L irraggiamento termico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "L irraggiamento termico"

Transcript

1 L irraggiamento termico Trasmissione del Calore - 42 Il calore può essere fornito anche mediante energia elettromagnetica; ciò accade perché quando un fotone, associato ad una lunghezza d onda compresa fra 0,1 e 100 µm, colpisce una superficie, induce sulle molecole della stessa un aumento di energia cinetica, rotazionale, traslazionale e vibrazionale. Poiché l energia cinetica è indice dello stato di energia interna sensibile avremo che: ad un suo aumento corrisponde un aumento di temperatura della superficie. c0 λ = n f c 0 Colore λ (µm) Violetto Blu Verde Giallo Arancio Rosso = 2, f = Frequenza h = Cos tan te 1 [ Hz] = [ s ] di [ m] = Lunghezza d' onda µ 8 = Velocità della luce nel vuoto n = Indice di rifrazione ( n = 1 per l' aria; n = 1,5 Planck = 6, [ J s] [ m / s] Max Planck (1900) h c e = = h f J λ L energia di un fotone diminuisce all aumentare della lunghezza d onda. per acqua e vetro)

2 Emissione radiante Trasmissione del Calore - 43 Parametri che influenzano l emissione radiante: la temperatura della superficie la direzione di ricezione il tipo di materiale che riveste la superficie la lunghezza d onda la dimensione stessa della superficie. Un corpo emette radiazioni elettromagnetiche a condizione che la sua temperatura assoluta sia superiore a 0 K. Nei solidi l emissione è un fenomeno superficiale, solo i primi micron di superficie contribuiscono all irraggiamento. Nei gas il fenomeno è di tipo volumetrico, così che l emissione è sferica. Quando una superficie emette la stessa quantità di energia in ogni direzione viene detta: Emettitore Diffuso. I corpi reali solo raramente si comportano come emettitori diffusi, più in generale infatti, devono essere considerati Direzionali. Qualunque corpo, inoltre, presenta un emissione variabile con la lunghezza d onda; ossia l emissione ha caratteristiche Spettrali.

3 Corpo Nero Trasmissione del Calore - 44 Per valutare l emissione Spettrale di una superficie risulta conveniente introdurre una superficie ideale di riferimento che, a parità di temperatura e lunghezza d onda, emetta più di ogni superficie reale. A tale superficie viene dato il nome di Corpo Nero ; la sua caratteristica fondamentale è quella di essere un emettitore diffuso, la cui emissione dipende solo dalla temperatura del corpo e dalla lunghezza d onda di emissione. Benché Ideale un corpo nero può essere realizzato mediante una Cavità dotata di una piccola apertura. La cavità è mantenuta a temperatura costante, ed al suo interno le pareti sono annerite, onde poter assorbire completamente le eventuali radiazioni che, dall esterno, entrano nella fessura. Si avrà così che tale corpo oltre ad essere un emettitore di riferimento sarà anche un Assorbitore Totale di energia radiante. Se a questo punto, proviamo a misurare l energia che viene rilasciata attraverso la fessura del corpo nero, e lo facciamo dotandoci di filtri monocromatici, e variandone la temperatura, possiamo arrivare a determinare una relazione T=costante empirica per l Emissione Spettrale del Corpo Nero.

4 Legge di Planck (1901) Trasmissione del Calore - 45 Potere Emissivo spettrale del Corpo Nero E ( T ) C W = C 2 m µ m 5 λ T λ e 1 1 n, λ C1 = 2 π h c0 = 3, W µ m / m = = 4 C2 h c0 / k 1, µ m K = = 23 k Costante di Boltzmann 1, J / K Come emerge dal grafico, il potere emissivo spettrale del corpo nero è rappresentato da una famiglia di curve isoterme dotate, ognuna, di un valore massimo. Importante - nell irraggiamento la temperatura è espressa sempre in Kelvin

5 Legge di Wien Trasmissione del Calore - 46 Dalla constatazione che ognuna delle curve isoterme, che rappresentano il potere emissivo spettrale del corpo nero, mostrano un valore massimo, è pensabile derivare l equazione di Planck per giungere alla localizzazione analitica di tali massimi. Questo è ciò che Willy Wien fece ottenendo una relazione analitica che prende il nome di Legge dello Spostamento, o di Wien. d d ( λt ) E λ ( T ) = 0 λ T = 2897,8 µ m K n, max. Con la legge di Wien, valida solo per un corpo nero, è possibile verificare a quale lunghezza d onda si ha il massimo dell emissione spettrale di un emettitore a temperatura nota. Per il sole, che si comporta come un corpo nero a 5800 K, avremo che il massimo di emissione è ad una lunghezza d onda: λ = 0,5 max µm ossia al centro dello spettro del visibile.

