Corso di Termofluidodinamica
|
|
|
- Clementina Renzi
- 9 anni fa
- Visualizzazioni
Transcript
1 UNIVERSITÀ DEGLI STUDI DI CAGLIARI Corso di Laurea in Ingegneria Meccanica Corso di Termofluidodinamica modulo di Termodinamica Tecnica Ing. Francesco Cambuli Anno Accademico 2015/2016
2 A cosa serve la termodinamica Thermos -> caldo Dynamis -> forza La termodinamica studia le trasformazioni dei fluidi per la conversione dell ENERGIA TERMICA (Thermos) in ENERGIA MECCANICA (Dynamis) e viceversa Energia Termica Energia Meccanica
3 Esempi Turbina a gas - 1 Il fluido in ingresso subisce trasformazioni termodinamiche, chimiche e fluidodinamiche
4 Esempi Turbina a gas -2 camera di combustione Calore fornito = 100 Calore Ceduto = 65 Lavoro Utile = 35 Lavoro utile Rendimento 35% Calore fornito Ciclo Brayton
5 Esempi Impianto a vapore Impianto termoelettrico a vapore Generatore di vapore 2. Turbina a vapore 3. Condensatore 4. Torre evaporativa 5. Scarico fumi
6 Esempi Impianto a vapore - 2 Ciclo HIRN Torre di evaporazione Schema d impianto Diagrammi Termodinamici
7 Esempi Motori a Combustione Interna - 1 Motore automobilistico Intake -> Aspirazione Compression -> Compressione Combustion -> Combustione Exhaust -> Scarico
8 Esempi Motori a Combustione Interna - 2 Cicli termodinamici sul piano PV Ciclo ideale Beau de Rochas* Motori ad accensione comandata Ciclo ideale Diesel Motori ad accensione spontanea * Beau de Rochas patented his idea in 1862 but did not build such an engine, leaving the development to others. As a result of the work of Nikolaus A. Otto of Germany and Étienne Lenoir of France, four-stroke engines almost completely displaced all other types of internal combustion engines and came into universal use. (
9 Problemi pratici - 1 Serbatoio in pressione Problema: È possibile sapere quanti kg di gas (azoto, ossigeno, metano, etc.) sono contenuti in un serbatoio misurandone solo pressione e temperatura?
10 Problemi pratici - 2 Caldaia per riscaldamento Problema: Quanto gasolio utilizza una caldaia che produce 100 litri/giorno di acqua calda sanitaria a 50 C?
11 Problemi pratici - 3 Pompa/compressore Problema: Quanta energia serve per comprimere 1 kg di aria (o di acqua) dalla pressione di 1 bar fino alla pressione di 5 bar?
12 Problemi pratici - 4 Condotta isolata Problema: Quale spessore di isolante occorre prevedere per evitare una eccessiva diminuzione di temperatura di un fluido che scorre in una tubazione?
