Grafi: ordinamento topologico
|
|
|
- Evaristo Gambino
- 8 anni fa
- Visualizzazioni
Transcript
1 .. Grafi: ordinamento topologico Che cosa e e come si calcola
2 Che cosa e un ordinamento topologico F. Damiani - Alg. & Lab. 04/05
3 Una definizione di ordinamento topologico Definizione. Funzione σ: V {1, n} tale che σ(u)< σ(v) se esiste un cammino da u a v in G Proprietà. Esiste se e solo se G è aciclico F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)
4 Un altra definizione di ordinamento topologico (equivalente alla precedente) Proprietà. Dato un grafo orientato aciclico ( dag ), è sempre possibile ordinare i suoi vertici in modo che, per ogni arco <u, v> del grafo, u preceda v nell ordinamento. Definizione. Un ordinamento topologico di un dag è un ordinamento lineare dei suoi vertici che soddisfa la condizione precedente, cioè, per ogni arco <u, v> del grafo, u precede v nell ordinamento.
5 Un algoritmo per il calcolo di un ordinamento topologico F. Damiani - Alg. & Lab. 04/05
6 Un algoritmo per il calcolo di un ordinamento topologico Tempo di esecuzione: O(n+m)? F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)
7 Un altro algoritmo per il calcolo di un ordinamento topologico F. Damiani - Alg. & Lab. 04/05
8 Esempio (1/2) Dato il grafo: A C F E B L ordinamento: F C E D A B D È un ordinamento topologico Infatti disegnando gli archi del grafo essi risultano tutti orientati nella stessa direzione (da sinistra verso destra): F C E D A B
9 Esempio (2/2) A C F E B D Ma non è l unico, anche i seguenti sono ordinamenti topologici A B C F D E C D A F E B
10 Riprendiamo l esempio (1/5) E possibile usare una visita del grafo per scoprire un suo ordinamento topologico? Visitando il grafo in profondità considerando i vertici in ordine alfabetico: A B C D E F Si ottengono i seguenti tempi di inizio e fine visita: 1/4 2/3 A B 5/10 C F 11/12 E 8/9 6/7 D
11 Riprendiamo l esempio (2/5) Riportiamo i tempi sui vertici nel primo ordinamento preso in esame F C E D A B 11/12 5/10 8/9 6/7 1/4 2/3 Anche per gli altri due ordinamenti si possono trovare degli ordini, in cui considerare i vertici per effettuare una visita in profondità, che permettono di intuire quale informazione ottenuta con la visita stessa è utile per scoprire un ordinamento topologico.
12 Riprendiamo l esempio (3/5) Per il secondo ordinamento, se visitiamo i vertici nell ordine: E D F C A B, si ottiene: 9/12 10/11 A B 7/8 C F 5/6 E 1/2 3/4 D A B C F D E 9/12 10/11 7/8 5/6 3/4 1/2
13 Riprendiamo l esempio (4/5) Ed infine, visitando i vertici nell ordine B E F A C B, si ottiene, per il terzo ordinamento: 7/8 1/2 A B 9/12 C F 5/6 E 3/4 D 10/11 C D A F E B 9/12 10/11 7/8 5/6 3/4 1/2
14 Riprendiamo l esempio (5/5) Che cosa hanno in comune i tre ordinamenti, rispetto alle visite? F C E D A B 11/12 5/10 8/9 6/7 1/4 2/3 A B C F D E 9/12 10/11 7/8 5/6 3/4 1/2 C D A F E B 9/12 10/11 7/8 5/6 3/4 1/2 I vertici sono sempre in ordine decrescente dei tempi di fine visita
15 Un algoritmo per calcolare un ordinamento topologico Adattiamo la struttura standard dell algoritmo di visita al problema dell ordinamento topologico. Basta creare una lista dei vertici in ordine decrescente dei tempi di fine visita.