6 Trasmissione del Calore - 47 Legge di Stephan-Boltzmann La legge di Planck ci fornisce il potere emissivo spettrale, per conoscere il Potere Emissivo Totale, ossia l insieme dei contributi energetici associati a tutto lo spettro di radiazione, è necessario integrare l equazione di Planck. Questo è ciò che fecero Stefan e Boltzmann che ottennero la soluzione come limite per la lunghezza d onda che tende ad infinito: 4 2 En = En, λ ( T ) dλ = σ T W / m 0 Se riprendiamo l esempio precedente, dove si è supposto il sole come un corpo nero a 5800 K, avremo che il corpo in questione emetterà un flusso radiante specifico pari a: En = σ T = 5, W / m Fortunatamente solo 1/50000 circa di tale potenza raggiunge la superficie terrestre, grazie alle piccolo angolo di vista, fra la terra ed il sole, ed all assorbimento dell atmosfera terrestre. Si può assumere che l energia media che il sole fornisce alla terra, al di fuori dell atmosfera, sia pari a 1373 (W/m 2 ) ed è chiamata Costante Solare. σ = = ,67 10 W /( m K ) Costante di Stephan-Boltzmann

7 Emissività Il corpo nero è un corpo ideale, i corpi reali emettono sempre meno energia del corpo nero equivalente (ossia di un corpo nero posto alla stessa temperatura del corpo reale). Per quantificare l energia radiante emessa da un corpo reale si introduce l Emissività. L emissività è una proprietà intrinseca della superficie radiante per cui, come per l emissione radiante di quest ultima, anche l emissività dipenderà da: a) direzione di emissione b) lunghezza d onda c) temperatura della superficie Trasmissione del Calore - 48 Emissività di superfici conduttrici e dielettriche in funzione dell angolo di vista. Emissività Emisferica Totale ε ( T ) = Radiazione emessa dal corpo reale Radiazione emessa da un corpo nero alla stessa temperatura

8 Emissività di superfici Trasmissione del Calore - 49 Si ha così che possiamo definire diversi tipi di Emissività: l emissività spettrale emisferica, quella direzionale totale e quella Totale emisferica. E ( T ) E ( T ) ε ( T ) = = = Emissività totale emisferica 4 E ( T ) σ T n E λ ( T ) ε λ ( T ) = = Emissività spettrale emisferica E ( T ) n, λ

9 Corpo Grigio Trasmissione del Calore - 50 Proprio a causa della forte variabilità dell emissività dei corpi reali per calcoli pratici si assume che un corpo reale presenta un emissività spettrale costante. In questo modo il potere emissivo del corpo reale avrà un andamento simile a quello del corpo nero, anche se scalato di una quantità proporzionale alla temperatura. Tale approssimazione non è applicabile a tutte le superfici in quanto molti materiali, ad esempio la pelle umana, sono selettivi, presentano cioè alte emissività in certe bande spettrali e basse in altre. In questo caso si assume che la superficie si comporti comunque come un corpo grigio, ma la sua emissività, benché costante all interno di una determinata banda, varia da banda a banda di lunghezze d onda. Più praticamente l emissività spettrale ha un andamento a gradini.

10 Trasmissione del Calore - 51 Assorbimento, Trasmissione e Riflessione Quando una radiazione colpisce una superficie, parte di essa viene Assorbita, parte Trasmessa e parte Riflessa. L entità di tali contributi energetici dipendono: dalle caratteristiche della superficie e dal tipo di radiazione incidente Radiazione Incidente (W/m 2 ) G τ G Radiazione Riflessa (W/m 2 ) ρ G G = G + G + G = α G + ρ G + τ G α G rifl. tras. ass. 1 = α + ρ + τ I coefficienti ora definiti sono fortemente dipendenti dalla Radiazione Assorbita (W/m 2 ) Radiazione Trasmessa (W/m 2 ) lunghezza d onda; ad esempio la vernice bianca, che nel visibile è fortemente riflettente, nell infrarosso è fortemente assorbente. Lo stesso dicasi per la neve, per il vetro o per la pelle umana. La selettività mostrata dalle superfici trasparenti è causa generante di quello che viene chiamato, in edilizia, Effetto Serra.