13 Programma del corso (50 ore) Introduzione. Unità di misura Principio zero della termodinamica, temperatura e termometri La materia e i suoi stati di aggregazione. Diagrammi di fase Equazioni di stato Volumi di controllo chiusi. Calore e Lavoro Equivalenza fra calore e lavoro: primo principio della termodinamica Enunciati del secondo principio della termodinamica Funzione Entropia. Ciclo di Carnot Cicli diretti o inversi Miscele di gas ideali Volumi di controllo aperti: equazioni di bilancio Equazione dell energia in forma termica e meccanica Le trasformazioni dei gas ideali nei piani TS e HS Fondamenti di Trasmissione del calore
14 Testi consigliati Yunus A. Cengel, Termodinamica e Trasmissione del Calore McGraw-Hill Libri Italia Paolo Mazzoldi, Massimo Nigro, Cesare Voci, Fisica Vol. 1. Meccanica e Termodinamica Edizioni EdiSES Mark Zemansky, Michael Abbott, Hendrick Van Nes, Termodinamica per ingegneri Zanichelli
15 Varie - 1 Dati docente Ing. Francesco Cambuli Sito web: [email protected] Ricevimento studenti Lunedì ore Giovedì ore 16-18
16 Varie - 2 Modalità d esame Prova pratica (soluzione di esercizi), in forma scritta Prova teorica (risposta a domande), in forma scritta. La prova pratica si svolgerà lo stesso giorno per FLD e TRD. Una settimana dopo, prova teorica sia per FLD che per TRD Prova pratica FLD (1 ora, voto max.15/30) + TRD (1 h, 15/30). Voto medio finale in 30esimi. E necessaria la sufficienza (>=8/15) per entrambe le prove Sono previste prove pratiche intermedie durante il corso Prova teorica Si svolgerà UNA SETTIMANA dopo la prova pratica FLD (1 h, 15/30) + TRD (1 h, 15/30). Voto medio finale in 30. E necessaria la sufficienza (>=8/15) per entrambe le prove Voto finale Voto medio tra prova pratica e teorica
17 UNIVERSITÀ DEGLI STUDI DI CAGLIARI Corso di Laurea in Ingegneria Meccanica Corso di Termofluidodinamica modulo di Termodinamica Tecnica Ing. Francesco Cambuli Anno Accademico 2015/2016
Corsi di Macchine e Sistemi Energetici e di Termodinamica e Macchine
Facoltà di Ingegneria e Architettura Corsi di Macchine e Sistemi Energetici e di Termodinamica e Macchine Daniele Cocco Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi
CICLI TERMODINAMICI 1
CICLI TERMODINAMICI 1 CICLO RANKINE - TURBINE A VAPORE LE TURBINE A VAPORE SONO MACCHINE MOTRICI, INSERITE IN UN IMPIANTO BASATO SU UN CICLO TERMODINAMICO, DETTO CICLO RANKINE, COMPOSTO DA QUATTRO TRASFORMAZIONI
Indice. Prefazione alla terza edizione italiana...xi. Ringraziamenti dell Editore...XIII. Guida alla lettura...xiv
Prefazione alla terza edizione italiana...xi Ringraziamenti dell Editore...XIII Guida alla lettura...xiv 1 INTRODUZIONE E UNO SGUARDO D INSIEME...1 1.1 Introduzione alle scienze termiche...2 1.2 La termodinamica
UNIVERSITÀ DEGLI STUDI DI PISA. 6. Sistemi Motori a Gas. Roberto Lensi
Roberto Lensi 6. Sistemi Motori a Gas Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 6. Sistemi Motori a Gas Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2007-08 Roberto Lensi
UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Termici Motori Sistemi Motori a Gas. Roberto Lensi
Roberto Lensi 4. Sistemi Termici Motori 4.2. Sistemi Motori a Gas Pag. 1 di 21 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 4. Sistemi Termici Motori 4.2. Sistemi Motori a Gas Roberto Lensi DIPARTIMENTO
FISICA TECNICA N.O. prof.ssa Cinzia Buratti. (Corso di Laurea in Ingegneria Civile) (Corso di Laurea in Ingegneria per l'ambiente e il Territorio)
FISICA TECNICA N.O. prof.ssa Cinzia Buratti (Corso di Laurea in Ingegneria Civile) (Corso di Laurea in Ingegneria per l'ambiente e il Territorio) TESTI CONSIGLIATI: 1. M. Felli: Lezioni di Fisica Tecnica
UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Termici Motori Sistemi Motori a Vapore. Roberto Lensi
Roberto Lensi 4. Sistemi Termici Motori 4.1. Sistemi Motori a Vapore Pag. 1 di 24 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 4. Sistemi Termici Motori 4.1. Sistemi Motori a Vapore Roberto Lensi
UNIVERSITA' DEGLI STUDI DI TRIESTE
A.A. 2001/02 UNIVERSITA' DEGLI STUDI DI TRIESTE CORSO DI LAUREA PROGRAMMA DEL CORSO DI DOCENTE INGEGNERIA, MECCANICA, NAVALE, dei MATERIALI, ELETTRICA FISICA TECNICA Enrico NOBILE PARTE I: TERMODINAMICA
Cap. 1 Richiami di termodinamica. 1.1 Concetti base 1.2 Principio di conservazione dell energia. Cap. 2 Il bilancio exergetico
III Indice IX 1 1 2 3 5 6 7 9 11 12 12 13 13 Presentazione Cap. 1 Richiami di termodinamica 1.1 Concetti base 1.2 Principio di conservazione dell energia 1.2.1 Sistema con involucro chiuso allo scambio
UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Motori a Vapore. Roberto Lensi
Roberto Lensi 4. Sistemi Motori a Vapore Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 4. Sistemi Motori a Vapore Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2006-07 Roberto
Macchine termiche: ciclo di Carnot
Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un
Introduzione ai Motori a Combustione Interna
Università degli Studi di Modena e Reggio Emilia Corso di Laurea Triennale in Ingegneria Elettronica ed in Ingegneria Informatica A.A. 2008/2009 II Periodo di lezione Corso di: Dinamica e Controllo delle
Ciclo Rankine - Clausius
Ciclo Rankine - Clausius Si inizia considerando il ciclo di Rankine Clausius anche chiamato ciclo di Hirn semplice avente le seguenti caratteristiche: Temperatura ambiente 30 C Pressione massima 151 bar
FISICA TECNICA DOCENTI. Prof. Gianpiero Colangelo, Prof. Giuseppe Starace. Corsi di Laurea in cui è svolto. CdL in Ingegneria Industriale
DOCENTI Prof. Gianpiero Colangelo, Prof. Giuseppe Starace Corsi di Laurea in cui è svolto CdL in Ingegneria Industriale CdL in Ingegneria Civile Settore Scientifico Disciplinare ING-IND/10 Anno Periodo
FONDAMENTI TERMODINAMICI DELL ENERGETICA
G. Comini S. Savino FONDAMENTI TERMODINAMICI DELL ENERGETICA Gianni Comini - Stefano Savino FONDAMENTI TERMODINAMICI DELL ENERGETICA 30,00 IVA COMPRESA ISBN 978-88-89884-17-1 PADOVA PADOVA Prefazione Il
CAPITOLO 2 CICLO BRAYTON TURBINE A GAS
CAPITOLO 2 CICLO BRAYTON TURBINE A GAS 1 CICLO BRAYTON IL CICLO TERMODINAMICO BRAYTON E COMPOSTO DA QUATTRO TRASFORMAZIONI PRINCIPALI (COMPRESSIONE, RISCALDAMENTO, ESPANSIONE E RAFFREDDAMENTO), PIÙ ALTRE
Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna
Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna Ciclo termodinamico ideale Joule (Brayton) Ciclo termodinamico ideale Holzwarth Schema
Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica
Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio 1 Definizione di Gas Perfetto Un gas perfetto è un gas ideale il cui comportamento approssima quello dei gas reali a densità
Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl
SOLUZIONI problemi cap.9 9.1 (a) Assimiliamo l aria a un gas perfetto con calori specifici costanti a temperatura ambiente: Trasformazione 1-2: compressione isoentropica. Trasformazione 2-3: somministrazione
TERMODINAMICA E TERMOFLUIDODINAMICA
TERMODINAMICA E TERMOFLUIDODINAMICA Prof. Gianni Cesini Università Politecnica delle Marche Corso di Laurea in Ingegneria Biomedica G. Cesini Termodinamica e termofluidodinamica - Generalità sul corso
Algoritmo per la valutazione della legge di rilascio del calore a partire dal segnale di pressione Parte 1
Algoritmo per la valutazione della legge di rilascio del calore a partire dal segnale di pressione Parte 1 8.5.212 1. Ciclo (diagramma) indicato 2. Rilievo sperimentale del ciclo indicato 8.5.212 3. Definizione
