Grafi: ordinamento topologico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Grafi: ordinamento topologico"

Transcript

1 .. Grafi: ordinamento topologico Che cosa e e come si calcola

2 Che cosa e un ordinamento topologico F. Damiani - Alg. & Lab. 04/05

3 Una definizione di ordinamento topologico Definizione. Funzione σ: V {1, n} tale che σ(u)< σ(v) se esiste un cammino da u a v in G Proprietà. Esiste se e solo se G è aciclico F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

4 Un altra definizione di ordinamento topologico (equivalente alla precedente) Proprietà. Dato un grafo orientato aciclico ( dag ), è sempre possibile ordinare i suoi vertici in modo che, per ogni arco <u, v> del grafo, u preceda v nell ordinamento. Definizione. Un ordinamento topologico di un dag è un ordinamento lineare dei suoi vertici che soddisfa la condizione precedente, cioè, per ogni arco <u, v> del grafo, u precede v nell ordinamento.

5 Un algoritmo per il calcolo di un ordinamento topologico F. Damiani - Alg. & Lab. 04/05

6 Un algoritmo per il calcolo di un ordinamento topologico Tempo di esecuzione: O(n+m)? F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

7 Un altro algoritmo per il calcolo di un ordinamento topologico F. Damiani - Alg. & Lab. 04/05

8 Esempio (1/2) Dato il grafo: A C F E B L ordinamento: F C E D A B D È un ordinamento topologico Infatti disegnando gli archi del grafo essi risultano tutti orientati nella stessa direzione (da sinistra verso destra): F C E D A B

9 Esempio (2/2) A C F E B D Ma non è l unico, anche i seguenti sono ordinamenti topologici A B C F D E C D A F E B

10 Riprendiamo l esempio (1/5) E possibile usare una visita del grafo per scoprire un suo ordinamento topologico? Visitando il grafo in profondità considerando i vertici in ordine alfabetico: A B C D E F Si ottengono i seguenti tempi di inizio e fine visita: 1/4 2/3 A B 5/10 C F 11/12 E 8/9 6/7 D

11 Riprendiamo l esempio (2/5) Riportiamo i tempi sui vertici nel primo ordinamento preso in esame F C E D A B 11/12 5/10 8/9 6/7 1/4 2/3 Anche per gli altri due ordinamenti si possono trovare degli ordini, in cui considerare i vertici per effettuare una visita in profondità, che permettono di intuire quale informazione ottenuta con la visita stessa è utile per scoprire un ordinamento topologico.

12 Riprendiamo l esempio (3/5) Per il secondo ordinamento, se visitiamo i vertici nell ordine: E D F C A B, si ottiene: 9/12 10/11 A B 7/8 C F 5/6 E 1/2 3/4 D A B C F D E 9/12 10/11 7/8 5/6 3/4 1/2

13 Riprendiamo l esempio (4/5) Ed infine, visitando i vertici nell ordine B E F A C B, si ottiene, per il terzo ordinamento: 7/8 1/2 A B 9/12 C F 5/6 E 3/4 D 10/11 C D A F E B 9/12 10/11 7/8 5/6 3/4 1/2

14 Riprendiamo l esempio (5/5) Che cosa hanno in comune i tre ordinamenti, rispetto alle visite? F C E D A B 11/12 5/10 8/9 6/7 1/4 2/3 A B C F D E 9/12 10/11 7/8 5/6 3/4 1/2 C D A F E B 9/12 10/11 7/8 5/6 3/4 1/2 I vertici sono sempre in ordine decrescente dei tempi di fine visita

15 Un algoritmo per calcolare un ordinamento topologico Adattiamo la struttura standard dell algoritmo di visita al problema dell ordinamento topologico. Basta creare una lista dei vertici in ordine decrescente dei tempi di fine visita.