11 Effetto Serra T = 5800 K 2897,8 λ = 0,5 µ m max 5800 Trasmissione del Calore - 52 Vetro Radiazione trasmessa dal vetro Radiazione emessa dalla superficie T=300 K 2897,8 λ = 9,6 µ m max 300 Il vetro è trasparente nel visibile ma è opaco nell infrarosso. La radiazione che incide sul vetro viene da questi trasmessa alla superficie che ne assorbe una parte e ne riflette il rimanente. Della porzione riflessa, che è alla stessa lunghezza d onda di quella incidente, il vetro lascia passare quasi tutto (esso è infatti trasparente nel visibile). La radiazione emessa dalla superficie invece, essendo questa a 300 K, viene riflessa dal vetro, che è opaco nell infrarosso; ciò porta ad un inevitabile riscaldamento della superficie stessa e dell intercapedine di aria. A tale fenomeno si da il nome di EFFETTO SERRA.

CORSO DI FISICA TECNICA

CORSO DI FISICA TECNICA CORSO DI FISICA TECNICA Trasmissione del calore Irraggiamento IRRAGGIAMENTO Trasferimento di energia per onde elettromagnetiche Moto vibratorio delle molecole Tutte le superfici emettono onde elettromagnetiche

Dettagli

Trasmissione di calore per radiazione

Trasmissione di calore per radiazione Trasmissione di calore per radiazione Sia la conduzione che la convezione, per poter avvenire, presuppongono l esistenza di un mezzo materiale. Esiste una terza modalità di trasmissione del calore: la

Dettagli

Trasmissione del calore: Irraggiamento - I parte

Trasmissione del calore: Irraggiamento - I parte CORSO DI LAUREA IN SCIENZE DELL ARCHITETTURA FISICA TECNICA AMBIENTALE Trasmissione del calore: Irraggiamento - I parte Prof. Gianfranco Caruso A.A. 2013/2014 La trasmissione di calore per Irraggiamento

Dettagli

IRRAGGIAMENTO IRRAGGIAMENTO E

IRRAGGIAMENTO IRRAGGIAMENTO E RRAGGAMENTO E il trasferimento di energia che avviene attraverso onde elettromagnetiche (o fotoni) prodotte da variazioni nelle configurazioni elettroniche degli atomi e delle molecole. La radiazione si

Dettagli

Convezione Conduzione Irraggiamento

Convezione Conduzione Irraggiamento Sommario Cenni alla Termomeccanica dei Continui 1 Cenni alla Termomeccanica dei Continui Dai sistemi discreti ai sistemi continui: equilibrio locale Deviazioni dalle condizioni di equilibrio locale Irreversibilità

Dettagli

Trasmissione del calore:

Trasmissione del calore: Trasmissione del calore: - Conduzione - Convezione - Irraggiamento Cos è la Convezione: È lo scambio di calore che avviene tra una superficie e un fluido che si trovano a diversa temperatura e in movimento

Dettagli

TERMOLOGIA & TERMODINAMICA II

TERMOLOGIA & TERMODINAMICA II TERMOLOGIA & TERMODINAMICA II 1 TRASMISSIONE DEL CALORE Il calore può essere trasmesso attraverso tre modalità: conduzione: il trasporto avviene per contatto, a causa degli urti fra le molecole dei corpi,

Dettagli

Capitolo 4. L Insolazione e la Temperatura.

Capitolo 4. L Insolazione e la Temperatura. Capitolo 4. L Insolazione e la Temperatura. L energia di cui dispone la popolazione umana deriva direttamente o indirettamente dal Sole. Il Sole emette costantemente una radiazione di tipo elettromagnetico

Dettagli

Illuminotecnica - Grandezze Fotometriche

Illuminotecnica - Grandezze Fotometriche Massimo Garai - Università di Bologna Illuminotecnica - Grandezze Fotometriche Massimo Garai DIN - Università di Bologna http://acustica.ing.unibo.it Massimo Garai - Università di Bologna 1 Radiazione

