Sommario. Ordinamento. Selection Sort Bubble Sort/ Shaker Sort Shell Sort
|
|
|
- Lisa Romani
- 9 anni fa
- Visualizzazioni
Transcript
1 Ordinamento
2 Sommario Ordinamento Selection Sort Bubble Sort/ Shaker Sort Shell Sort
3 Cosa e' l'ordinamento Il problema consiste nell elaborare insiemi di dati costituiti da record I record hanno sono costituiti da una chiave e (eventualmente) da altri dati satellite La chiave ha valori in un insieme totalmente ordinato (per cui vale la proprietà di tricomia cioè per ogni coppia di elementi a,b nell insieme deve valere esattamente una delle seguenti relazioni: a=b, a<b, a>b) L obiettivo dei metodi di ordinamento consiste nel riorganizzare i dati in modo che le loro chiavi siano disposte secondo un ordine specificato (generalmente numerico o alfabetico)
4 Perche' e' importante l'ordinamento L'ordinamento e' un passo intermedio utile per l'ottimizzazione di altr procedure molto comuni in vari algoritmi Ricerca e fusione (merge) Canonizzazione (trasformare un dato che puo' avere piu' di una possibile rappresentazione in una unica forma) Comprensibilita' per lettori umani Una alta percentuale del tempo di esecuzione di una applicazione complessa e' speso in operazioni di ordinamento L'ordinamento e' in genere una sub-routine annidata profondamente all'interno di procedure iterative e dunque migliorarne l'efficienza ha profonde implicazioni sull'efficienza complessiva dei programmi
5 Tipi di ordinamento: interno/esterno Si distinguono metodi interni ed esterni: interni: se l insieme di dati è contenuto nella memoria principale esterni: se l insieme di dati è immagazzinato su disco o nastro Per metodi interni è possibile l accesso casuale ai dati, mentre per i metodi esterni è possibile solo l accesso sequenziale o a blocchi di grandi dimensioni Si usano i metodi esterni quando non vale l'ipotesi del calcolatore RAM con memoria illimitata
6 Tipo di ordinamento: stabili/non stabili Si distinguono i metodi di ordinamento in stabili o non stabili. Un metodo di ordinamento si dice stabile se preserva l ordine relativo dei dati con chiavi uguali all interno della sequenza da ordinare
7 Tipo di ordinamento stabile Esempio: se si usa un metodo stabile per ordinare per anno di corso una lista di studenti già ordinata alfabeticamente, otterremo una lista in cui gli studenti dello stesso anno sono ordinati alfabeticamente 2004 Alessandro 2005 Alessio 2003 Antonio 2004 Beppe 2003 Bruno 2003 Carlo 2004 Cristiano 2005 Dario 2005 Emanuele 2003 Antonio 2003 Bruno 2003 Carlo 2004 Alessandro 2004 Beppe 2004 Cristiano 2005 Alessio 2005 Dario 2005 Emanuele
8 Tipo di ordinamento: diretto/indiretto Si distinguono i metodi di ordinamento in diretti o indiretti. Un metodo di ordinamento si dice diretto se accede all intero record del dato da confrontare, indiretto se utilizza dei riferimenti (puntatori) per accedervi Metodi indiretti sono utili quando si devono ordinare dati di grandi dimensioni In questo modo non è necessario spostare i dati in memoria ma solo i puntatori ad essi.