16 Topological_Sort (G, L ) INIZIALIZZA (G) for ogni u V do if color [u] =white then DFS-topologica (G, u, L ) DFS-topologica (G, u, LISTA) color [u] gray d[u] time time + 1 for ogni v ADJ [u] do if color [v] = white then π[v] u DFS-topologica (G, v, LISTA ) color [u] black f[u] time time + 1 InserimentoInTesta (u, LISTA)

17 omplessità dell algoritmo per calcolare un ordinamento topologico Complessità: O(V+E)

18 orrettezza dell algoritmo per calcolare un ordinamento topologico Lemma. Una (qualunque) DFS di un grafo orientato aciclico associa ai vertici tempi di fine visita tali che: f[v] < f[u] per ogni arco <u, v> del grafo. Dimostrazione. Supponiamo per assurdo che per almeno un arco <u, v> si abbia f[v] > f[u]. 1) d[u] f[u] d[v] f[v] Impossibile perche u non puo diventare nero prima che v diventi grigio, ossia prima che tutti i suoi adiacenti siano stati scoperti. 2) d[v] d[u] f[u] f[v] Impossibile perche u sarebbe discendente di v in un albero della foresta e l arco <u, v> sarebbe un arco all indietro, ma G e un grafo aciclico.

19 In conclusione { G grafo orientato aciclico } Topological_Sort (G, L) INIZIALIZZA (G) for ogni u V do if color [u] =white then DFS-topologica (G, u, L) { L contiene i vertici di G in ordine topologico }

20 Riepilogo Due definizioni equivalenti di ordinamento topologico di un grafo orientato aciclico (il che cosa ) Due algoritmi specifici (il come ) Un algoritmo ingenuo Un algoritmo efficiente (basato sulla visita in profondità)

Esempi. non. orientato. orientato

Esempi. non. orientato. orientato Definizione! Un grafo G = (V,E) è costituito da un insieme di vertici V ed un insieme di archi E ciascuno dei quali connette due vertici in V detti estremi dell arco.! Un grafo è orientato quando vi è

Dettagli

Grafi: visita generica

Grafi: visita generica .. Grafi: visita generica Una presentazione alternativa (con ulteriori dettagli) Algoritmi di visita Scopo: visitare tutti i vertici di un grafo (si osservi che per poter visitare un vertice occorre prima

Dettagli

Grafi: visite. Una breve presentazione. F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Grafi: visite. Una breve presentazione. F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill) Grafi: visite Una breve presentazione Visite di grafi Scopo e tipi di visita Una visita (o attraversamento) di un grafo G permette di esaminare i nodi e gli archi di G in modo sistematico Problema di base

Dettagli

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità Visite Grafi Sommario Rappresentazione dei grafi Visita in ampiezza Visita in profondità Ordinamento topologico Visita in ampiezza La visita in ampiezza breadth-first-search (BFS) di un grafo dato un vertice

Dettagli

Depth-first search. Visita in profondità di un grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico

Depth-first search. Visita in profondità di un grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico Depth-first search Visita in profondità di n grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico Depth-first search Dato n grafo G=(V,E) e n specifico ertice s chiamato

Dettagli

Visite in Grafi BFS e DFS

Visite in Grafi BFS e DFS Visite in Grafi BFS e DFS Visita di un Grafo Obiettivo: Visitare una sola volta tutti i nodi del grafo. Es.: visitare un porzione del grafo del Web Difficoltà: Presenza di cicli: Marcare i nodi visitati

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Cammini minimi Definizioni Sia G = (V,E) un grafo orientato pesato sugli archi. Il costo di un cammino π = è dato da: Un cammino minimo tra una coppia di

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Introduzione ai grafi Grafi: Definizione e Algoritmi di visita Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2007/08 Introduzione ai

Dettagli

Progettazione di algoritmi

Progettazione di algoritmi Progettazione di algoritmi Discussione dell'esercizio [vincoli] Prima di tutto rappresentiamo il problema con un grafo G: i nodi sono le n lavorazioni L 1, L 2,, L n, e tra due nodi L h, L k c'è un arco

Dettagli

Cammini minimi in grafi:

Cammini minimi in grafi: Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio III: la fine della trilogia Input: nelle puntate

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 12 Grafi e visite di grafi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione Un grafo G=(V,E) consiste in: - un insieme V di vertici (o nodi) - un insieme

Dettagli

Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III

Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III Applicazioni di DFS Due prolemi: calcolare l ordinamento topologico indotto da un grafo aciclico.