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci

Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci Corso di Laurea Magistrale in Ingegneria per l Ambiente e il Territorio A.A. 2012-2013 Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci Telerilevamento: principi fisici Principi fisici del telerilevamento

Dettagli

Fenomeni quantistici

Fenomeni quantistici Fenomeni quantistici 1. Radiazione di corpo nero Leggi di Wien e di Stefan-Boltzman Equipartizione dell energia classica Correzione quantistica di Planck 2. Effetto fotoelettrico XIII - 0 Radiazione da

Dettagli

CORSO DI METEOROLOGIA GENERALE E AERONAUTICA 2 - Termodinamica dell Atmosfera

CORSO DI METEOROLOGIA GENERALE E AERONAUTICA 2 - Termodinamica dell Atmosfera CORSO DI METEOROLOGIA GENERALE E AERONAUTICA 2 - GRANDEZZE TERMODINAMICHE - SCALE TERMOMETRICHE PROPAGAZIONE DEL CALORE - ALBEDO BILANCIO TERMICO ATMOSFERICO ESCURSIONE TERMICA GIORNALIERA Dr. Marco Tadini

Dettagli

LE STELLE. LE DISTANZE ASTRONOMICHE Unità astronomica = distanza media Terra-Sole ( km)

LE STELLE. LE DISTANZE ASTRONOMICHE Unità astronomica = distanza media Terra-Sole ( km) LE STELLE LE DISTANZE ASTRONOMICHE Unità astronomica = distanza media Terra-Sole (149 600 000 km) Anno luce = distanza percorsa in un anno dalla luce, che viaggia ad una velocità di 300 000 km/sec. (9

Dettagli

Il corpo nero e l ipotesi di Planck

Il corpo nero e l ipotesi di Planck Il corpo nero e l ipotesi di Planck La crisi della fisica classica Alla fine del XIX secolo ci sono ancora del fenomeni che la fisica classica non riesce a spiegare: lo spettro d irraggiamento del corpo

Dettagli

DEFINIZIONE DI RADIANZA La radiazione è caratterizzata tramite la Radianza Spettrale, I (λ, θ, φ, T), definita come la densità di potenza per unità di

DEFINIZIONE DI RADIANZA La radiazione è caratterizzata tramite la Radianza Spettrale, I (λ, θ, φ, T), definita come la densità di potenza per unità di SISTEMI PASSIVI Ogni corpo a temperatura T diversa da 0 K irradia spontaneamente potenza elettromagnetica distribuita su tutto lo spettro Attraverso un elemento da della superficie del corpo, fluisce p

Dettagli

I QUANTI DI PLANCK 1

I QUANTI DI PLANCK 1 I QUANTI DI PLANCK 1 prerequisiti Concetto di onda v= f Energia f 2 Per le onde elettromagnetiche v= c Spettro di emissione 2 SPETTRO ELETTROMAGNETICO 3 Quando un flusso di energia raggiante cade sulla

Dettagli

Lezione 14 Termologia Cambiamenti di stato. Dilatazioni termiche. Trasmissione del calore.

Lezione 14 Termologia Cambiamenti di stato. Dilatazioni termiche. Trasmissione del calore. Lezione 14 Termologia Cambiamenti di stato. Dilatazioni termiche. Trasmissione del calore. Cambiamenti di stati di aggregazione Gli stati di aggregazione della materia sono: solido, liquido gassoso (e

Dettagli

Il Corpo Nero e la costante di Planck

Il Corpo Nero e la costante di Planck Il Corpo Nero e la costante di Planck Prof.ssa Garagnani Elisa Max Planck (1858-1947) Prof.ssa Garagnani Elisa Il Corpo Nero e la costante di Planck 1 / 21 Radiazione e materia L Universo è fatto di materia

Dettagli

Michelle Melcarne matr Morena Iocolano matr Lezione del 04/06/2014 ora 9:30-12:30 PER IRRAGGIAMENTO

Michelle Melcarne matr Morena Iocolano matr Lezione del 04/06/2014 ora 9:30-12:30 PER IRRAGGIAMENTO Michelle Melcarne matr. 5 Morena Iocolano matr. 77 Lezione del /6/ ora 9:3-:3 (Lez./6/) Indice SCAMBIO TERMICO PER IRRAGGIAMENTO ESERCIZI ONDE ELETTROMAGNETICHE SCAMBIO TERMICO PER IRRAGGIAMENTO IN CAMPO

Dettagli

Termografia a infrarossi

Termografia a infrarossi Termografia a infrarossi Nella radiometria a microonde si verifica che hν

Dettagli

catastrofe ultravioletta

catastrofe ultravioletta Fisica moderna Radiazione termica La radiazione termica è l insieme di onde elettromagnetiche che ogni corpo emette per effetto della sua temperatura Un corpo nero è un corpo che assorbe completamente

Dettagli

3. (Da Veterinaria 2006) Perché esiste il fenomeno della dispersione della luce bianca quando questa attraversa un prisma di vetro?