9 Tipo di ordinamento: sul posto/non sul posto Si distinguono i metodi di ordinamento sul posto (inplace) e non, che fanno cioè uso di strutture ausiliare Un metodo si dice che ordina sul posto se durante l elaborazione riorganizza gli elementi del vettore in ingresso all interno del vettore stesso Se il metodo, per poter operare, ha necessità di allocare un vettore di appoggio dove copiare i risultati parziali o finali dell elaborazione (della stessa dimensione del vettore in ingresso) abbiamo il secondo caso
10 Selection Sort E uno degli algoritmi più semplici Il principio è: si determina l elemento più piccolo di tutto il vettore lo si scambia con l elemento in prima posizione del vettore si cerca il secondo elemento più grande lo si scambia con l elemento in seconda posizione del vettore si procede fino a quando l intero vettore è ordinato Il nome deriva dal fatto che si seleziona di volta in volta il più piccolo elemento fra quelli rimanenti
11 Pseudocodice per SelectionSort SelectionSort(A) 1 for i 1 to length[a] 2 do min i 3 for j i+1 to length[a] 4 do if A[j] < A[min] 5 then min j 6 A[i] A[min]
12 Caratteristiche del SelectionSort Il tempo di calcolo è T(n)= Θ(n 2 ) per ogni dato di posizione i si eseguono n-1-i confronti il numero totale di confronti è pertanto (posto j= n-1-i ) Σ j=n-1..1 j = Σ j=1..n-1 j = n(n-1)/2 = Θ(n 2 ) Più precisamente il Selection Sort effettua circa n 2 /2 confronti n scambi
13 Caratteristiche del SelectionSort Uno svantaggio è che il tempo di esecuzione non dipende (in modo significativo) dal grado di ordinamento dei dati iniziali Un vantaggio è che ogni elemento è spostato una sola volta. Se è necessario spostare i dati, allora per dati molto grandi questo è l algoritmo che asintoticamente effettua il minor numero di spostamenti possibili. Se il tempo di spostamento è dominante rispetto al tempo di confronto diventa un algoritmo interessante
14 BubbleSort E un metodo elementare Il principio di funzionamento è: si attraversa il vettore scambiando coppie di elementi adiacenti ci si ferma quando non è più richiesto alcuno scambio Il nome deriva dal seguente fenomeno: quando durante l attraversamento si incontra l elemento più piccolo non ancora ordinato questo viene sempre scambiato con tutti, affiorando fino alla posizione giusta come una bolla nel processo gli elementi maggiori affondano e quelli più leggeri salgono a galla
15 PseudoCodice per il BubbleSort BubbleSort(A) 1 for i 1 to length[a] 2 do for j length[a] downto i+1 4 do if A[j 1] > A[j] 5 then A[j 1] A[j]
16 Caratteristiche del BubbleSort Il tempo di calcolo è T(n)= Θ(n 2 ) per ogni dato di posizione i si eseguono n-1-i confronti e n-1- i scambi il numero totale di confronti è pertanto (posto j= n-1-i ) Σ j=1..n-1 j = n(n-1)/2 = Θ(n 2 ) Il Bubble Sort effettua circa n 2 /2 confronti n 2 /2 scambi In generale è peggiore del selection sort Nota: si può migliorare interrompendo il ciclo più esterno qualora non si siano verificati scambi
17 Shaker Sort Come il Bubble Sort ma alternando passate da sinistra a destra e da destra a sinistra. In questo modo sia gli elementi pesanti affondano che affiorano quelli leggeri
18 Insertion Sort Lo abbiamo gia' visto Ha complessita' quadratica Tuttavia il numero di confronti e scambi dipende dal grado di ordinamento dei dati: il caso ottimo ha complessita' lineare Diventa interessante quando i dati sono parzialmente ordinati
19 Insertion Sort INSERTION SORT(A) 1 for j 2 to lenght[a] 2 do key A[j] 3 i j 1 4 while i>0 e A[i]>key 5 do A[i+1] A[i] 6 i i 1 7 A[i+1] key
20 Shell Sort La lentezza dell'ordinamento per inserzione e' dovuta al fatto che le operazioni di scambio avvengono tra elementi adiacenti Se l'elemento piu' piccolo e' alla fine dell'array ci vogliono N passi per disporlo al posto giusto L'idea dello shell sort e' di scambiare gli elementi prima molto distanti tra loro e poi progressivamente quelli piu' vicini
21 Shell Sort Per migliorare le cose si puo' lavorare considerando i dati in blocchi e ordinare per colonne Si inizia con molte colonne (elementi distanti) e si procede fino ad ottenere una unica colonna > >
22 Shell Sort In realta' non si dividono i dati in blocchi: si considerano nello stesso insieme i dati che hanno indici a distanza fissa. L'idea e' di ordinare l'array in modo che gli elementi che hanno una distanza h fra loro costituiscano una sequenza ordinata Un array che soddisfa questa proprieta' si dice h-ordinato o ordinato con passo h Se si eseguono piu' passate h-ordinando l'array prima con passo h grande e poi decrementandolo fino a passo 1 si ottiene un array via via sempre piu' ordinato fino ad averlo del tutto ordinato Visto che l'efficienza dell'insertion sort dipende da quanto e' gia' ordinato l'array otteniamo via via delle prestazioni migliori
23 Shell Sort L'idea e' di usare l'insertion sort per h-ordinare Basta sostituire gli incrementi/decrementi unitari con incrementi/decrementi di h posizioni La sequenza decrescente di valori di h viene calcolata a partire da un h grande (ex: N/9) con andamento esponenziale: h=h/3 Esempio: N=1000 h=111,37,12,4,1
24 Shell Sort (approssimato) SHELL SORT(A) 1 for h lenght[a]/9 to 0 with h h / 3 2 do InsertionSort con passo h
25 Shell Sort SHELL SORT(A) 1 for h lenght[a]/9 to 0 with h h / 3 2 do for j 1+h to lenght[a] 3 do key A[j] 4 i j 5 while i > 1+h e A[i h]>key 6 do A[i] A[i h] 7 i i h 8 A[i] key
26 Complessita' dello Shell Sort Il caso peggiore rimane come per l'algoritmo da cui deriva (l'insertion sort) un O(n 2 ) Il caso medio e' difficile da calcolare perche' dipende dalla sequenza degli h-ordinamenti Questo e' un esempio di algoritmo semplice con proprieta' complesse Con sequenza di tipo: Pratt: 1, 2, 3, 4, 6, 8, 9, 12, 16,...2 p 3 q si ha O(n (log n) 2 ) Knuth: 1, 4, 13, 40, 121,... (3 s -1)/2 si ha O(n 3/2 ) Sedgewick: 1, 5, 19, 41, 109, 209,... (non mostrata) si ha O(n 4/3 ) caso pessimo e O(n 7/6 ) caso medio!
