Algoritmi e Strutture Dati

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi e Strutture Dati"

Transcript

1 Algoritmi e Strutture Dati Capitolo 12 Grafi e visite di grafi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano

2 Definizione Un grafo G=(V,E) consiste in: - un insieme V di vertici (o nodi) - un insieme E di coppie di vertici, detti archi o spigoli: ogni arco connette due vertici Esempio 1: V={persone che vivono in Italia}, E={coppie di persone che si sono strette la mano} Esempio 2: V={persone che vivono in Italia}, E={(x,y) tale che x ha inviato una mail a y} 2

3 Terminologia (1/2) Esempio 1: relazione simmetrica grafo non orientato Esempio 2: relazione non simmetrica grafo orientato n = numero di vertici m = numero di spigoli L ed I sono adiacenti (L,I) è incidente a L I ha grado 4: δ(i)=4 δ(v)=2m v V 3

4 Terminologia (2/2) < L, I, E, C, B, A > è un cammino nel grafo di lunghezza 5 Non è il più corto cammino tra L ed A La lunghezza del più corto cammino tra due vertici si dice distanza: L ed A hanno distanza 4 4

5 Strutture dati per rappresentare grafi 5

6 Grafi non orientati 6

7 Grafi orientati 7

8 Prestazioni della lista di archi 8

9 Prestazioni delle liste di adiacenza 9

10 Prestazioni della matrice di adiacenza 10

11 Visite di grafi 11

12 Scopo e tipi di visita Una visita (o attraversamento) di un grafo G permette di esaminare i nodi e gli archi di G in modo sistematico Problema di base in molte applicazioni Esistono vari tipi di visite con diverse proprietà: in particolare, visita in ampiezza (BFS=breadth first search) e visita in profondità (DFS=depth first search) 12

13 Algoritmo di visita generica 13

14 Osservazioni Un vertice viene marcato quando viene incontrato per la prima volta: la marcatura può essere mantenuta tramite un vettore di bit di marcatura La visita genera un albero di copertura T del grafo L insieme di vertici F T mantiene la frangia di T: v T-F: v è chiuso, tutti gli archi incidenti su v sono stati esaminati v F: v è aperto, esistono archi incidenti su v non ancora esaminati 14

15 Costo della visita Il tempo di esecuzione dipende dalla struttura dati usata per rappresentare il grafo: Lista di archi: O(mn) Liste di adiacenza: O(m+n) Matrice di adiacenza: O(n 2 ) 15

16 Visite particolari Se la frangia F è implementata come coda si ha la visita in ampiezza (BFS) Se la frangia F è implementata come pila si ha la visita in profondità (DFS) 16

17 Visita in ampiezza 17

18 Visita in ampiezza 18

19 Esempio: grafo non orientato (1/2) 19

20 Esempio: grafo non orientato (2/2) 20

21 Esempio: grafo orientato 21

22 Proprietà Per ogni nodo v, il livello di v nell albero BFS è pari alla distanza di v dalla sorgente s Per ogni arco (u,v) di un grafo non orientato, gli estremi u e v appartengono allo stesso livello o a livelli consecutivi dell albero BFS Se il grafo è orientato, possono esistere archi (u,v) che attraversano all indietro più di un livello 22

23 Visita in profondità 23

24 Visita in profondità 24

25 Esempio: grafo non orientato (1/2) 25

26 Esempio: grafo non orientato (2/2) 26

27 Esempio: grafo orientato (1/2) 27

28 Esempio: grafo orientato (2/2) 28

29 Proprietà Sia (u,v) un arco di un grafo non orientato. Allora: (u,v) è un arco dell albero DFS, oppure i nodi u e v sono l uno discendente/antenato dell altro Sia (u,v) un arco di un grafo orientato. Allora: (u,v) è un arco dell albero DFS, oppure i nodi u e v sono l uno discendente/antenato dell altro, oppure (u,v) è un arco trasversale a sinistra, ovvero il vertice v è in un sottoalbero visitato precedentemente ad u 29

30 Riepilogo Concetto di grafo e terminologia Diverse strutture dati per rappresentare grafi nella memoria di un calcolatore L utilizzo di una particolare rappresentazione può avere un impatto notevole sui tempi di esecuzione di un algoritmo su grafi (ad esempio, nella visita di un grafo) Algoritmo di visita generica e due casi particolari: visita in ampiezza e visita in profondità 30