Dettagli

Algoritmi e Strutture Dati Grafi. Daniele Loiacono

Algoritmi e Strutture Dati Grafi. Daniele Loiacono lgoritmi e Strutture ati Grafi Riferimenti 2 Questo materiale è tratto dalle trasparenze del corso lgoritmi e Strutture ati del prof. lberto Montresor dell Università di Trento. (http://www.dit.unitn.it/~montreso/asd/index.shtml)

Dettagli

Grafi (orientati): cammini minimi

Grafi (orientati): cammini minimi Grafi (orientati): cammini minimi Una breve presentazione Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Un cammino minimo tra

Dettagli

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici);

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici); Algoritmi e Strutture di Dati II 2 Grafi diretti Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove V è u n i n s i e m e d i nodi (o vertici); E µ V V è u n i n s i e m e d i archi. Denotiamo

Dettagli

Minimo albero di copertura

Minimo albero di copertura apitolo 0 Minimo albero di copertura efinizione 0.. ato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottoinsieme T E tale che il sottografo (V, T ) è un albero libero.

Dettagli

Tecniche Algoritmiche: divide et impera

Tecniche Algoritmiche: divide et impera Tecniche Algoritmiche: divide et impera Una breve presentazione F. Damiani - Alg. & Lab. 04/05 Divide et impera (o Divide and conquer) Per regnare occorre tenere divisi i nemici e trarne vantaggio F. Damiani

Dettagli

Problema del cammino minimo

Problema del cammino minimo Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento

Dettagli

Grafi: definizioni e visite

Grafi: definizioni e visite Grafi: definizioni e visite Grafi (non orientati) Grafo (non orientato): G = (V, E) V = nodi (o vertici) E = archi fra coppie di nodi distinti. Modella relazioni fra coppie di oggetti. Parametri della

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Algoritmi e Strutture Dati Capitolo 2 Minimo albero ricoprente: Algoritmo di Prim Il problema del calcolo di un Minimum

Dettagli

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati Algoritmi e Strutture Dati Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Cammini minimi Un cammino minimo tra una coppia di

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Grafi pesati Minimo albero ricoprente

Grafi pesati Minimo albero ricoprente Algoritmi e Strutture Dati Definizioni Grafi pesati Minimo albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un albero; T contiene

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA

UNIVERSITA DEGLI STUDI DI PERUGIA UNIVERSITA DEGLI STUDI DI PERUGIA REGISTRO DELLE LEZIONI E DELLE ALTRE ATTIVITÀ DIDATTICHE Anno accademico 2006-2007 Dott./Prof. Pinotti Maria Cristina Settore scientifico-disciplinare INF01 Facoltà Scienze

Dettagli

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia Appunti di Algoritmi e Strutture Dati Grafi Gianfranco Gallizia 12 Dicembre 2004 2 Indice 1 Grafi 5 1.1 Definizione.............................. 5 1.2 Implementazione........................... 5 1.2.1

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione

Dettagli

Grafi e reti di flusso

Grafi e reti di flusso Grafi e reti di flusso Molti problemi di ottimizzazione sono caratterizzati da una struttura di grafo: in molti casi questa struttura emerge in modo naturale, in altri nasce dal particolare modo in cui

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani ([email protected])

Dettagli

Algoritmi Greedy. Tecniche Algoritmiche: tecnica greedy (o golosa) Un esempio

Algoritmi Greedy. Tecniche Algoritmiche: tecnica greedy (o golosa) Un esempio Algoritmi Greedy Tecniche Algoritmiche: tecnica greedy (o golosa) Idea: per trovare una soluzione globalmente ottima, scegli ripetutamente soluzioni ottime localmente Un esempio Input: lista di interi

Dettagli

Capitolo 5. Algoritmi di ricerca su grafo. 5.1 Algoritmi di ricerca su grafo

Capitolo 5. Algoritmi di ricerca su grafo. 5.1 Algoritmi di ricerca su grafo Capitolo 5 Algoritmi di ricerca su grafo Gli algoritmi di ricerca su grafo, oggetto dei prossimi paragrafi, rappresentano tecniche fondamentali per determinare nodi che soddisfino particolari proprietà