3. (Da Veterinaria 2006) Perché esiste il fenomeno della dispersione della luce bianca quando questa attraversa un prisma di vetro? QUESITI 1 FENOMENI ONDULATORI 1. (Da Medicina 2008) Perché un raggio di luce proveniente dal Sole e fatto passare attraverso un prisma ne emerge mostrando tutti i colori dell'arcobaleno? a) Perché riceve

Dettagli

CONVEZIONE, CONDUZIONE E IRRAGGIAMENTO

CONVEZIONE, CONDUZIONE E IRRAGGIAMENTO CONVEZIONE, CONDUZIONE E IRRAGGIAMENTO T R AT TO DA: I P ro b l e m i D e l l a F i s i c a - C u t n e l l, J o h n s o n, Yo u n g, S t a d l e r Z a n i c h e l l i e d i t o r e La F i s i c a di A

Dettagli

Astronomia Lezione 17/10/2011

Astronomia Lezione 17/10/2011 Astronomia Lezione 17/10/2011 Docente: Alessandro Melchiorri e.mail:[email protected] Libri di testo: - An introduction to modern astrophysics B. W. Carroll, D. A. Ostlie, Addison Wesley

Dettagli

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la 1 E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la lunghezza d onda ( ), definita come la distanza fra due

Dettagli

TRASFERIMENTO RADIATIVO IN ATMOSFERA

TRASFERIMENTO RADIATIVO IN ATMOSFERA TRASFERIMENTO RADIATIVO IN ATMOSFERA Anziché osservare il sistema dall esterno a valutare il bilancio al top dell atmosfera, analizzo cosa succede al suo interno. L interazione della radiazione solare

Dettagli

Spettroscopia. 05/06/14 SPET.doc 0

Spettroscopia. 05/06/14 SPET.doc 0 Spettroscopia 05/06/14 SPET.doc 0 Spettroscopia Analisi del passaggio di un sistema da uno stato all altro con scambio di fotoni Spettroscopia di assorbimento Spettroscopia di emissione: In entrambi i

Dettagli

S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano

S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano S P E T T R O S C O P I A SPETTROSCOPIA I PARTE Cenni generali di spettroscopia: La radiazione elettromagnetica e i parametri che la caratterizzano Le regioni dello spettro elettromagnetico Interazioni

Dettagli

Olimpiadi Italiane di Astronomia MAGNITUDINI

Olimpiadi Italiane di Astronomia MAGNITUDINI Olimpiadi Italiane di Astronomia Preparazione alla fase interregionale delle Olimpiadi Italiane di Astronomia MAGNITUDINI By Giuseppe Cutispoto Magnitudine apparente La magnitudine apparente (m) di una

Dettagli

Magnitudini e Diagramma H-R Giuseppe Cutispoto

Magnitudini e Diagramma H-R Giuseppe Cutispoto Magnitudini e Diagramma H-R Giuseppe Cutispoto INAF Osservatorio Astrofisico di Catania [email protected] Versione: 4 febbraio 018 Magnitudine apparente La magnitudine apparente (m) di una stella

Dettagli

La Crisi della Fisica Classica

La Crisi della Fisica Classica La Crisi della Fisica Classica F. Borgonovi (Dipartimento di Matematica e Fisica) Interdisciplinary Laboratories for Advanced Materials Physics (i-lamp) Department of Mathematics and Physics, Catholic

Dettagli

Trasmissione del calore: Irraggiamento - II parte

Trasmissione del calore: Irraggiamento - II parte CORSO DI LAUREA IN SCIENZE DELL ARCHITETTURA FISICA TECNICA AMBIENTALE Trasmissione del calore: Irraggiamento - II parte Prof. Gianfranco Caruso A.A. 2013/2014 Proprietà selettive: i colori Le superfici