16 Topological_Sort (G, L ) INIZIALIZZA (G) for ogni u V do if color [u] =white then DFS-topologica (G, u, L ) DFS-topologica (G, u, LISTA) color [u] gray d[u] time time + 1 for ogni v ADJ [u] do if color [v] = white then π[v] u DFS-topologica (G, v, LISTA ) color [u] black f[u] time time + 1 InserimentoInTesta (u, LISTA)
17 omplessità dell algoritmo per calcolare un ordinamento topologico Complessità: O(V+E)
18 orrettezza dell algoritmo per calcolare un ordinamento topologico Lemma. Una (qualunque) DFS di un grafo orientato aciclico associa ai vertici tempi di fine visita tali che: f[v] < f[u] per ogni arco <u, v> del grafo. Dimostrazione. Supponiamo per assurdo che per almeno un arco <u, v> si abbia f[v] > f[u]. 1) d[u] f[u] d[v] f[v] Impossibile perche u non puo diventare nero prima che v diventi grigio, ossia prima che tutti i suoi adiacenti siano stati scoperti. 2) d[v] d[u] f[u] f[v] Impossibile perche u sarebbe discendente di v in un albero della foresta e l arco <u, v> sarebbe un arco all indietro, ma G e un grafo aciclico.
19 In conclusione { G grafo orientato aciclico } Topological_Sort (G, L) INIZIALIZZA (G) for ogni u V do if color [u] =white then DFS-topologica (G, u, L) { L contiene i vertici di G in ordine topologico }
20 Riepilogo Due definizioni equivalenti di ordinamento topologico di un grafo orientato aciclico (il che cosa ) Due algoritmi specifici (il come ) Un algoritmo ingenuo Un algoritmo efficiente (basato sulla visita in profondità)
Esempi. non. orientato. orientato
Definizione! Un grafo G = (V,E) è costituito da un insieme di vertici V ed un insieme di archi E ciascuno dei quali connette due vertici in V detti estremi dell arco.! Un grafo è orientato quando vi è
Grafi: visita generica
.. Grafi: visita generica Una presentazione alternativa (con ulteriori dettagli) Algoritmi di visita Scopo: visitare tutti i vertici di un grafo (si osservi che per poter visitare un vertice occorre prima
Grafi: visite. Una breve presentazione. F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)
Grafi: visite Una breve presentazione Visite di grafi Scopo e tipi di visita Una visita (o attraversamento) di un grafo G permette di esaminare i nodi e gli archi di G in modo sistematico Problema di base
Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità
Visite Grafi Sommario Rappresentazione dei grafi Visita in ampiezza Visita in profondità Ordinamento topologico Visita in ampiezza La visita in ampiezza breadth-first-search (BFS) di un grafo dato un vertice
Depth-first search. Visita in profondità di un grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico
Depth-first search Visita in profondità di n grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico Depth-first search Dato n grafo G=(V,E) e n specifico ertice s chiamato
Visite in Grafi BFS e DFS
Visite in Grafi BFS e DFS Visita di un Grafo Obiettivo: Visitare una sola volta tutti i nodi del grafo. Es.: visitare un porzione del grafo del Web Difficoltà: Presenza di cicli: Marcare i nodi visitati
Algoritmi e strutture dati
Algoritmi e Strutture Dati Cammini minimi Definizioni Sia G = (V,E) un grafo orientato pesato sugli archi. Il costo di un cammino π = è dato da: Un cammino minimo tra una coppia di
Algoritmi e Strutture Dati
Introduzione ai grafi Grafi: Definizione e Algoritmi di visita Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2007/08 Introduzione ai
Progettazione di algoritmi
Progettazione di algoritmi Discussione dell'esercizio [vincoli] Prima di tutto rappresentiamo il problema con un grafo G: i nodi sono le n lavorazioni L 1, L 2,, L n, e tra due nodi L h, L k c'è un arco
Cammini minimi in grafi:
Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio III: la fine della trilogia Input: nelle puntate
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati Capitolo 12 Grafi e visite di grafi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione Un grafo G=(V,E) consiste in: - un insieme V di vertici (o nodi) - un insieme
Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III
Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III Applicazioni di DFS Due prolemi: calcolare l ordinamento topologico indotto da un grafo aciclico.
Algoritmi e Strutture Dati Grafi. Daniele Loiacono
lgoritmi e Strutture ati Grafi Riferimenti 2 Questo materiale è tratto dalle trasparenze del corso lgoritmi e Strutture ati del prof. lberto Montresor dell Università di Trento. (http://www.dit.unitn.it/~montreso/asd/index.shtml)
Grafi (orientati): cammini minimi
Grafi (orientati): cammini minimi Una breve presentazione Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Un cammino minimo tra
Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici);
Algoritmi e Strutture di Dati II 2 Grafi diretti Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove V è u n i n s i e m e d i nodi (o vertici); E µ V V è u n i n s i e m e d i archi. Denotiamo
Minimo albero di copertura
apitolo 0 Minimo albero di copertura efinizione 0.. ato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottoinsieme T E tale che il sottografo (V, T ) è un albero libero.