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) protocolli reti IP memorizzazione compatta di

Dettagli

Strutture dati per rappresentare grafi

Strutture dati per rappresentare grafi lgoritmi e strutture dati amil emetrescu, Irene inocchi, iuseppe. Italiano Strutture dati per rappresentare grafi opyright 2004 - The Mcraw - Hill ompanies, srl lgoritmi e strutture dati amil emetrescu,

Dettagli

Dati e Algoritmi 1: A. Pietracaprina. Grafi (II parte)

Dati e Algoritmi 1: A. Pietracaprina. Grafi (II parte) Dati e Algoritmi 1: A. Pietracaprina Grafi (II parte) 1 Breath-First Search (algoritmo iterativo) Si assume una rappresentazione tramite liste di adiacenza. L ordine con cui si visitano i vicini di un

Dettagli

Grafi e gruppo fondamentale di un grafo

Grafi e gruppo fondamentale di un grafo Grafi e gruppo fondamentale di un grafo Note per il corso di Geometria IV (relative alla parte dei 6 crediti) Milano, 2010-2011, M.Dedò Come trovare un grafo omotopicamente equivalente all'oggetto 3d raffigurato

Dettagli

GRAFI. fig.1 - GRAFI (1) Si avvisa il lettore che certe definizioni che verranno date differiscono da quelle presenti in letteratura.

GRAFI. fig.1 - GRAFI (1) Si avvisa il lettore che certe definizioni che verranno date differiscono da quelle presenti in letteratura. GRAFI 1. Definizioni, terminologia, esempi e applicazioni (1) Un grafo orientato (o diretto o di-grafo) G è una coppia (V,E) dove V è un insieme non vuoto ed E una relazione binaria su V, E V V, ossia

Dettagli

Progettazione di algoritmi

Progettazione di algoritmi Progettazione di algoritmi Discussione dell'esercizio [labirinto] Nel testo dell'esercizio abbiamo considerato come lunghezza del percorso il numero di bivi ma possiamo stimare meglio la lunghezza reale

Dettagli

Alberi. Alberi: definizioni. Alberi Binari. Esercizi su alberi binari: metodi ricorsivi. Struttura dati per alberi generici. ASD-L - Luca Tesei

Alberi. Alberi: definizioni. Alberi Binari. Esercizi su alberi binari: metodi ricorsivi. Struttura dati per alberi generici. ASD-L - Luca Tesei Alberi Alberi: definizioni Alberi Binari Esercizi su alberi binari: metodi ricorsivi Struttura dati per alberi generici 1 Alberi Gli alberi sono strutture dati naturalmente ricorsive Un albero è un particolare

Dettagli

Terzo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale

Terzo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale Terzo allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini [email protected] - [email protected] 22 marzo 2016 Programma 1. Lettura di un problema tratto dalle

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 1/01/016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Il concetto di dato Il concetto di tipo di dato Insertion Sort for j 2 to lenght[a]

Dettagli

Cammini Minimi. Algoritmo di Dijkstra

Cammini Minimi. Algoritmo di Dijkstra Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

Dispense per i corsi di Informatica generale Corso di laurea in Matematica e. Introduzione agli Algoritmi Corso di laurea in Informatica

Dispense per i corsi di Informatica generale Corso di laurea in Matematica e. Introduzione agli Algoritmi Corso di laurea in Informatica Dispense per i corsi di Informatica generale Corso di laurea in Matematica e Introduzione agli Algoritmi Corso di laurea in Informatica Prof. Tiziana Calamoneri Prof. Giancarlo Bongiovanni Questi appunti

Dettagli

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 . Cammini ottimi E. Amaldi Fondamenti di R.O. Politecnico di Milano .. Cammini minimi e algoritmo di Dijkstra Dato un grafo orientato G = (N, A) con una funzione di costo c : A c ij R e due nodi s e t,

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

ALGORITMI CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15

ALGORITMI CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15 ANNO ACCADEMICO 2014/15 1 a prova in itinere 13 gennaio 2015 ESERCIZIO 1 Si risolva l equazione di ricorrenza al variare del parametro reale a>1. T (n) = 27 n a T + n 2 log n a ESERCIZIO 2 Si ordinino