Grafi: visite. Una breve presentazione. F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Grafi: visite. Una breve presentazione. F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill) Grafi: visite Una breve presentazione Visite di grafi Scopo e tipi di visita Una visita (o attraversamento) di un grafo G permette di esaminare i nodi e gli archi di G in modo sistematico Problema di base

Dettagli

Strutture dati per rappresentare grafi

Strutture dati per rappresentare grafi lgoritmi e strutture dati amil emetrescu, Irene inocchi, iuseppe. Italiano Strutture dati per rappresentare grafi opyright 2004 - The Mcraw - Hill ompanies, srl lgoritmi e strutture dati amil emetrescu,

Dettagli

Algoritmi e Strutture Dati. Capitolo 11 Visite di grafi

Algoritmi e Strutture Dati. Capitolo 11 Visite di grafi lgoritmi e Strutture ati apitolo Visite di grafi Strutture dati per rappresentare grafi rafi non diretti Quanto spazio? a b c d a b c d a 0 a b d c b 0 0 b c a c 0 c a d b d 0 0 d c a Matrice di adiacenza

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Introduzione ai grafi Grafi: Definizione e Algoritmi di visita Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2007/08 Introduzione ai

Dettagli

Grafi: definizioni e visite

Grafi: definizioni e visite Grafi: definizioni e visite Grafi (non orientati) Grafo (non orientato): G = (V, E) V = nodi (o vertici) E = archi fra coppie di nodi distinti. Modella relazioni fra coppie di oggetti. Parametri della

Dettagli

Esempi. non. orientato. orientato

Esempi. non. orientato. orientato Definizione! Un grafo G = (V,E) è costituito da un insieme di vertici V ed un insieme di archi E ciascuno dei quali connette due vertici in V detti estremi dell arco.! Un grafo è orientato quando vi è

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Algoritmi e Strutture Dati Capitolo 2 Minimo albero ricoprente: Algoritmo di Prim Il problema del calcolo di un Minimum

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani ([email protected])

Dettagli

Terzo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale

Terzo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale Terzo allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini [email protected] - [email protected] 22 marzo 2016 Programma 1. Lettura di un problema tratto dalle

Dettagli

Quarto allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale

Quarto allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale Quarto allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini [email protected] - [email protected] 30 marzo 2017 Programma 1. Lettura e analisi di un problema 2.

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G é costituito da una coppia di insiemi (V,A) dove V é detto insieme dei nodi e A é detto insieme di archi ed é un sottinsieme di tutte

Dettagli

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità Visite Grafi Sommario Rappresentazione dei grafi Visita in ampiezza Visita in profondità Ordinamento topologico Visita in ampiezza La visita in ampiezza breadth-first-search (BFS) di un grafo dato un vertice

Dettagli

Grafi (orientati): cammini minimi

Grafi (orientati): cammini minimi Grafi (orientati): cammini minimi Una breve presentazione Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Un cammino minimo tra

Dettagli

Visite in Grafi BFS e DFS

Visite in Grafi BFS e DFS Visite in Grafi BFS e DFS Visita di un Grafo Obiettivo: Visitare una sola volta tutti i nodi del grafo. Es.: visitare un porzione del grafo del Web Difficoltà: Presenza di cicli: Marcare i nodi visitati

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Il concetto di dato Il concetto di tipo di dato Insertion Sort for j 2 to lenght[a]

Dettagli

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati Algoritmi e Strutture Dati Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Cammini minimi Un cammino minimo tra una coppia di

Dettagli

Grafi pesati Minimo albero ricoprente

Grafi pesati Minimo albero ricoprente Algoritmi e Strutture Dati Definizioni Grafi pesati Minimo albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un albero; T contiene

Dettagli

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi!

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! G R A F I 1 GRAFI Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! 2 cip: cip: Pallogrammi Pallogrammi GRAFI: cosa sono I grafi sono una struttura matematica fondamentale: servono

Dettagli

Cammini minimi in grafi:

Cammini minimi in grafi: Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio III: la fine della trilogia Input: nelle puntate

Dettagli

Dati e Algoritmi 1: A. Pietracaprina. Grafi (II parte)

Dati e Algoritmi 1: A. Pietracaprina. Grafi (II parte) Dati e Algoritmi 1: A. Pietracaprina Grafi (II parte) 1 Breath-First Search (algoritmo iterativo) Si assume una rappresentazione tramite liste di adiacenza. L ordine con cui si visitano i vicini di un

