri a precisione finita - non vale la regola associativa a + (b c) = (a + b) c Per esempio con a = 700, b = 400, c = non vale la regola distributiva del prodotto a x (b c) = a x b a x c Per esempio con a = 5, b = 210, c = 195 Pagina 3
4 Sistemi di numerazione in base fissa Pagina 4
5 Sistemi di numerazione in base fissa Pagina 5
6 Sistemi di numerazione in base fissa Pagina 6
7 Conversione tra basi Da base binaria a base ottale - raggruppare il numero binario a gruppi di tre cifre (partendo dalla meno significativa) e sostituire il corrispondente valore ottale di ogni gruppo Da base binaria a base esadecimale - raggruppare il numero binario a gruppi di quattro cifre (partendo dalla meno significativa) e sostituire il corrispondente valore esadecimale di ogni gruppo Pagina 7
8 Conversione tra basi Pagina 8
9 Conversione tra basi Pagina 9
10 Conversione tra basi Dalla base ottale alla base binaria - sostituire ad ogni cifra ottale l'equivalente numero binario espresso con tre bit Dalla base esadecimale alla base binaria - sostituire ad ogni cifra esadecimale l'equivalente numero binario espresso con quattro bit Pagina 10
11 Conversione tra basi Dalla base decimale alla base binaria (primo metodo) - sottrarre al numero decimale la più grande potenza di 2 minore del numero stesso; ripetere il procedimento con la differenza ottenuta. Il numero binario si ottiene inserendo 1 nelle posizioni corrispondenti alla potenze di 2 utilizzate, 0 nelle altre posizioni Pagina 11
12 Conversione tra basi Esempio: convertire in base 2 il numero decimale = = = ( ) = ( ) = ( ) = = ( ) = = ( ) = = = Pagina 12
13 Conversione tra basi Dalla base decimale alla base binaria (secondo metodo) - dividere il numero per 2. Il quoziente viene scritto sotto il numero e il resto (0 o 1) viene scritto accanto al quoziente. Si ripete il procedimento finché non si arriva a 0. Il numero binario si ottiene dalla colonna dei resti partendo dal basso. Pagina 13
14 Conversione tra basi Pagina 14
15 Conversione tra basi Dalla base binaria alla base decimale (primo metodo) - sommare le potenze di 2 che corrispondono alle posizioni degli 1 nel numero binario Per esempio: = 1x x x x x2 0 = = = = 22 Pagina 15
16 Conversione tra basi Dalla base binaria alla base decimale (secondo metodo) - scrivere il numero binario in colonna, con in basso il bit più significativo. L'elemento della riga i-esima è il doppio della riga (i-1)-esima più il bit della riga (0 o 1). Pagina 16
17 Conversione tra basi Pagina 17
18 Conversione tra basi La conversione da decimale a ottale (o esadecimale) si realizza: - passando dalla conversione in binario - mediante sottrazioni successive di potenze di 8 o 16 Pagina 18
19 Numeri binari negativi - rappresentazione con modulo e segno Il bit più significativo viene utilizzato come bit di segno (1 per il, 0 per il + ) Pagina 19
20 Numeri binari negativi - rappresentazione in notazione in eccesso di 2 m-1 Viene rappresentato la somma del numero con 2 m-1. Nel caso di 3 bit, il sistema è in eccesso di 4 e memorizza un numero dopo avergli sommato 4 Esempio: = = = = Pagina 20
21 Numeri binari negativi - rappresentazione in complemento a uno La negazione di un numero si ottiene scambiando tutti gli 1 con 0 e viceversa, compreso il bit di segno Pagina 21
22 Numeri binari negativi - rappresentazione in complemento a due La negazione di un numero si ottiene: - scambiando tutti gli 1 con 0 e viceversa (compreso il bit di segno) - aggiungendo 1 al risultato (il resto sul bit più significativo viene ignorato) - per l'estensione del segno si aggiungono nuovi bit a sinistra uguali al bit di segno originale = = = 101 Pagina 22
23 Numeri binari negativi - rappresentazione in complemento a due = ( 0) = 1111 (15) = 1110 (14) = 1101 (13) = 1100 (12) = 1011 (11) = 1010 (10) = 1001 ( 9) = 1000 ( 8) Pagina 23