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Ilaria Castelli [email protected] Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/20010 I. Castelli Alberi binari di ricerca, A.A. 2009/20010

Dettagli

Cammini minimi fra tutte le coppie

Cammini minimi fra tutte le coppie Capitolo 12 Cammini minimi fra tutte le coppie Consideriamo il problema dei cammini minimi fra tutte le coppie in un grafo G = (V, E, w) orientato, pesato, dove possono essere presenti archi (ma non cicli)

Dettagli

OSTRUZIONI SUI GRAFI. Alcune ostruzioni per l esistenza di grafi con dato score 1) Vale il seguente lemma

OSTRUZIONI SUI GRAFI. Alcune ostruzioni per l esistenza di grafi con dato score 1) Vale il seguente lemma OSTRUZIONI SUI GRAFI Alcune ostruzioni per l esistenza di grafi con dato score 1) Vale il seguente lemma Lemma 1. Se G = (V, E) è un grafo finito con n vertici allora deg(v) n 1, v V. Dal lemma segue che

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G é costituito da una coppia di insiemi (V,A) dove V é detto insieme dei nodi e A é detto insieme di archi ed é un sottinsieme di tutte

Dettagli

Quarto allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale

Quarto allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale Quarto allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini [email protected] - [email protected] 30 marzo 2017 Programma 1. Lettura e analisi di un problema 2.

Dettagli

Problema dell albero di cammini minimi (SPT, Shortest Path Tree) o problema dei cammini minimi :

Problema dell albero di cammini minimi (SPT, Shortest Path Tree) o problema dei cammini minimi : Per almeno una delle soluzioni ottime { P i, i r } del problema generalizzato, l unione dei cammini P i forma un albero di copertura per G radicato in r e orientato, ossia un albero la cui radice è r i

Dettagli

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa Alberi di copertura Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa [email protected] M. Passacantando TFA 0/ - Corso di Ricerca Operativa Università di Pisa / 9 Definizioni

Dettagli

Ottimizzazione nella Gestione dei Progetti - Esercitazione 1: calcolo degli schedule ottimi

Ottimizzazione nella Gestione dei Progetti - Esercitazione 1: calcolo degli schedule ottimi Università degli Studi di Roma La Sapienza Ottimizzazione nella Gestione dei Progetti - Esercitazione : calcolo degli schedule ottimi di FABIO D ANDREAGIOVANNI Dipartimento di Informatica e Sistemistica

Dettagli

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona e e Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario e ed implementazione in Java Visita di un grafo e e Concetti di base Struttura

Dettagli

Stallo di processi. Definizione del problema e modellizzazione Stefano Quer Dipartimento di Automatica e Informatica Politecnico di Torino

Stallo di processi. Definizione del problema e modellizzazione Stefano Quer Dipartimento di Automatica e Informatica Politecnico di Torino Stallo di processi Definizione del problema e modellizzazione Stefano Quer Dipartimento di Automatica e Informatica Politecnico di Torino 2 Stallo (deadlock) Condizione di stallo (deadlock) Un P/T richiede

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

Sommario. Ordinamento. Selection Sort Bubble Sort/ Shaker Sort Shell Sort

Sommario. Ordinamento. Selection Sort Bubble Sort/ Shaker Sort Shell Sort Ordinamento Sommario Ordinamento Selection Sort Bubble Sort/ Shaker Sort Shell Sort Cosa e' l'ordinamento Il problema consiste nell elaborare insiemi di dati costituiti da record I record hanno sono costituiti

Dettagli

Algoritmi di visita di un grafo

Algoritmi di visita di un grafo Algoritmi di isita di n grafo Ilaria Castelli [email protected] Uniersità degli Stdi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Visita di n grafo, A.A. 2009/2010

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 5 - Alberi Alberto Montresor Università di Trento This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this

Dettagli

Algoritmo basato su cancellazione di cicli

Algoritmo basato su cancellazione di cicli Algoritmo basato su cancellazione di cicli Dato un flusso ammissibile iniziale, si costruisce una sequenza di flussi ammissibili di costo decrescente. Ciascun flusso è ottenuto dal precedente flusso ammissibile

Dettagli

Esercizio 1. E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1. livello 0 FB = -1. livello 1 FB = -1.