Programma svolto a.s. 2015/2016. Materia: fisica
Programma svolto a.s. 2015/2016 Classe: 4A Docente: Daniela Fadda Materia: fisica Dettagli programma Cinematica e dinamica: moto circolare uniforme (ripasso); moto armonico (ripasso); moto parabolico (ripasso);
Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA
Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Prof. Matteo Intermite 1 5.1 LEGGE DEI GAS I gas sono delle sostanze che in determinate condizioni di
FISICA TECNICA E IMPIANTI
DIPARTIMENTO DI INGEGNERIA CIVILE E ARCHITETTURA (DICAR) Corso di laurea in Ingegneria civile e ambientale Anno accademico 2016/2017-3 anno FISICA TECNICA E IMPIANTI 9 CFU - 2 semestre Docente titolare
CICLO COMBINATO CON SPILLAMENTO IN TURBINA E RIGENERATORE DI TIPO CHIUSO
CICLO COMBINATO CON SPILLAMENTO IN TURBINA E RIGENERATORE DI TIPO CHIUSO 2J 3J 3J 1J sc 4J 2J 4J m m 1 2 4 3 1J 4 3 m 2 5 7 2 3 6 m m 1 2 m 2 5 m 1 3 6 1 7 m 1 CICLO COMBINATO CON SPILLAMENTO IN TURBINA
Impianti a turbogas. Scheda riassuntiva 8 capitolo 15. Il ciclo ideale di riferimento. Impianto a turbogas. Volume 2 (cap. 15) Impianti a turbogas
Scheda riassuntiva 8 capitolo 5 Impianti a turbogas Il ciclo ideale di riferimento È il ciclo Brayton-Joule ad aria, costituito da due adiabatiche isoentropiche e due scambi termici a pressione costante.
ŋ = 1-Tf / Tc ŋ = rendimento termodinamico, rapporto fra lavoro e calore speso Il motore stirling Principali caratteristiche
Il motore stirling Ideato da quasi 200 anni, è un motore potenzialmente ad elevatissima efficienza, utilizzato inizialmente come alternativa più affidabile delle macchine a vapore, così detto anche motore
UNIVERSITÀ DEGLI STUDI DI BRESCIA
UNIVERSITÀ DEGLI STUDI DI BRESCIA ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello D.M. 509/99 e D.M. 270/04 e Diploma Universitario) SEZIONE B - Seconda
CAPITOLO 4 CICLO FRIGORIFERO
CAPITOLO 4 CICLO FRIGORIFERO Cap. 4 1 CICLO FRIGORIFERO IL CICLO FRIGORIFERO SI UTILIZZA PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A TEMPERATURA PIU BASSA RISPETTO ALL AMBIENTE PER IL SECONDO PRINCIPIO
A.S. 2016/2017 PROGRAMMA SVOLTO E INDICAZIONI PER IL RECUPERO ESTIVO. Del prof. Gabriele Giovanardi (nome e cognome in stampatello) docente di Fisica
A.S. 2016/2017 PROGRAMMA SVOLTO E INDICAZIONI PER IL RECUPERO ESTIVO Del prof. Gabriele Giovanardi (nome e cognome in stampatello) docente di Fisica Classe 2E Informatica e Telecomunicazioni Moduli Modulo
RECUPERO MECCANICA E MACCHINE
I.T.T.L. Nautico San Giorgio - GENOVA Modulo 0 RECUPERO MECCANICA E MACCHINE Programma di riferimento classi IV A.S. 2013/2014 Introduzione, prerequisiti. 1. Unità di misura; analisi dimensionale. 2. Composizione
ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 51-56025 PONTEDERA (PI) DIPARTIMENTO: Discipline Meccaniche e Grafiche
PROGRAMMAZIONE COORDINATA TEMPORALMENTE Monte ore annuo 132 Libro di Testo MECCANICA, MACCHINE ED ENERGIA-BLU VOL.2 ANZALONE ED. HOEPLI SETTEMBRE Richiami sul calcolo delle reazioni vincolari. Diagrammi
Corso Termodinamica. Esercitazione 3. II Principio
Corso Termodinamica Esercitazione 3 II Principio 1. Una mole di metano fluisce in un condotto; la sua pressione passa da 1.5 a 0.5 atm a temperatura costante. Calcolare la variazione di entropia. 2. Calcolare
il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche.
16 Il ciclo di Stirling Il coefficiente di effetto utile per il ciclo frigorifero di Carnot è, in base alla (2.9): T min ɛ =. (2.31) T max T min Il ciclo di Carnot è il ciclo termodinamico che dà il maggior
FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale.