Dettagli

Algoritmi e Strutture Dati Grafi. Daniele Loiacono

Algoritmi e Strutture Dati Grafi. Daniele Loiacono lgoritmi e Strutture ati Grafi Riferimenti 2 Questo materiale è tratto dalle trasparenze del corso lgoritmi e Strutture ati del prof. lberto Montresor dell Università di Trento. (http://www.dit.unitn.it/~montreso/asd/index.shtml)

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 13 Cammini minimi: Algoritmo di Dijkstra (*) (ACM in grafi diretti e non diretti senza archi di peso negativo) Punto della situazione Algoritmo basato sull ordinamento

Dettagli

Grafi. V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)}

Grafi. V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)} Grafi Grafo orientato (o diretto) = (V,E) V = nodi o vertici - E = archi (edges) V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)} archi uscenti da un nodo x: (x, y) archi incidenti su un nodo

Dettagli

Grafi: ordinamento topologico

Grafi: ordinamento topologico .. Grafi: ordinamento topologico Che cosa e e come si calcola Che cosa e un ordinamento topologico F. Damiani - Alg. & Lab. 04/05 Una definizione di ordinamento topologico Definizione. Funzione σ: V {1,

Dettagli

Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla

Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla Camil Demetrescu Irene Finocchi Giuseppe F. Italiano Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla Indice 1 Un introduzione informale agli algoritmi 1 2 Modelli di calcolo e metodologie di

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA

UNIVERSITA DEGLI STUDI DI PERUGIA UNIVERSITA DEGLI STUDI DI PERUGIA REGISTRO DELLE LEZIONI E DELLE ALTRE ATTIVITÀ DIDATTICHE Anno accademico 2006-2007 Dott./Prof. Pinotti Maria Cristina Settore scientifico-disciplinare INF01 Facoltà Scienze

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Cammini minimi Definizioni Sia G = (V,E) un grafo orientato pesato sugli archi. Il costo di un cammino π = è dato da: Un cammino minimo tra una coppia di

Dettagli

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici);

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici); Algoritmi e Strutture di Dati II 2 Grafi diretti Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove V è u n i n s i e m e d i nodi (o vertici); E µ V V è u n i n s i e m e d i archi. Denotiamo

Dettagli

Grafi: visita generica

Grafi: visita generica .. Grafi: visita generica Una presentazione alternativa (con ulteriori dettagli) Algoritmi di visita Scopo: visitare tutti i vertici di un grafo (si osservi che per poter visitare un vertice occorre prima

Dettagli

Problema del cammino minimo

Problema del cammino minimo Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento

Dettagli

Graf. Progettazione di Algoritmi a.a Matricole congrue a 1. Docente: Annalisa De Bonis

Graf. Progettazione di Algoritmi a.a Matricole congrue a 1. Docente: Annalisa De Bonis Graf Progettazione di Algoritmi a.a. 2016-17 Matricole congrue a 1 Docente: Annalisa De Bonis 1 Grafi non direzionati Grafi non direzionati. G = (V, E) V = insieme nodi. E = insieme archi. Esprime le relazioni

Dettagli

Progettazione di algoritmi

Progettazione di algoritmi Progettazione di algoritmi Discussione dell'esercizio [vincoli] Prima di tutto rappresentiamo il problema con un grafo G: i nodi sono le n lavorazioni L 1, L 2,, L n, e tra due nodi L h, L k c'è un arco

Dettagli

GRAFI. fig.1 - GRAFI (1) Si avvisa il lettore che certe definizioni che verranno date differiscono da quelle presenti in letteratura.

GRAFI. fig.1 - GRAFI (1) Si avvisa il lettore che certe definizioni che verranno date differiscono da quelle presenti in letteratura. GRAFI 1. Definizioni, terminologia, esempi e applicazioni (1) Un grafo orientato (o diretto o di-grafo) G è una coppia (V,E) dove V è un insieme non vuoto ed E una relazione binaria su V, E V V, ossia

Dettagli

Grafi, Social Network e Ricerca su Web Prof. Maurizio Naldi

Grafi, Social Network e Ricerca su Web Prof. Maurizio Naldi Grafi, Social Network e Ricerca su Web Prof. Maurizio Naldi Teoria dei Grafi È uno strumento indispensabile per l analisi di reti e, quindi, di social network.... è fondamentale anche per capire come funziona