Esercizio 1. E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1. livello 0 FB = -1. livello 1 FB = -1. Esercizio 1 E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1 livello 0 FB = -1 FB = -1 livello 1 FB = -1 livello 2 livello 3 L altezza è 3, il minimo si trova nel

Dettagli

Algoritmi e Strutture Dati (Modulo II)

Algoritmi e Strutture Dati (Modulo II) Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Algoritmi e Strutture Dati (Modulo II) Luciano Gualà [email protected] http://www.mat.uniroma2.it/~guala/ Algoritmi

Dettagli

Corso di elettrotecnica Materiale didattico: i grafi

Corso di elettrotecnica Materiale didattico: i grafi Corso di elettrotecnica Materiale didattico: i grafi A. Laudani 12 ottobre 2005 I grafi costituiscono uno strumento matematico che permette di descrivere e schematizzare una grande varietà di problemi

Dettagli

Linguaggi e Grammatiche Liberi da Contesto

Linguaggi e Grammatiche Liberi da Contesto N.Fanizzi-V.Carofiglio Dipartimento di Informatica Università degli Studi di Bari 22 aprile 2016 1 Linguaggi Liberi da Contesto 2 Grammatiche e Linguaggi Liberi da Contesto G = (X, V, S, P) è una grammatica

Dettagli

Esercizi su alberi binari

Esercizi su alberi binari Esercizi su alberi binari Esercizi svolti: Determinazione nodi contenti verifica completezza verifica quasi completezza lunghezza del cammino interno determinazione ultima foglia in un quasi completo verifica

Dettagli

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi Linguaggi di Programmazione Corso C Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali Nicola Fanizzi ([email protected]) Dipartimento di Informatica Università degli Studi di Bari Grammatiche

Dettagli

e Algoritmi Marco Piastra Intelligenza Artificiale I Soddisfacibilità

e Algoritmi Marco Piastra Intelligenza Artificiale I Soddisfacibilità Intelligenza Artificiale I Soddisfacibilità e Algoritmi Marco Piastra Intelligenza Artificiale I - A.A. 2010- Soddisfacibilità e Semantic Tableau [1] Problemi e decidibilità (automatica) Problema Un problema

Dettagli

Dati e Algoritmi I (Pietracaprina) Esercizi sugli Alberi

Dati e Algoritmi I (Pietracaprina) Esercizi sugli Alberi Dati e Algoritmi I (Pietracaprina) Esercizi sugli Alberi Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1 Dimostrare che un albero non vuoto con n nodi interni, dove ogni nodo interno ha almeno

Dettagli

Il passo del gambero. La soluzione di problemi con la tecnica del Backtracking. Ugo de' Liguoro - Algoritmi e Sperimentazioni 03/04 - Lez.

Il passo del gambero. La soluzione di problemi con la tecnica del Backtracking. Ugo de' Liguoro - Algoritmi e Sperimentazioni 03/04 - Lez. Il passo del gambero La soluzione di problemi con la tecnica del Backtracking Nel labirinto Nel labirinto In ogni posizione provo sistematicamente tutte le strade, ricordando ogni volta l ultima scelta

Dettagli

Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla

Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla Camil Demetrescu Irene Finocchi Giuseppe F. Italiano Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla Indice 1 Un introduzione informale agli algoritmi 1 2 Modelli di calcolo e metodologie di

Dettagli

Suffix Trees. Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017

Suffix Trees. Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017 Complementi di Algoritmi e Strutture Dati Suffix Trees Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017 In generale, possiamo trovare tutte le occorrenze di un pattern y in un testo x in tempo O(

Dettagli

Alberi n-ari: specifiche sintattiche e semantiche. Realizzazioni. Visita di alberi n-ari.

Alberi n-ari: specifiche sintattiche e semantiche. Realizzazioni. Visita di alberi n-ari. Alberi n-ari: specifiche sintattiche e semantiche. Realizzazioni. Visita di alberi n-ari. Algoritmi e Strutture Dati + Lab A.A. / Informatica Università degli Studi di Bari Aldo Moro Nicola Di Mauro ALBERO

Dettagli