Dettagli

Spettroscopia di assorbimento UV-Vis

Spettroscopia di assorbimento UV-Vis Spettroscopia di assorbimento UV-Vis Metodi spettroscopici La spettroscopia studia i fenomeni alla base delle interazioni della radiazione con la materia Le tecniche spettroscopiche sono tutte quelle tecniche

Dettagli

Corso di Telerilevamento Lezione 2

Corso di Telerilevamento Lezione 2 Corso di Telerilevamento Lezione 2 Curve di riflettanza Immagini digitali e visualizzazione La riflessione La radiazione incidente su di una determinata superficie può essere assorbita, riflessa o trasmessa

Dettagli

Modi di Trasmissione del Calore

Modi di Trasmissione del Calore Modi di Trasmissione del Calore Trasmissione del Calore - 1 La Trasmissione del calore, fra corpi diversi, o all interno di uno stesso corpo, può avvenire secondo 3 diverse modalità: - Conduzione - Convezione

Dettagli

Fisica della Visione Introduzione

Fisica della Visione Introduzione 1 Introduzione 2 Lezione 5 Le sorgenti luminose: il colore delle sorgenti luminose Le sorgenti luminose: Corpo nero e spettro di emissione del corpo nero. Le leggi di Planck e di Wien. La temperatura di

Dettagli

Come vediamo. La luce: aspetti fisici. Cos è la luce? Concetti fondamentali:

Come vediamo. La luce: aspetti fisici. Cos è la luce? Concetti fondamentali: La luce in fisica La luce: aspetti fisici Cos è la luce? Concetti fondamentali: - velocità, ampiezza, lunghezza d onda - assorbimento - riflessione -rifrazione - diffrazione - indice di rifrazione - temperatura

Dettagli

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata LASER Light Amplification by Stimulated Emission of Radiation Introduzione. Assorbimento, emissione spontanea, emissione stimolata Cenni storici 1900 Max Planck introduce la teoria dei quanti (la versione

Dettagli

G. Bracco -Appunti di Fisica Generale

G. Bracco -Appunti di Fisica Generale Equazioni di Maxwell ε 0 E= ρ B= 0 E= - B / t B = μ 0 J+ ε 0 μ 0 E / t= μ 0 (J+ ε 0 E / t) il termine ε 0 E / t è la corrente di spostamento e fu introdotto da Maxwell per rendere consistenti le 4 equazioni

Dettagli

Bocchi Carlotta matr Borelli Serena matr Lezione del 5/05/2016 ora 8:30-10:30. Grandezze fotometriche ILLUMINOTECNICA

Bocchi Carlotta matr Borelli Serena matr Lezione del 5/05/2016 ora 8:30-10:30. Grandezze fotometriche ILLUMINOTECNICA Bocchi Carlotta matr. 262933 Borelli Serena matr. 263448 Lezione del 5/05/2016 ora 8:30-10:30 NOZIONI DI ILLUMINOTECNICA ILLUMINOTECNICA Che cos'è la luce e le cara7eris9che delle onde ele7romagne9che

Dettagli

Lo scambio termico per radiazione

Lo scambio termico per radiazione 1 Lo scambio termico per radiazione 1.1 Introduzione Si consideri un corpo collocato in un ambiente in cui è stato fatto il vuoto e le cui pareti si trovino ad una temperatura superficiale uniforme di

Dettagli

Ingegneria dei Sistemi Elettrici_6f

Ingegneria dei Sistemi Elettrici_6f Ingegneria dei Sistemi Elettrici_6f Guide d onda e cavità risonanti Sono state studiate le proprietà caratteristiche delle onde elettromagnetiche trasversali guidate da linee di trasmissione. Una delle

Dettagli

Introduzione alla Meccanica Quantistica (MQ):

Introduzione alla Meccanica Quantistica (MQ): Introduzione alla Meccanica Quantistica (MQ): 1 MECCANICA QUANTISTICA ELETTRONI MATERIA MOLECOLE ATOMI NUCLEI La nostra attuale comprensione della struttura atomica e molecolare si basa sui principi della

Dettagli

La struttura della materia

La struttura della materia La struttura della materia IL CORPO NERO In fisica, i corpi solidi o liquidi emettono radiazioni elettromagnetiche, a qualsiasi temperatura. Il corpo nero, invece, è un oggetto ideale che assorbe tutta