Serie 10: ermodinamica X FISICA II liceo Esercizio 1 Ciclo di Carnot Considera il ciclo di Carnot, in cui il fluido (=sistema) è considerato un gas ideale. Si considerano inoltre delle trasformazioni reversibili.
CICLI DI MOTORI A GAS
CAPIOLO 6 CICLI DI MOORI A GAS Appunti di ermodinamica Applicata esto modificato il /6/2 alle 4: Cicli di Motori a Gas Cicli ideali caratteristici di motori che utilizzano un gas come fluido operativo
MOTORE. Prof. Paolo Biondi Dip. GEMINI
MOTORE Prof. Paolo Biondi Dip. GEMINI I LEGGE DELLA TERMODINAMICA L energia dell universo è costante L energia non si crea e non si distrugge II legge della termodinamica o di degradazione dell energia
Corso di Termofluidodinamica
Corso di Termofluidodinamica Modulo di Termodinamica Tecnica A.A. 2014-2015 - Esercizi di preparazione alla prima prova intermedia Problema N. 1 Un serbatoio deve essere dimensionato per contenere 200
SECONDO PRINCIPIO DELLA TERMODINAMICA I DUE ENUNCIATI DEL SECONDO PRINCIPIO DELLA TERMODINAMICA
SECONDO PRINCIPIO DELLA TERMODINAMICA I DUE ENUNCIATI DEL SECONDO PRINCIPIO DELLA TERMODINAMICA Enunciato di Clausius: È impossibile realizzare una trasformazione il cui unico risultato sia quello di fare
Dipartimento di Fisica anno accademico 2015/16 Registro lezioni del docente RUI RINALDO
Dipartimento di Fisica anno accademico 2015/16 Registro lezioni del docente RUI RINALDO Attività didattica TERMODINAMICA E FLUIDODINAMICA [172SM] Periodo di svolgimento: Secondo Semestre Docente titolare
Motori e cicli termodinamici
Motori e cicli termodinamici 1. Motore a scoppio 2. Motore diesel 3. Frigoriferi 4. Centrali elettriche XVIII - 0 Trasformazioni Trasformazioni reversibili (quasistatiche): Ciascun passo della trasformazione
Motori Alternativi a Combustione Interna Generalità
Motori Alternativi a Combustione Interna Generalità Storicamente nascono dopo le macchine alternative a vapore (seconda metà del XIX secolo) ma hanno avuto larghissimo sviluppo e conseguente diffusione
Turbine a gas per applicazioni aeronautiche [1-14]
Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Aerospaziale Insegnamento di Propulsione Aerospaziale Anno accademico 2011/12 Capitolo 5 sezione b Turbine a gas per
QUINTO ANNO ITT Meccanica, Meccatronica e Energia
QUINTO ANNO ITT Meccanica, Meccatronica e Energia MATERIA: MECCANICA, MACCHINE ED ENERGIA CLASSE: QUINTA [ore 165(66)] INDIRIZZO: ITT Meccanica, Meccatronica e Energia PROGETTO DIDATTICO DELLA DISCIPLINA
L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura
Termodinamica 1. L equilibrio dei gas 2. L effetto della temperatura sui gas 3. La teoria cinetica dei gas 4. Lavoro e calore 5. Il rendimento delle macchine termiche 6. Il secondo principio della termodinamica
Impianti motore a vapore (IMV) Schemi di impianto, component e cicli termodinamici
FMRGroup @ DMA-URLS Impianti motore a vapore (IMV) Schemi di impianto, component e cicli termodinamici Alessandro Corsini Università di Roma La Sapienza e.mail: [email protected], [email protected]
Corso di Motori Aeronautici
Corso di Motori Aeronautici Mauro Valorani Laurea Magistrale in Ingegneria Aeronautica (MAER) Sapienza, Università di Roma Anno Accademico 2014-15 Informazioni sul Corso di Motori Aeronautici Inizio: 2
Formulario di Fisica Tecnica Matteo Guarnerio 1
Formulario di Fisica Tecnica Matteo Guarnerio 1 CONVENZIONI DI NOTAZIONE Calore scambiato da 1 a 2. Calore entrante o di sorgente. Calore uscente o ceduto al pozzo. CONVERSIONI UNITÀ DI MISURA PIÙ FREQUENTI
CAPITOLO 4 CICLO FRIGORIFERO
CAPITOLO 4 CICLO FRIGORIFERO Cap. 4 1 CICLO FRIGORIFERO IL CICLO FRIGORIFERO SI UTILIZZA PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A TEMPERATURA PIU BASSA RISPETTO ALL AMBIENTE PER IL SECONDO PRINCIPIO
CLASSE 4 BME [Stesura a.s. 2014-15]
PROGRAMMAZIONE COORDINATA TEMPORALMENTE CLASSE Monte ore annuo 165 Libro di Testo Meccanica, Macchine ed Energia vol.2 CAGLIERO Ed. ZANICHELLI SETTEMBRE Richiami sulle sollecitazioni semplici e composte.(ob.