24 Numeri binari negativi - rappresentazione in complemento a due (estensione del segno) Permette di trasformare un intero rappresentato con n bit nello stesso intero rappresentato con m bit (m > n) Per i numeri negativi in complemento a 2 bisogna replicare il bit di segno fino a raggiungere la nuova posizione (20) (-20) = Pagina 24
25 Numeri binari negativi - rappresentazione in complemento a due L'opposto di un numero si ottiene: - eseguendo il complemento a 2 della stringa - sommando 1 al numero ottenuto (20) = 1 = Pagina 25
26 Addizione e sottrazione in complemento a due - in caso di numeri negativi bisogna prenderne il complemento a due Addizione (attenzione all'overflow) = Pagina 26
27 Addizione e sottrazione in complemento a due - per sottrarre un numero (sottraendo) da un altro numero (minuendo) si considera l'opposto del sottraendo e lo si somma al minuendo Sottrazione 2 7 = (-7) = = Pagina 27
28 Rappresentazione in virgola mobile La notazione scientifica permette di rappresentare numeri molto grandi o molto piccoli: =9, , =9, Allo stesso modo, un numero binario può essere rappresentato come: ±S B ±E Pagina 28
29 Rappresentazione in virgola mobile ±S B ±E Pagina 29
30 Rappresentazione in virgola mobile ±S B ±E Il campo dell'esponente (8 bit in precisione semplice) permetterebbe di esprimere numeri compresi tra 0 e 255 ma, per tenere conto degli esponenti negativi si utilizza la notazione in eccesso (o polarizzata) Si possono così esprimere numeri compresi tra -128 e 127 Pagina 30
31 Rappresentazione in virgola mobile notazione in eccesso Consiste nel sommare la quantità 2 k 1 1 k è il numero di bit del campo esponente Nel caso di 4 bit si ha: Pagina 31
32 Rappresentazione in virgola mobile notazione in eccesso Pagina 32
Codifica binaria. Rappresentazioni medianti basi diverse
Codifica binaria Rappresentazione di numeri Notazione di tipo posizionale (come la notazione decimale). Ogni numero è rappresentato da una sequenza di simboli Il valore del numero dipende non solo dalla
La codifica. dell informazione
00010010101001110101010100010110101000011100010111 00010010101001110101010100010110101000011100010111 La codifica 00010010101001110101010100010110101000011100010111 dell informazione 00010010101001110101010100010110101000011100010111
La codifica. dell informazione
La codifica dell informazione (continua) Codifica dei numeri Il codice ASCII consente di codificare le cifre decimali da 0 a 9 fornendo in questo modo un metodo per la rappresentazione dei numeri Il numero
Rappresentazione dei Numeri
Rappresentazione dei Numeri Rappresentazione dei Numeri Il sistema numerico binario è quello che meglio si adatta alle caratteristiche del calcolatore Il problema della rappresentazione consiste nel trovare
Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due
Conversione di base Dato N>0 intero convertirlo in base b dividiamo N per b, otteniamo un quoto Q 0 ed un resto R 0 dividiamo Q 0 per b, otteniamo un quoto Q 1 ed un resto R 1 ripetiamo finché Q n < b
Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN [email protected]
Esercitazioni di Reti Logiche Lezione 1 Rappresentazione dell'informazione Zeynep KIZILTAN [email protected] Introduzione Zeynep KIZILTAN Si pronuncia Z come la S di Rose altrimenti, si legge come
Esercizi. Soluzioni degli esercizi. Soluzioni degli esercizi. Soluzioni degli esercizi
Esercizi Convertire in formato decimale i seguenti numeri binari: 11, 101011, 1100, 111111, 10101010 Convertire in formato decimale i seguenti numeri ottali: 12, 23, 345, 333, 560 Convertire in formato
CONVERSIONE BINARIO DECIMALE NB: Convertire in decimale il numero binario N = N =
NOTAZIONE BINARIA, OTTALE, ESADECIMALE CODIFICA DI NUMERI INTERI RELATIVI 1 CONVERSIONE BINARIO DECIMALE Convertire in decimale il numero binario N = 101011.1011 2 N = 1 2 5 + 0 2 4 + 1 2 3 + 0 2 2 + 1
Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto
Rappresentazione di numeri relativi (interi con segno) E possibile estendere in modo naturale la rappresentazione dei numeri naturali ai numeri relativi. I numeri relativi sono numeri naturali preceduti
Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre
Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Unità di misura Attenzione però, se stiamo parlando di memoria: 1Byte = 8 bit 1K (KiB: KibiByte)
Decimale, binaria,esadecimale
Decimale, binaria,esadecimale Introduzione Tutti i sistemi di numerazione sono posizionali nel senso che le cifre assumono un determinato valore a seconda della posizione occupata all interno del numero
Calcolatori: Sistemi di Numerazione
Calcolatori: Sistemi di Numerazione Sistemi di Numerazione: introduzione In un Calcolatore, i Dati e le Istruzioni di un Programma sono codificate in forma inaria, ossia in una sequenza finita di e. Un
Esercitazione del 09/03/ Soluzioni
Esercitazione del 09/03/2006 - Soluzioni. Conversione binario decimale ( Rappresentazione dell Informazione Conversione in e da un numero binario, slide 0) a. 0 2? 0 2 Base 2 Si cominciano a contare le
Codifica. Rappresentazione di numeri in memoria
Codifica Rappresentazione di numeri in memoria Rappresentazione polinomiale dei numeri Un numero decimale si rappresenta in notazione polinomiale moltiplicando ciascuna cifra a sinistra della virgola per
Esercitazione del 2/3/2010- Numeri binari e conversione
Esercitazione del 2/3/2010- Numeri binari e conversione 1. Conversione binario decimale a. 1101 2? 10 1 1 2 Base 2 La posizione della cifra all interno del numero indica il peso della cifra stessa, cioè
Calcolo numerico e programmazione Rappresentazione dei numeri
Calcolo numerico e programmazione Rappresentazione dei numeri Tullio Facchinetti 16 marzo 2012 13:26 http://robot.unipv.it/toolleeo Evoluzione storica la rappresentazione
Moltiplicazione. Divisione. Multipli e divisori
Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini
Corso di Architettura degli Elaboratori
Corso di Architettura degli Elaboratori Codifica dell'informazione: Numeri Binari (lucidi originali della Prof.ssa Zacchi e del Prof. Balossino, rivisti dal Prof. Baldoni) 1 Codifica dell'informazione?
Rappresentazione dei dati in memoria
Rappresentazione dei dati in memoria La memoria Una memoria deve essere un insieme di oggetti a più stati. Questi oggetti devono essere tali che: le dimensioni siano limitate il tempo necessario per registrare
Rappresentazione e Codifica dell Informazione
Rappresentazione e Codifica dell Informazione Capitolo 1 Chianese, Moscato, Picariello, Alla scoperta dei fondamenti dell informatica un viaggio nel mondo dei BIT, Liguori editore. Sistema di numerazione
Sistemi di Numerazione Binaria
Sistemi di Numerazione Binaria BIN.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato
Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012
Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 Sommario I sistemi di numerazione Il sistema binario Altri sistemi di numerazione Algoritmi di conversione Esercizi 07/03/2012 2 Sistemi
Un ripasso di aritmetica: Conversione dalla base 10 alla base 2
Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base due sarà del tipo: c m c m-1... c 1 c 0 (le c i sono cifre
Rappresentazione dei Dati
Parte II I computer hanno una memoria finita. Quindi, l insieme dei numeri interi e reali che si possono rappresentare in un computer è necessariamente finito 2 Codifica Binaria Tutti i dati usati dagli
Analogico vs. Digitale. LEZIONE II La codifica binaria. Analogico vs digitale. Analogico. Digitale
Analogico vs. Digitale LEZIONE II La codifica binaria Analogico Segnale che può assumere infiniti valori con continuità Digitale Segnale che può assumere solo valori discreti Analogico vs digitale Il computer
Algoritmi Istruzioni che operano su dati. Per scrivere un programma è necessario. che l esecutore automatico sia in grado di.