Dettagli

Dati e Algoritmi I (Pietracaprina) Esercizi svolti sui Grafi

Dati e Algoritmi I (Pietracaprina) Esercizi svolti sui Grafi Dati e Algoritmi I (Pietracaprina) Esercizi svolti sui Grafi Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1 (Esercizio C-14.34 del testo [GTG14]) Sia G = (V, E) un grafo non diretto con n =

Dettagli

Alberi ed Alberi Binari

Alberi ed Alberi Binari Alberi ed Alberi Binari Il tipo di dato Albero Un albero è una struttura di data organizzata gerarchicamente. È costituito da un insieme di nodi collegati tra di loro: ogni nodo contiene dell informazione,

Dettagli

Esercizi proposti 10

Esercizi proposti 10 Esercizi proposti 10 In questo gruppo di esercizi assumiamo, dove non sia specificato diversamente, di rappresentare i grafi mediante liste di archi, con il tipo di dati così dichiarato: type a graph =

Dettagli

Alberi e alberi binari I Un albero è un caso particolare di grafo

Alberi e alberi binari I Un albero è un caso particolare di grafo Alberi e alberi binari Un albero è un caso particolare di grafo È costituito da un insieme di nodi collegati tra di loro mediante archi Gli archi sono orientati (ogni arco esce da un nodo origine ed entra

Dettagli

Dispense per i corsi di Informatica generale Corso di laurea in Matematica e. Introduzione agli Algoritmi Corso di laurea in Informatica

Dispense per i corsi di Informatica generale Corso di laurea in Matematica e. Introduzione agli Algoritmi Corso di laurea in Informatica Dispense per i corsi di Informatica generale Corso di laurea in Matematica e Introduzione agli Algoritmi Corso di laurea in Informatica Prof. Tiziana Calamoneri Prof. Giancarlo Bongiovanni Questi appunti

Dettagli

Problema dell albero di cammini minimi (SPT, Shortest Path Tree) o problema dei cammini minimi :

Problema dell albero di cammini minimi (SPT, Shortest Path Tree) o problema dei cammini minimi : Per almeno una delle soluzioni ottime { P i, i r } del problema generalizzato, l unione dei cammini P i forma un albero di copertura per G radicato in r e orientato, ossia un albero la cui radice è r i

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

Alberi n-ari: specifiche sintattiche e semantiche. Realizzazioni. Visita di alberi n-ari.

Alberi n-ari: specifiche sintattiche e semantiche. Realizzazioni. Visita di alberi n-ari. Alberi n-ari: specifiche sintattiche e semantiche. Realizzazioni. Visita di alberi n-ari. Algoritmi e Strutture Dati + Lab A.A. / Informatica Università degli Studi di Bari Aldo Moro Nicola Di Mauro ALBERO

Dettagli

Alberi binari e alberi binari di ricerca

Alberi binari e alberi binari di ricerca Alberi binari e alberi binari di ricerca Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica

Dettagli

ALGORITMI CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15

ALGORITMI CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15 ANNO ACCADEMICO 2014/15 1 a prova in itinere 13 gennaio 2015 ESERCIZIO 1 Si risolva l equazione di ricorrenza al variare del parametro reale a>1. T (n) = 27 n a T + n 2 log n a ESERCIZIO 2 Si ordinino

Dettagli

Fondamenti di informatica

Fondamenti di informatica Fondamenti di informatica 30 novembre 2017 This book is the result of a collaborative effort of a community of people like you, who believe that knowledge only grows if shared. We are waiting for you!

Dettagli

Macchine sequenziali. Automa a Stati Finiti (ASF)

Macchine sequenziali. Automa a Stati Finiti (ASF) Corso di Calcolatori Elettronici I Macchine sequenziali Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione Corso

Dettagli

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Esercizi di ottimizzazione combinatoria

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Esercizi di ottimizzazione combinatoria Claudio Arbib Universitàdi L Aquila Ricerca Operativa Esercizi di ottimizzazione combinatoria 00-006 Grafi 9 Esercizio. Un grafo simmetrico G = (V, E) si dice cubico se tutti i suoi vertici hanno grado

Dettagli

Cammini Minimi. Algoritmo di Dijkstra

Cammini Minimi. Algoritmo di Dijkstra Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore

Dettagli

Algoritmi e Strutture Dati. Alberi

Algoritmi e Strutture Dati. Alberi Algoritmi e Strutture Dati Alberi Alberto Montresor Università di Trento 2017/10/19 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Sommario 1 Introduzione

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Algoritmo basato su cancellazione di cicli