Dettagli

LA LUCE. Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione

LA LUCE. Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione LA LUCE Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione Perché vediamo gli oggetti? Perché vediamo gli oggetti? Noi vediamo gli oggetti perché da essi

Dettagli

Il comportamento termico di oggetti in presenza di radiazione e.m. assorbita ed emessa: Esperimenti didattici

Il comportamento termico di oggetti in presenza di radiazione e.m. assorbita ed emessa: Esperimenti didattici Il comportamento termico di oggetti in presenza di radiazione e.m. assorbita ed emessa: Esperimenti didattici PLS 2017 In che modo i materiali possono interagire con la radiazione? assorbanza riflettanza

Dettagli

Temperatura. Temperatura

Temperatura. Temperatura TERMOMETRIA E CALORE Che cos è la? Grandezza che misura l energia accumulata da un corpo come energia 2 La regola molti processi chimico fisici, quali ad esempio la formazione delle calotte polari, le

Dettagli

Termodinamica (1) Temperatura e calore Lezione 12, 13/11/2018, JW

Termodinamica (1) Temperatura e calore Lezione 12, 13/11/2018, JW Termodinamica (1) Temperatura e calore Lezione 12, 13/11/2018, JW 15.1-15.6 1 1. Calore Definizione di calore Il calore è l energia trasferita tra oggetti a causa della loro differenza di temperatura.

Dettagli

La candela. La storia della realizzazione della candela

La candela. La storia della realizzazione della candela La candela La storia della realizzazione della candela 1860 La prima realizzazione di riferimento per la misura delle luce utilizza delle candele ricavate dal grasso di balena (spermaceti). 1898 Il passo

Dettagli

T = t o (1.1) Nella scala kelvin il ghiaccio fonde a 273 K e l acqua bolle a 373 K. Un grado kelvin è uguale a un grado celsius

T = t o (1.1) Nella scala kelvin il ghiaccio fonde a 273 K e l acqua bolle a 373 K. Un grado kelvin è uguale a un grado celsius Termologia. La temperatura è la grandezza fisica che misura lo stato termico di un sistema fisico (un corpo). 2. Scale termometriche. - Scala Celsius ( o C). Proposta nel 742. 0 o C è la temperatura di

Dettagli

SPETTROSCOPIA UV-VIS LEZIONE 9

SPETTROSCOPIA UV-VIS LEZIONE 9 SPETTROSCOPIA UV-VIS LEZIONE 9 RADIAZIONE ELETTROMAGNETICA La radiazione elettromagnetica è la propagazione nello spazio e nel tempo dell energia elettromagnetica tramite onde e corpuscoli. natura ondulatoria:

Dettagli

L INCIDENZA DI UN TETTO SUL MICROCLIMA URBANO

L INCIDENZA DI UN TETTO SUL MICROCLIMA URBANO L INCIDENZA DI UN TETTO SUL MICROCLIMA URBANO Qualche parola in più sui cool roof, per chi vuole approfondire ed alcuni cenni di fisica tecnica cool roof = tetto freddo una soluzione che garantisce il

Dettagli

Elettricità e Fisica Moderna

Elettricità e Fisica Moderna Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1 Elettricità e Fisica Moderna 1) Una candela emette una potenza di circa 1 W ad una lunghezza d onda media di 5500 Å a)

Dettagli

FISICA TECNICA AMBIENTALE LABORATORIO DI TERMOTECNICA

FISICA TECNICA AMBIENTALE LABORATORIO DI TERMOTECNICA FISICA TECNICA AMBIENTALE LABORATORIO DI TERMOTECNICA Termocamera s c( ob refl atm) s ob atm ob atm 1 ob so TTatm so TT s TT 1 Analisi di sensibilità dei vari parametri SW LW Emissività La più importante

Dettagli

Onde e oscillazioni. Fabio Peron. Onde e oscillazioni. Le grandezze che caratterizzano le onde

Onde e oscillazioni. Fabio Peron. Onde e oscillazioni. Le grandezze che caratterizzano le onde Onde e oscillazioni Lezioni di illuminotecnica. Luce e Onde elettromagnetiche Fabio Peron Università IUAV - Venezia Si parla di onde tutte le volte che una grandezza fisica varia la sua entità nel tempo

Dettagli