Codifica di Dati e Istruzioni Fondamenti di Informatica Codifica dell Informazione Prof. Francesco Lo Presti Algoritmi Istruzioni che operano su dati Per scrivere un programma è necessario rappresentare
La codifica digitale
La codifica digitale Codifica digitale Il computer e il sistema binario Il computer elabora esclusivamente numeri. Ogni immagine, ogni suono, ogni informazione per essere compresa e rielaborata dal calcolatore
I.4 Rappresentazione dell informazione
I.4 Rappresentazione dell informazione Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti Introduzione 1 Introduzione 2 3 L elaboratore Introduzione
Laboratorio di Informatica
per chimica industriale e chimica applicata e ambientale ESERCITAZIONE 2 Uso dell accessorio calcolatrice e conversione di numeri 1 Uso dell accessorio calcolatrice per Passaggi fra basi diverse Aritmetica
Aritmetica dei Calcolatori Elettronici
Aritmetica dei Calcolatori Elettronici Prof. Orazio Mirabella L informazione Analogica Segnale analogico: variabile continua assume un numero infinito di valori entro l intervallo di variazione intervallo
Sistemi di numerazione
Sistemi di numerazione Introduzione Un sistema di numerazione è un sistema utilizzato per esprimere i numeri e possibilmente alcune operazioni che si possono effettuare su di essi. Storicamente i sistemi
Lezione 3. I numeri relativi
Lezione 3 L artimetcia binaria: i numeri relativi i numeri frazionari I numeri relativi Si possono rappresentare i numeri negativi in due modi con modulo e segno in complemento a 2 1 Modulo e segno Si
Calcolo numerico e programmazione Rappresentazione dei numeri
Calcolo numerico e programmazione Rappresentazione dei numeri Tullio Facchinetti 16 marzo 2012 10:54 http://robot.unipv.it/toolleeo Rappresentazione dei numeri nei calcolatori
ESERCIZIARIO DI MATEMATICA
Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi
I sistemi di numerazione
I sistemi di numerazione Breve storia dei sistemi di numerazione. Probabilmente l uomo primitivo per contare gli animali e gli oggetti usava le dieci dita delle mani e, una volta abbassate tutte, tracciava
Esercizi su Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre
Esercizi su Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Esercizio 1 Si consideri una rappresentazione binaria in virgola mobile a 16 bit, di cui (nell'ordine da sinistra
7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.
NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene
Rappresentazione di dati: numerazione binaria. Appunti per la cl. 3 Di A cura del prof. Ing. Mario Catalano
Rappresentazione di dati: numerazione binaria Appunti per la cl. 3 Di A cura del prof. Ing. Mario Catalano Rappresentazione binaria Tutta l informazione interna ad un computer è codificata con sequenze
LA TRASMISSIONE DELLE INFORMAZIONI SECONDA PARTE 1
LA TRASMISSIONE DELLE INFORMAZIONI SECONDA PARTE 1 La rappresentazione dei numeri con la virgola 1 Conversione da decimale in altre basi di numeri con virgola 2 La moltiplicazione in binario 9 Divisione
I sistemi di numerazione. Informatica - Classe 3ª, Modulo 1
I sistemi di numerazione Informatica - Classe 3ª, Modulo 1 1 La rappresentazione interna delle informazioni ELABORATORE = macchina binaria Informazione esterna Sequenza di bit Spett. Ditta Rossi Via Roma
Conversione binario-decimale. Interi unsigned in base 2. Esercitazioni su rappresentazione. dei numeri e aritmetica
Esercitazioni su rappresentazione dei numeri e aritmetica Salvatore Orlando & Marta Simeoni Interi unsigned in base 2 I seguenti numeri naturali sono rappresentabili usando il numero di bit specificato?
Cap. 2 - Rappresentazione in base 2 dei numeri interi
Cap. 2 - Rappresentazione in base 2 dei numeri interi 2.1 I NUMERI INTERI RELATIVI I numeri relativi sono numeri con il segno: essi possono essere quindi positivi e negativi. Si dividono in due categorie:
Informatica. Rappresentazione dei numeri Numerazione binaria
Informatica Rappresentazione dei numeri Numerazione binaria Sistemi di numerazione Non posizionali: numerazione romana Posizionali: viene associato un peso a ciascuna posizione all interno della rappresentazione
Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012
Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 I numeri reali Sommario Conversione dei numeri reali da base 10 a base B Rappresentazione dei numeri reali Virgola fissa Virgola mobile (mantissa
Sistemi di numerazione
Istituto Tecnico Lombardo Radice Sistemi di numerazione Appunti di Informatica - Roberto De Virgilio 1 1 Regole di un sistema di numerazione I sistemi di numerazioni sono linguaggi, quindi sono un insieme
Rappresentazioni numeriche