Algoritmi e Strutture Dati. Capitolo 4 Ordinamento
Algoritmi e Strutture Dati Capitolo 4 Ordinamento Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Esempi: ordinare una lista di nomi alfabeticamente, o un
Albero di Riscorsione
Albero di Riscorsione Albero di ricorsione Un albero di ricorsione è un modo di visualizzare cosa accade in un algoritmo divide et impera L etichetta della radice rappresenta il costo non ricorsivo della
Fondamenti di Informatica. Algoritmi di Ricerca e di Ordinamento
Fondamenti di Informatica Algoritmi di Ricerca e di Ordinamento 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare se un elemento fa parte della sequenza oppure l elemento
Ordinamenti per confronto: albero di decisione
Ordinamenti per confronto: albero di decisione Albero di decisione = rappresentazione grafica di tutte le possibili sequenze di confronti eseguite da un algoritmo assegnato di ordinamento per confronto
Tecniche di Ordinamento dei Vettori
Tecniche di Ordinamento dei Vettori Corso di Laurea Ingegneria Corso B A.A. 2010-2011 1 Contenuto 1) Generalità 2) Metodi a Minimo Ingombro di Memoria 2.1) Ordinamento per selezione ( Selection Sort )
Complessità Computazionale
Complessità Computazionale Analisi Algoritmi e pseudocodice Cosa significa analizzare un algoritmo Modello di calcolo Analisi del caso peggiore e del caso medio Esempio di algoritmo in pseudocodice INSERTION
Un algoritmo realizza una relazione funzionale tra i valori di input e quelli di output
Un algoritmo realizza una relazione funzionale tra i valori di input e quelli di output F = { (s, s ) } per ogni s esiste una e una sola coppia (s, s ). Esempio: un algoritmo che calcola il quadrato di
I Tipi di Dato Astratto
I Tipi di Dato Astratto Sommario Cosa sono le Strutture Dati Astratte? Le strutture dati Le operazioni Come scegliere fra varie implementazioni? Quale è la questione? Come organizzare (strutturare) i dati
Esercizi di Algoritmi e Strutture Dati
Esercizi di Algoritmi e Strutture Dati Moreno Marzolla [email protected] Ultimo aggiornamento: 3 novembre 2010 1 Trova la somma/1 Scrivere un algoritmo che dati in input un array A[1... n] di n interi
Tempo e spazio di calcolo
Tempo e spazio di calcolo Modelli di calcolo e metodologie di analisi F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04) In quale modo stimiamo il tempo di calcolo? Possiamo considerare
Algoritmi di ricerca. Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati.