FISICA TECNICA (Ingegneria Medica)
NOME N. MATRICOLA N. CREDITI E-MAIL Prova di esame del 11 Febbraio 2014 1. Sia dato un ciclo frigorifero, in cui il fluido evolvente è R134a, a cui in cascata è collegato un secondo ciclo il cui fluido
CORSO DI FISICA TECNICA
ESERCITAZIONE N. 1/02 MATERIALE DI RIFERIMENTO: VIDEOLEZIONI 1-6 1) VERO/FALSO Dire se le seguenti affermazioni sono vere o false: 1. Un sistema aperto consente scambi sia di massa che di energia con l
PIANO DI LAVORO DIPARTIMENTO MECCANICA
PIANO DI LAVORO DIPARTIMENTO MECCANICA Disciplina: Meccanica, macchine ed energia Classi 4 Sezioni M N O serale Anno scolastico 2016-2017 pag. 1 di 5 DISCIPLINA ORE LEZIONE SETTIMANALI 4 ORE TOTALI PREVISTE
Macchine termiche e frigoriferi
Macchine termiche e frigoriferi Una macchina termica grazie ad una sequenza di trasformazioni termodinamiche di una data sostanza, produce lavoro utilizzabile. Una macchina lavora su di un ciclo di trasformazioni
Il lavoro nelle macchine
Il lavoro nelle macchine Corso di Impiego industriale dell energia Ing. Gabriele Comodi I sistemi termodinamici CHIUSO: se attraverso il contorno non c è flusso di materia in entrata ed in uscita APERTO:
thermo frigo refrigeratori di liquidi ad assorbimento (libr) condensati ad acqua
thermo frigo refrigeratori di liquidi ad assorbimento (libr) condensati ad acqua 153 potenza frigorifera 134,0 4928,0 kw refrigerante soluzione di acqua e Bromuro di Litio (LiBr) sorgenti di calore acqua
Trasformazione di calore in lavoro: le macchine termiche
1 rasformazione di calore in lavoro: le macchine termiche Lo schema di una macchina termica Nello studio delle trasformazioni termodinamiche abbiamo visto che se forniamo calore a un gas contenuto in un
Cicli H2 O2 per la produzione di energia elettrica Modifica dell impianto Icaro per funzionamento con idrogeno
Cicli H2 O2 per la produzione di energia elettrica Modifica dell impianto Icaro per funzionamento con idrogeno Ing. Marino Avitabile, Ing. Paolo Fiorini Cicli ad idrogeno e ossigeno La realizzazione di
Termodinamica. secondo principio. ovvero. principio della impossibilità
ermodinamica secondo principio ovvero principio della impossibilità Il verso privilegiato delle trasformazioni di energia: non si crea energia dal nulla Il primo principio può essere enunciato sotto forma
Le pompe di calore: tipologie e caratterizzazione
Le pompe di calore: tipologie e caratterizzazione G.L. Morini Laboratorio di Termotecnica Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale Viale Risorgimento 2, 40136 Bologna
CORSO DI LAUREA TRIENNALE IN INGEGNERIA INDUSTRIALE PROGRAMMA DEL CORSO DI MACCHINE (BOZZA 22/9/2014) DOCENTE Diego Micheli a.a.