Rappresentazioni numeriche Un numero è dotato di un valore una rappresentazione La rappresentazione di un numero è il sistema che utilizziamo per indicarne il valore. Normalmente è una sequenza (stringa)
Rappresentazione dell informazione
Rappresentazione dell informazione Problema che coinvolge aspetti filosofici Interessa soprattutto distinguere informazioni diverse Con un solo simbolo è impossibile Pertanto l insieme minimo è costituito
Rappresentazione di numeri interi
Corso di Calcolatori Elettronici I Esercizi Rappresentazione di numeri interi ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Interi senza segno Qual è l intervallo di rappresentazione
Esercizi di Analisi Numerica. Errori, Cambi di base, Numeri macchina, Aritmetica finita
Esercizi di Analisi Numerica Errori, Cambi di base, Numeri macchina, Aritmetica finita ERRORI - es. 1 Calcolare il numero di decimali esatti e di cifre significative nei seguenti numeri scritti in base
I sistemi di numerazione e la numerazione binaria
Ci sono solamente 10 tipi di persone nel mondo: chi comprende il sistema binario e chi no. Anonimo I sistemi di numerazione e la numerazione binaria 1 Sistema additivo e sistema posizionale Contare per
Rappresentazione dell Informazione
Rappresentazione dell Informazione Rappresentazione delle informazioni in codice binario Caratteri Naturali e Reali positivi Interi Razionali Rappresentazione del testo Una stringa di bit per ogni simbolo
1.2f: Operazioni Binarie
1.2f: Operazioni Binarie 2 18 ott 2011 Bibliografia Questi lucidi 3 18 ott 2011 Operazioni binarie Per effettuare operazioni è necessario conoscere la definizione del comportamento per ogni coppia di simboli
Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point)
Rappresentazione di Numeri Reali Un numero reale è una grandezza continua Può assumere infiniti valori In una rappresentazione di lunghezza limitata, deve di solito essere approssimato. Esistono due forme
Numeri reali. Notazione scientifica (decimale) Floating Point. Normalizzazione. Esempi. Aritmetica del calcolatore (virgola mobile)
Numeri reali Aritmetica del calcolatore (virgola mobile) Capitolo 9 1 Numeri con frazioni Posso essere rappresentati anche in binario Es.: 1001.1010 = 2 4 + 2 0 +2-1 + 2-3 =9.625 Quante cifre dopo la virgola?
LA CODIFICA DELL INFORMAZIONE. Introduzione ai sistemi informatici D. Sciuto, G. Buonanno, L. Mari, McGraw-Hill Cap.2
LA CODIFICA DELL INFORMAZIONE Introduzione ai sistemi informatici D. Sciuto, G. Buonanno, L. Mari, McGraw-Hill Cap.2 Codifica dati e istruzioni Per scrivere un programma è necessario rappresentare istruzioni
Utilizzata per rappresentare numeri frazionari nella. numero =(mantissa) 2 esponente. Il formato piu utilizzato e quello IEEE P754, rappresentato
Rappresentazione in oating-point Utilizzata per rappresentare numeri frazionari nella notazione esponenziale: numero =(mantissa) 2 esponente Il formato piu utilizzato e quello IEEE P754, rappresentato
modificato da andynaz Cambiamenti di base Tecniche Informatiche di Base
Cambiamenti di base Tecniche Informatiche di Base TIB 1 Il sistema posizionale decimale L idea del sistema posizionale: ogni cifra ha un peso Esempio: 132 = 100 + 30 + 2 = 1 10 2 + 3 10 1 + 2 10 0 Un numero
Elementi di informatica
Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Sistemi di numerazione posizionali La rappresentazione dei numeri richiede ovviamente una codifica, ovvero la definizione
Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi
Somma di numeri floating point Algoritmi di moltiplicazione e divisione per numeri interi Standard IEEE754 " Standard IEEE754: Singola precisione (32 bit) si riescono a rappresentare numeri 2.0 10 2-38
Rappresentazione dei numeri in un calcolatore
Corso di Calcolatori Elettronici I Rappresentazione dei numeri in un calcolatore ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Rappresentazione dei numeri Così come per qualsiasi altro
Codifica e aritmetica binaria
Codifica e aritmetica binaria Corso ACSO prof. Cristina Silvano, Politecnico di Milano Codifica binaria dell informazione Il calcolatore utilizza un alfabeto binario: usiamo dispositivi elettronici digitali
Aritmetica elementare
51 Aritmetica elementare Capitolo 2 2.1 Sistemi di numerazione............................... 52 2.1.1 Sistema decimale................................ 52 2.1.2 Sistema binario.................................
APPUNTI DI INFORMATICA
APPUNTI DI INFORMATICA Per il biennio di liceo scientifico scienze applicate Sommario Il calcolo binario... 2 Numerazione Decimale... 2 Numerazione Binaria... 2 Conversione Binario -> Decimale... 2 Conversione
Aritmetica dei Calcolatori
Aritmetica dei Calcolatori Luca Abeni March 5, 2014 Codifica dei Numeri Interi k bit codificano 2 k simboli/valori/numeri... Si usa la base 2 per codificare i numeri Numeri naturali n N: valori da 0 a