Tecniche Algoritmiche: divide et impera
Tecniche Algoritmiche: divide et impera Una breve presentazione F. Damiani - Alg. & Lab. 04/05 Divide et impera (o Divide and conquer) Per regnare occorre tenere divisi i nemici e trarne vantaggio F. Damiani
Problema del cammino minimo
Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento
Grafi: definizioni e visite
Grafi: definizioni e visite Grafi (non orientati) Grafo (non orientato): G = (V, E) V = nodi (o vertici) E = archi fra coppie di nodi distinti. Modella relazioni fra coppie di oggetti. Parametri della
Algoritmi e Strutture Dati
Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Algoritmi e Strutture Dati Capitolo 2 Minimo albero ricoprente: Algoritmo di Prim Il problema del calcolo di un Minimum
Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati
Algoritmi e Strutture Dati Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Cammini minimi Un cammino minimo tra una coppia di
Problemi, istanze, soluzioni
lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un
Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi
Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore
Progettazione di Algoritmi
Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai
Grafi pesati Minimo albero ricoprente
Algoritmi e Strutture Dati Definizioni Grafi pesati Minimo albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un albero; T contiene
UNIVERSITA DEGLI STUDI DI PERUGIA
UNIVERSITA DEGLI STUDI DI PERUGIA REGISTRO DELLE LEZIONI E DELLE ALTRE ATTIVITÀ DIDATTICHE Anno accademico 2006-2007 Dott./Prof. Pinotti Maria Cristina Settore scientifico-disciplinare INF01 Facoltà Scienze
Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia
Appunti di Algoritmi e Strutture Dati Grafi Gianfranco Gallizia 12 Dicembre 2004 2 Indice 1 Grafi 5 1.1 Definizione.............................. 5 1.2 Implementazione........................... 5 1.2.1
2.2 Alberi di supporto di costo ottimo
. Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione
Grafi e reti di flusso
Grafi e reti di flusso Molti problemi di ottimizzazione sono caratterizzati da una struttura di grafo: in molti casi questa struttura emerge in modo naturale, in altri nasce dal particolare modo in cui
Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione
Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani ([email protected])
Algoritmi Greedy. Tecniche Algoritmiche: tecnica greedy (o golosa) Un esempio
Algoritmi Greedy Tecniche Algoritmiche: tecnica greedy (o golosa) Idea: per trovare una soluzione globalmente ottima, scegli ripetutamente soluzioni ottime localmente Un esempio Input: lista di interi
Capitolo 5. Algoritmi di ricerca su grafo. 5.1 Algoritmi di ricerca su grafo
Capitolo 5 Algoritmi di ricerca su grafo Gli algoritmi di ricerca su grafo, oggetto dei prossimi paragrafi, rappresentano tecniche fondamentali per determinare nodi che soddisfino particolari proprietà
2.2 Alberi di supporto di costo ottimo
. Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) protocolli reti IP memorizzazione compatta di
Strutture dati per rappresentare grafi
lgoritmi e strutture dati amil emetrescu, Irene inocchi, iuseppe. Italiano Strutture dati per rappresentare grafi opyright 2004 - The Mcraw - Hill ompanies, srl lgoritmi e strutture dati amil emetrescu,
Dati e Algoritmi 1: A. Pietracaprina. Grafi (II parte)
Dati e Algoritmi 1: A. Pietracaprina Grafi (II parte) 1 Breath-First Search (algoritmo iterativo) Si assume una rappresentazione tramite liste di adiacenza. L ordine con cui si visitano i vicini di un
Grafi e gruppo fondamentale di un grafo
Grafi e gruppo fondamentale di un grafo Note per il corso di Geometria IV (relative alla parte dei 6 crediti) Milano, 2010-2011, M.Dedò Come trovare un grafo omotopicamente equivalente all'oggetto 3d raffigurato
GRAFI. fig.1 - GRAFI (1) Si avvisa il lettore che certe definizioni che verranno date differiscono da quelle presenti in letteratura.