CORSO DI LAUREA TRIENNALE IN INGEGNERIA INDUSTRIALE PROGRAMMA DEL CORSO DI MACCHINE (BOZZA 22/9/2014) 3 anno DOCENTE Diego Micheli a.a. 2014/15 0. INTRODUZIONE AL CORSO, CLASSIFICAZIONE DELLE MACCHINE
FISICA. Termodinamica SECONDO PRINCIPIO DELLA TERMODINAMICA. Autore: prof. Pappalardo Vincenzo. docente di Matematica e Fisica
FISICA Termodinamica SECONDO PRINCIPIO DELLA TERMODINAMICA Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica IL VERSO PRIVILEGIATO DELLE TRASFORMAZIONI DI ENERGIA Il concetto fondamentale
PMS PMI CICLO DI UN MOTORE A QUATTRO TEMPI (CICOLO DI OTTO)
CICLO DI UN MOTORE A QUATTRO TEMPI (CICOLO DI OTTO Consideriamo, in modo approssimato, il ciclo termodinamico di un motore a quattro tempi. In figura è mostrato il cilindro entro cui scorre il pistone,
SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 9 luglio Proff. Consonni S., Chiesa P., Martelli E.
SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 9 luglio 2013 Proff. Consonni S., Chiesa P., Martelli E. Tempo a disposizione: 2 ore Avvertenze per lo svolgimento del tema d esame: 1)
6. Determinare il titolo del vapor d acqua che ad 8,00 bar ha un entalpia specifica di 2000 kj/kg.
ESERCIZI DI FISICA TECNICA TERMODINAMICA APPLICATA Termodinamica degli stati 1. Utilizzando il piano pt e le tabelle A.3 del vapor d acqua saturo, si dica quali sono le fasi presenti nei sistemi costituiti
PRIMO PRINCIPIO DELLA TERMODINAMICA SISTEMA
SISTEMA In termodinamica si intende per sistema una qualsiasi porzione della realtà fisica che viene posta come oggetto di studio Possono essere sistemi: una cellula il cilindro di un motore una cella
Le prestazioni dei cicli combinati
Le prestazioni dei cicli combinati A conclusione dell analisi dei possibili assetti dei cicli combinati, si sintetizzano i fattori che maggiormente ne influenzano le prestazioni: dal lato turbogas, è importante
Università degli Studi di Pavia Facoltà di Medicina e Chirurgia
Università degli Studi di Pavia Facoltà di Medicina e Chirurgia CORSO DI LAUREA TRIENNALE CLASSE DELLLE LAUREE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE CLASSE 2 Corso Integrato di Fisica, Statistica,
9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI
9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I processi termodinamici che vengono realizzati nella pratica devono consentire la realizzazione di uno scambio di energia termica o di energia
Esercitazione 2 Ciclo a vapore a recupero
Esercitazione 2 Ciclo a vapore a recupero Lo scopo di questa esercitazione è la progettazione di un ciclo a recupero: l impianto è composto da un ciclo a vapore ad un livello di pressione che utilizza
Dispensa del corso di SISTEMI ENERGETICI. Argomento: Sistemi Energetici (parte 3.3) Prof. Pier Ruggero Spina Dipartimento di Ingegneria
Dispensa del corso di SISTEMI ENERGETICI Argomento: Sistemi Energetici (parte 3.3) Prof. Pier Ruggero Spina Dipartimento di Ingegneria La trigenerazione: motivazioni e tecnologie 2 Picchi di richiesta
Conversione dell energia - Terminologia
Conversione dell energia - Terminologia Macchina: Sistema energetico costituito da organi meccanici e impianti ausiliari opportunamente collegati con lo scopo di operare delle conversioni energetiche;
Esercitazione 4 Cicli a vapore avanzati