Algoritmo basato su cancellazione di cicli Algoritmo basato su cancellazione di cicli Dato un flusso ammissibile iniziale, si costruisce una sequenza di flussi ammissibili di costo decrescente. Ciascun flusso è ottenuto dal precedente flusso ammissibile

Dettagli

Algoritmi e Strutture Dati (Modulo II)

Algoritmi e Strutture Dati (Modulo II) Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Algoritmi e Strutture Dati (Modulo II) Luciano Gualà [email protected] http://www.mat.uniroma2.it/~guala/ Algoritmi

Dettagli

Automa a Stati Finiti (ASF)

Automa a Stati Finiti (ASF) Automa a Stati Finiti (ASF) E una prima astrazione di macchina dotata di memoria che esegue algoritmi Introduce il concetto fondamentale di STATO che informalmente può essere definito come una particolare

Dettagli

Introduzione. Il routing permette la comunicazione tra due nodi differenti anche se non sono collegati direttamente

Introduzione. Il routing permette la comunicazione tra due nodi differenti anche se non sono collegati direttamente Routing Introduzione Il livello 3 della pila ethernet ha il compito di muovere i pacchetti dalla sorgente attraversando più sistemi Il livello di network deve quindi: Scegliere di volta in volta il cammino

Dettagli

Depth-first search. Visita in profondità di un grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico

Depth-first search. Visita in profondità di un grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico Depth-first search Visita in profondità di n grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico Depth-first search Dato n grafo G=(V,E) e n specifico ertice s chiamato

Dettagli

Minimo albero di copertura

Minimo albero di copertura apitolo 0 Minimo albero di copertura efinizione 0.. ato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottoinsieme T E tale che il sottografo (V, T ) è un albero libero.

Dettagli

Alberto Montresor Università di Trento

Alberto Montresor Università di Trento !! Algoritmi e Strutture Dati! Capitolo 5 - Alberi!!! Alberto Montresor Università di Trento!! This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy

Dettagli

«Sciente e Tecnologie dei Beni Culturali»

«Sciente e Tecnologie dei Beni Culturali» 5 Informatica CdS in «Sciente e Tecnologie dei Beni Culturali» AA 2014-2015 Mini-sito dell insegnamento: http://www.unife.it/scienze/beni.culturali/insegnamenti/informatica Prof. Giorgio Poletti [email protected]

Dettagli

Algoritmi distribuiti su reti sincrone. Introduzione alle reti sincrone

Algoritmi distribuiti su reti sincrone. Introduzione alle reti sincrone Lucia Pallottino. Sistemi Robotici Distribuiti - Versione del 18 Aprile 2012 194 Algoritmi distribuiti su reti sincrone Per questo capitolo si può fare riferimento al libro Distributed Algorithms di Nancy

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

L algoritmo di Dijkstra

L algoritmo di Dijkstra L algoritmo di Dijkstra Sebastiano Vigna March 2, 200 Introduzione Supponiamo di assegnare a ciascuno degli archi a di un grafo orientato G un certo peso intero e positivo p a. Ai cammini (orientati) nel

Dettagli

Ingegneria degli Algoritmi (II parte pratica)

Ingegneria degli Algoritmi (II parte pratica) Ingegneria degli Algoritmi (II parte pratica) Correzione prova pratica Ing. Domenico Spera [email protected] Premessa Sono stati richiesti i seguenti task: Implementare la versione in-order

Dettagli

Claudio Arbib Università di L Aquila. Ricerca Operativa. Reti di flusso

Claudio Arbib Università di L Aquila. Ricerca Operativa. Reti di flusso Claudio Arbib Università di L Aquila Ricerca Operativa Reti di flusso Sommario Definizioni di base Flusso di un campo vettoriale Divergenza Integrale di Gauss-Greene Flusso in una rete Sorgenti, pozzi

Dettagli

Espressioni aritmetiche

Espressioni aritmetiche Espressioni aritmetiche Consideriamo espressioni costruite a partire da variabili e costanti intere mediante applicazione delle operazioni di somma, sottrazione, prodotto e divisione (intera). Ad esempio:

Dettagli

COMPLEMENTI DI SHORTEST-PATH. ASD Fabrizio d'amore

COMPLEMENTI DI SHORTEST-PATH. ASD Fabrizio d'amore COMPLEMENTI DI SHORTEST-PATH ASD 2016-17 Fabrizio d'amore problemi di shortest-path (SP) grafo di riferimento G=(V,E) semplice/orientato pesato pesi non negativi pesi arbitrari, ma no cicli a peso negativo