GRAFI 1. Definizioni, terminologia, esempi e applicazioni (1) Un grafo orientato (o diretto o di-grafo) G è una coppia (V,E) dove V è un insieme non vuoto ed E una relazione binaria su V, E V V, ossia
Progettazione di algoritmi
Progettazione di algoritmi Discussione dell'esercizio [labirinto] Nel testo dell'esercizio abbiamo considerato come lunghezza del percorso il numero di bivi ma possiamo stimare meglio la lunghezza reale
Alberi. Alberi: definizioni. Alberi Binari. Esercizi su alberi binari: metodi ricorsivi. Struttura dati per alberi generici. ASD-L - Luca Tesei
Alberi Alberi: definizioni Alberi Binari Esercizi su alberi binari: metodi ricorsivi Struttura dati per alberi generici 1 Alberi Gli alberi sono strutture dati naturalmente ricorsive Un albero è un particolare
Terzo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale
Terzo allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini [email protected] - [email protected] 22 marzo 2016 Programma 1. Lettura di un problema tratto dalle
Progettazione di Algoritmi
Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 1/01/016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai
Algoritmi e Strutture Dati
Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Il concetto di dato Il concetto di tipo di dato Insertion Sort for j 2 to lenght[a]
Cammini Minimi. Algoritmo di Dijkstra
Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo
Dispense per i corsi di Informatica generale Corso di laurea in Matematica e. Introduzione agli Algoritmi Corso di laurea in Informatica
Dispense per i corsi di Informatica generale Corso di laurea in Matematica e Introduzione agli Algoritmi Corso di laurea in Informatica Prof. Tiziana Calamoneri Prof. Giancarlo Bongiovanni Questi appunti
2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
. Cammini ottimi E. Amaldi Fondamenti di R.O. Politecnico di Milano .. Cammini minimi e algoritmo di Dijkstra Dato un grafo orientato G = (N, A) con una funzione di costo c : A c ij R e due nodi s e t,
Introduzione ai grafi
TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale
ALGORITMI CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15
ANNO ACCADEMICO 2014/15 1 a prova in itinere 13 gennaio 2015 ESERCIZIO 1 Si risolva l equazione di ricorrenza al variare del parametro reale a>1. T (n) = 27 n a T + n 2 log n a ESERCIZIO 2 Si ordinino
Alberi binari di ricerca
Alberi binari di ricerca Ilaria Castelli [email protected] Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/20010 I. Castelli Alberi binari di ricerca, A.A. 2009/20010
Cammini minimi fra tutte le coppie
Capitolo 12 Cammini minimi fra tutte le coppie Consideriamo il problema dei cammini minimi fra tutte le coppie in un grafo G = (V, E, w) orientato, pesato, dove possono essere presenti archi (ma non cicli)
OSTRUZIONI SUI GRAFI. Alcune ostruzioni per l esistenza di grafi con dato score 1) Vale il seguente lemma
OSTRUZIONI SUI GRAFI Alcune ostruzioni per l esistenza di grafi con dato score 1) Vale il seguente lemma Lemma 1. Se G = (V, E) è un grafo finito con n vertici allora deg(v) n 1, v V. Dal lemma segue che
Introduzione ai grafi. Introduzione ai grafi p. 1/2
Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G é costituito da una coppia di insiemi (V,A) dove V é detto insieme dei nodi e A é detto insieme di archi ed é un sottinsieme di tutte
Quarto allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale
Quarto allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini [email protected] - [email protected] 30 marzo 2017 Programma 1. Lettura e analisi di un problema 2.