Esercitazione 4 Cicli a vapore avanzati Questa esercitazione prevede il confronto di 5 diverse configurazioni relative ad un ciclo a vapore USC. Per effettuare i calcoli è stato utilizzato il programma
TURBO ENGINE HYBRID ELECTRIC POWER SYSTEM FOR AUTOMOTIVE APPLICATION Angelo Leto. Italian Aerospace Research Centre (CIRA)
TURBO ENGINE HYBRID ELECTRIC POWER SYSTEM FOR AUTOMOTIVE APPLICATION Angelo Leto Italian Aerospace Research Centre (CIRA) SCHEMA DI FUNZIONAMENTO DI UN SISTEMA TURBOGAS PER GENERAZIONE DI POTENZA Il fluido
Modulo 0.3: Richiami di componentistica. Scaricatori di condensa
Corso di Impianti Meccanici Laurea Triennale e Magistrale Modulo 0.3: Richiami di componentistica Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini Department of Industrial Engineering
PDF Compressor Pro. La termodinamica. Prof Giovanni Ianne
La termodinamica Prof Giovanni Ianne Atomi e molecole La molecola è il «grano» più piccolo da cui è costituita una sostanza. A ogni atomo corrisponde un elemento semplice, non ulteriormente scomponibile
murelle revolution la caldaia in classe a++
murelle revolution la caldaia in classe a++ UNO SGUARDO AL FUTURO Sempre più frequentemente gli impianti per il comfort ambientale si compongono di caldaie e di macchine a ciclo frigorifero inverso. La
Kelvin K T [K] = T [ C] + 273,16. Fahrenheit F T [ F] = 1,8 T [ C] Atmosfera atm = Pa = 760 mm Hg
LE UNITA DI MISURA Temperatura Pressione Energia Potenza Costanti Celsius C Kelvin K T [K] = T [ C] + 273,16 Fahrenheit F T [ F] = 1,8 T [ C] + 32 Pascal Pa = Kg/(m s 2 ) Atmosfera atm = 101325 Pa = 760
Studio ed ottimizzazione per la trasformazione di un motore aeronautico aspirato in sovralimentato
Studio ed ottimizzazione per la trasformazione di un motore aeronautico aspirato in sovralimentato CANDIDATO: Francesco Giacometti RELATORE: Prof. Ing. Luca Piancastelli CORRELATORI: Prof. Ing. Gian Marco
Ciclo Otto (Motore a Benzina)
Ciclo Otto (Motore a Benzina) Cicli Termodinamici - 1 p 3 p 2 > O 2 3 Trasformazione Adiabatica Dati Generali m, p 1, V 1, V 1 /V 2, T 1, T 3 m RT1 1 L 2 = ( V2 / V1 ) 1 k ( ) 2 3 = m cv T3 T2 > 0 m RT3
REFORMING dei COMBUSTIBILI
MODELLAZIONE e SIMULAZIONE dei SISTEMI ENERGETICI REFORMING dei COMBUSTIBILI Ing. Vittorio Tola DIMCM - Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali PRODUZIONE di IDROGENO Negli ultimi
Corso di Laurea in Ing. Gestionale ESERCIZI DI TERMODINAMICA PER IL CORSO DI FISICA TECNICA
Corso di laurea in Ingegneria Gestionale Aggiornato a ottobre 2016 Corso di Laurea in Ing. Gestionale ESERCIZI DI TERMODINAMICA PER IL CORSO DI FISICA TECNICA 1. TERMODINAMICA DEGLI STATI 2. SISTEMI CHIUSI
Dispensa del corso di SISTEMI ENERGETICI. Argomento: Sistemi Energetici (parte 1)
Dispensa del corso di SISTEMI ENERGETICI Argomento: Sistemi Energetici (parte 1) Prof. Pier Ruggero Spina Dipartimento di Ingegneria Sommario Forme di energia e loro conversione Introduzione: diagrammi
Messa a punto di un sistema di acquisizione dati per la valutazione delle prestazioni di una macchina ad assorbimento
UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Ingegneria Corso di Laurea in Ingegneria Energetica Sede di Terni Anno Accademico 2008-2009 Relazione finale Messa a punto di un sistema di acquisizione dati