Dettagli

E facile vedere che il massimo numero di archi è n(n - 1)/2. Nel caso in cui m = O(n) diremo che il grafo è sparso. V={1,2,3,4,5}

E facile vedere che il massimo numero di archi è n(n - 1)/2. Nel caso in cui m = O(n) diremo che il grafo è sparso. V={1,2,3,4,5} 9) Grafi Pag 152 In questo capitolo vengono illustrati i grafi, importantissime strutture discrete che da un lato esibiscono proprietà di grande interesse per la matematica (in particolare per la teoria

Dettagli

Note per la Lezione 4 Ugo Vaccaro

Note per la Lezione 4 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 2016 2017 Note per la Lezione 4 Ugo Vaccaro Ripasso di nozioni su Alberi Ricordiamo che gli alberi rappresentano una generalizzazione delle liste, nel senso che

Dettagli

Alberi. Alberi: definizioni. Alberi Binari. Esercizi su alberi binari: metodi ricorsivi. Struttura dati per alberi generici. ASD-L - Luca Tesei

Alberi. Alberi: definizioni. Alberi Binari. Esercizi su alberi binari: metodi ricorsivi. Struttura dati per alberi generici. ASD-L - Luca Tesei Alberi Alberi: definizioni Alberi Binari Esercizi su alberi binari: metodi ricorsivi Struttura dati per alberi generici 1 Alberi Gli alberi sono strutture dati naturalmente ricorsive Un albero è un particolare

Dettagli

Capitolo 5. Algoritmi di ricerca su grafo. 5.1 Algoritmi di ricerca su grafo

Capitolo 5. Algoritmi di ricerca su grafo. 5.1 Algoritmi di ricerca su grafo Capitolo 5 Algoritmi di ricerca su grafo Gli algoritmi di ricerca su grafo, oggetto dei prossimi paragrafi, rappresentano tecniche fondamentali per determinare nodi che soddisfino particolari proprietà

Dettagli

La teoria dei grafi permette di esprimere in modo sistematico le LKT e LKC con i metodi della

La teoria dei grafi permette di esprimere in modo sistematico le LKT e LKC con i metodi della Grafi La teoria dei grafi permette di esprimere in modo sistematico le LKT e LKC con i metodi della topologia combinatoria. Definizione intuitiva di grafo: Un Grafo è un insieme di nodi (rappresentabili

Dettagli

Strutture dati e loro organizzazione. Gabriella Trucco

Strutture dati e loro organizzazione. Gabriella Trucco Strutture dati e loro organizzazione Gabriella Trucco Introduzione I linguaggi di programmazione di alto livello consentono di far riferimento a posizioni nella memoria principale tramite nomi descrittivi

Dettagli

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 . Cammini ottimi E. Amaldi Fondamenti di R.O. Politecnico di Milano .. Cammini minimi e algoritmo di Dijkstra Dato un grafo orientato G = (N, A) con una funzione di costo c : A c ij R e due nodi s e t,

Dettagli

Cammini minimi fra tutte le coppie

Cammini minimi fra tutte le coppie Capitolo 12 Cammini minimi fra tutte le coppie Consideriamo il problema dei cammini minimi fra tutte le coppie in un grafo G = (V, E, w) orientato, pesato, dove possono essere presenti archi (ma non cicli)

Dettagli

1) Codici convoluzionali. 2) Circuito codificatore. 3) Diagramma a stati e a traliccio. 4) Distanza libera. 5) Algoritmo di Viterbi

1) Codici convoluzionali. 2) Circuito codificatore. 3) Diagramma a stati e a traliccio. 4) Distanza libera. 5) Algoritmo di Viterbi Argomenti della Lezione 1) Codici convoluzionali 2) Circuito codificatore 3) Diagramma a stati e a traliccio 4) Distanza libera 5) Algoritmo di Viterbi 1 Codici convoluzionali I codici convoluzionali sono

Dettagli

Laboratorio di Python

Laboratorio di Python Laboratorio di Python Alberi binari Lab15 12 Maggio 2017 Outline Correzione esercizi per oggi Alberi binari Teoria Esercizi Esercizi per casa Saluti Esercizio 1 per casa Scrivere una funzione palindroma(s)

Dettagli

Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III

Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III Applicazioni di DFS Due prolemi: calcolare l ordinamento topologico indotto da un grafo aciclico.

Dettagli

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona e e Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario e ed implementazione in Java Visita di un grafo e e Concetti di base Struttura

Dettagli