Problema dell albero di cammini minimi (SPT, Shortest Path Tree) o problema dei cammini minimi :
Per almeno una delle soluzioni ottime { P i, i r } del problema generalizzato, l unione dei cammini P i forma un albero di copertura per G radicato in r e orientato, ossia un albero la cui radice è r i
Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa
Alberi di copertura Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa [email protected] M. Passacantando TFA 0/ - Corso di Ricerca Operativa Università di Pisa / 9 Definizioni
Ottimizzazione nella Gestione dei Progetti - Esercitazione 1: calcolo degli schedule ottimi
Università degli Studi di Roma La Sapienza Ottimizzazione nella Gestione dei Progetti - Esercitazione : calcolo degli schedule ottimi di FABIO D ANDREAGIOVANNI Dipartimento di Informatica e Sistemistica
Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona
e e Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario e ed implementazione in Java Visita di un grafo e e Concetti di base Struttura
Stallo di processi. Definizione del problema e modellizzazione Stefano Quer Dipartimento di Automatica e Informatica Politecnico di Torino
Stallo di processi Definizione del problema e modellizzazione Stefano Quer Dipartimento di Automatica e Informatica Politecnico di Torino 2 Stallo (deadlock) Condizione di stallo (deadlock) Un P/T richiede
Gestione della produzione e della supply chain Logistica distributiva
Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non
Sommario. Ordinamento. Selection Sort Bubble Sort/ Shaker Sort Shell Sort
Ordinamento Sommario Ordinamento Selection Sort Bubble Sort/ Shaker Sort Shell Sort Cosa e' l'ordinamento Il problema consiste nell elaborare insiemi di dati costituiti da record I record hanno sono costituiti
Algoritmi di visita di un grafo
Algoritmi di isita di n grafo Ilaria Castelli [email protected] Uniersità degli Stdi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Visita di n grafo, A.A. 2009/2010
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati Capitolo 5 - Alberi Alberto Montresor Università di Trento This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this
Algoritmo basato su cancellazione di cicli
Algoritmo basato su cancellazione di cicli Dato un flusso ammissibile iniziale, si costruisce una sequenza di flussi ammissibili di costo decrescente. Ciascun flusso è ottenuto dal precedente flusso ammissibile
Esercizio 1. E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1. livello 0 FB = -1. livello 1 FB = -1.
Esercizio 1 E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1 livello 0 FB = -1 FB = -1 livello 1 FB = -1 livello 2 livello 3 L altezza è 3, il minimo si trova nel
Algoritmi e Strutture Dati (Modulo II)
Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Algoritmi e Strutture Dati (Modulo II) Luciano Gualà [email protected] http://www.mat.uniroma2.it/~guala/ Algoritmi
Corso di elettrotecnica Materiale didattico: i grafi
Corso di elettrotecnica Materiale didattico: i grafi A. Laudani 12 ottobre 2005 I grafi costituiscono uno strumento matematico che permette di descrivere e schematizzare una grande varietà di problemi
Linguaggi e Grammatiche Liberi da Contesto
N.Fanizzi-V.Carofiglio Dipartimento di Informatica Università degli Studi di Bari 22 aprile 2016 1 Linguaggi Liberi da Contesto 2 Grammatiche e Linguaggi Liberi da Contesto G = (X, V, S, P) è una grammatica
Esercizi su alberi binari
Esercizi su alberi binari Esercizi svolti: Determinazione nodi contenti verifica completezza verifica quasi completezza lunghezza del cammino interno determinazione ultima foglia in un quasi completo verifica
Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi
Linguaggi di Programmazione Corso C Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali Nicola Fanizzi ([email protected]) Dipartimento di Informatica Università degli Studi di Bari Grammatiche
e Algoritmi Marco Piastra Intelligenza Artificiale I Soddisfacibilità
Intelligenza Artificiale I Soddisfacibilità e Algoritmi Marco Piastra Intelligenza Artificiale I - A.A. 2010- Soddisfacibilità e Semantic Tableau [1] Problemi e decidibilità (automatica) Problema Un problema
Dati e Algoritmi I (Pietracaprina) Esercizi sugli Alberi
Dati e Algoritmi I (Pietracaprina) Esercizi sugli Alberi Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1 Dimostrare che un albero non vuoto con n nodi interni, dove ogni nodo interno ha almeno
Il passo del gambero. La soluzione di problemi con la tecnica del Backtracking. Ugo de' Liguoro - Algoritmi e Sperimentazioni 03/04 - Lez.
Il passo del gambero La soluzione di problemi con la tecnica del Backtracking Nel labirinto Nel labirinto In ogni posizione provo sistematicamente tutte le strade, ricordando ogni volta l ultima scelta
Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla
Camil Demetrescu Irene Finocchi Giuseppe F. Italiano Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla Indice 1 Un introduzione informale agli algoritmi 1 2 Modelli di calcolo e metodologie di
Suffix Trees. Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017
Complementi di Algoritmi e Strutture Dati Suffix Trees Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017 In generale, possiamo trovare tutte le occorrenze di un pattern y in un testo x in tempo O(
Alberi n-ari: specifiche sintattiche e semantiche. Realizzazioni. Visita di alberi n-ari.
Alberi n-ari: specifiche sintattiche e semantiche. Realizzazioni. Visita di alberi n-ari. Algoritmi e Strutture Dati + Lab A.A. / Informatica Università degli Studi di Bari Aldo Moro Nicola Di Mauro ALBERO