E. Calabrese: Fondamenti di Informatica Algoritmi-1 Algoritmi di ricerca Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati. Per esempio: - cercare
Algoritmi e Strutture Dati. HeapSort
Algoritmi e Strutture Dati HeapSort Selection Sort: intuizioni L algoritmo Selection-Sort scandisce tutti gli elementi dell array a partire dall ultimo elemento fino all inizio e ad ogni iterazione: Viene
1.1 Concetti base dell Informatica: Algoritmi
1.1 Concetti base dell Informatica: Algoritmi Insegnamento di Informatica Elisabetta Ronchieri Corso di Laurea di Economia, Universitá di Ferrara I semestre, anno 2014-2015 Elisabetta Ronchieri (Universitá)
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati Soluzione esercizi di approfondimento Stefano Leucci [email protected] Una terza variante dell IS InsertionSort3 (A) 1. for k=1 to n-1 do 2. x = A[k+1] 3. j = ricerca_binaria(a[1,k],x)
Algoritmi e loro proprietà. Che cos è un algoritmo? Un esempio di algoritmo
1 Cos è l informatica? L informatica è la scienza della rappresentazione e dell elaborazione dell informazione Algoritmi e loro proprietà Proprietà formali degli Algoritmi Efficienza rispetto al tempo
Laboratorio di Algoritmi e Strutture Dati. Code con Priorità
Laboratorio di Algoritmi e Strutture Dati Code con Priorità Teresa M.A. Basile [email protected] Dipartimento di Informatica Università degli Studi di Bari Aldo Moro Materiale di base gentilmente concesso
UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Matlab: esempi ed esercizi
UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA Matlab: esempi ed esercizi Sommario e obiettivi Sommario Esempi di implementazioni Matlab di semplici algoritmi Analisi di codici Matlab Obiettivi
Tempo e spazio di calcolo (continua)
Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza
Algoritmi e Strutture Dati
Analisi Asintotica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Un graduale processo di astrazione Passo 1: abbiamo ignorato il costo effettivo
Corso di Informatica di Base
Corso di Informatica di Base A.A. 2011/2012 Algoritmi e diagrammi di flusso Luca Tornatore Cos è l informatica? Calcolatore: esecutore di ordini o automa Programma: insieme di istruzioni che possono essere
Codice Gray. (versione Marzo 2007)
Codice Gray (versione Marzo 27) Data una formula booleana con n variabili, per costruire una tavola di verità per questa formula è necessario generare tutte le combinazioni di valori per le n variabili.
Corso di Tecniche di Programmazione
Corso di Tecniche di Programmazione Corsi di Laurea in Ingegneria Informatica ed Automatica Anno Accedemico 003/004 Proff. Giuseppe De Giacomo, Luca Iocchi, Domenico Lembo Dispensa : Algoritmi di Ordinamento
INDICI PER FILE. Accesso secondario. Strutture ausiliarie di accesso
INDICI PER FILE Strutture ausiliarie di accesso 2 Accesso secondario Diamo per scontato che esista già un file con una certa organizzazione primaria con dati non ordinati, ordinati o organizzati secondo
ADT Coda con priorità
Code con priorità ADT Coda con priorità Una coda con priorità è una struttura dati dinamica che permette di gestire una collezione di dati con chiave numerica. Una coda con priorità offre le operazioni
Problemi, istanze, soluzioni
lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un
Algoritmi (9 CFU) (A.A ) Heap e Algoritmo HeapSort. Prof. V. Cutello Algoritmi 1
Algoritmi (9 CFU) (A.A. 2009-10) Heap e Algoritmo HeapSort. Prof. V. Cutello Algoritmi 1 Overview Definiamo la struttura dati heap Operazioni di costruzione e gestione di un heap Algoritmo Heapsort Code
La ricorsione. Ver Claudio Fornaro - Corso di programmazione in C
La ricorsione Ver. 2.4 2010 - Claudio Fornaro - Corso di programmazione in C 2 Divide et impera Metodo di approccio ai problemi che consiste nel dividere il problema dato in problemi più semplici I risultati
ESERCIZI SULLE MATRICI
ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a
Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti
Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente,
Esercizi di Algoritmi e Strutture Dati
Esercizi di Algoritmi e Strutture Dati Moreno Marzolla [email protected] Ultimo aggiornamento: 10 novembre 2010 1 La bandiera nazionale (problema 4.7 del libro di testo). Il problema della bandiera
Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort
Due algoritmi di ordinamento basati sulla tecnica Divide et Impera: Mergesort e Quicksort (13 ottobre 2009, 2 novembre 2010) Ordinamento INPUT: un insieme di n oggetti a 1, a 2,, a n presi da un dominio
Indice. Prefazione. 3 Oggetti e Java 53
Prefazione xv 1 Architettura dei calcolatori 1 1.1 Calcolatori e applicazioni 1 1.1.1 Alcuni esempi di applicazioni 3 1.1.2 Applicazioni e interfacce 4 1.2 Architettura dei calcolatori 7 1.2.1 Hardware
Algoritmi e Strutture dati a.a. 2013/2014
a.a. 2013/2014 Dr Informazioni docente E-mail docente: [email protected] Ricevimento: Mercoledì 15:00-16:00 presso ufficio docenti a contratto (3 piano), Dipartimento di Matematica e Informatica, Campus
RAPPRESENTAZIONE GLI ALGORITMI NOTAZIONE PER LA RAPPRESENTAZIONE DI UN ALGORITMO
RAPPRESENTAZIONE GLI ALGORITMI NOTAZIONE PER LA RAPPRESENTAZIONE DI UN ALGORITMO Rappresentazione degli algoritmi Problema Algoritmo Algoritmo descritto con una qualche notazione Programma Defne del procedimento
ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).
ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica
Il tipo astratto coda con priorità: specifiche sintattiche e semantiche. Realizzazioni.
Il tipo astratto coda con priorità: specifiche sintattiche e semantiche. Realizzazioni. Algoritmi e Strutture Dati + Lab A.A. 14/15 Informatica Università degli Studi di Bari Aldo Moro Nicola Di Mauro
Laboratorio di Programmazione Appunti sulla lezione 4: Divide et impera e algoritmi di ordinamento
Laboratorio di Programmazione Appunti sulla lezione 4: Divide et impera e algoritmi di ordinamento Alessandra Raffaetà Università Ca Foscari Venezia Corso di Laurea in Informatica Ricerca binaria Assunzione:
Matrici. Matrici.h Definizione dei tipi. Un po di esercizi sulle matrici Semplici. Media difficoltà. Difficili
Matrici Un po di esercizi sulle matrici Semplici Lettura e scrittura Calcolo della trasposta Media difficoltà Calcolo del determinante Difficili Soluzione di sistemi lineari È veramente difficile? 1 Matrici.h
Strutture dati e loro organizzazione. Gabriella Trucco
Strutture dati e loro organizzazione Gabriella Trucco Introduzione I linguaggi di programmazione di alto livello consentono di far riferimento a posizioni nella memoria principale tramite nomi descrittivi
Algoritmi e Strutture Dati Esercizi Svolti. Giuseppe Persiano Dipartimento di Informatica ed Appl. Renato M. Capocelli Università di Salerno
Algoritmi e Strutture Dati Esercizi Svolti Giuseppe Persiano Dipartimento di Informatica ed Appl Renato M Capocelli Università di Salerno Indice Esercizio 12-3 5 Esercizio 23-4 6 Esercizio 63-3 7 Esercizio
Macchine RAM. API a.a. 2013/2014 Gennaio 27, 2014 Flavio Mutti, PhD
Macchine RAM API a.a. 2013/2014 Gennaio 27, 2014 Flavio Mutti, PhD 2 Macchina RAM 3 Esercizio Si consideri il linguaggio definito da: L = wcw R w a, b } 1. Codificare un programma RAM per il riconoscimento
in termini informali: un algoritmo è una sequenza ordinata di operazioni che risolve un problema specifico
Click to edit Algoritmo Master title style algoritmo: un insieme ordinato di operazioni non ambigue ed effettivamente computabili che, quando eseguito, produce un risultato e si arresta in un tempo finito
Introduzione alla programmazione Esercizi risolti
Esercizi risolti 1 Esercizio Si determini se il diagramma di flusso rappresentato in Figura 1 è strutturato. A B C D F E Figura 1: Diagramma di flusso strutturato? Soluzione Per determinare se il diagramma
Alberi Binari di Ricerca
Alberi Binari di Ricerca Algoritmi su gli alberi binari: visite Dato un puntatore alla radice di un albero vogliamo scandire in modo sistematico tutti i nodi di tale albero In una lista abbiamo una unica
UD 3.5a: Searching (parte 1) ALGORITMO DI RICERCA SEQUENZIALE. Dispense, cap
UD 3.5a: Searching (parte 1) ALGORITMO DI RICERCA SEQUENZIALE Dispense, cap. 5.1-5.2 Ricerca di un'informazione in una tabella Determinare se una parola X è presente in un dizionario (cioè in una lista
Analisi asintotica della complessità di tempo degli algoritmi
Analisi asintotica della complessità di tempo degli algoritmi Due esempi di funzioni di Python: 1. nel primo mettiamo in evidenza l importanza di una buona organizzazione dei dati in memoria, cioè di una
Note sull implementazione in virgola fissa di filtri numerici
Note sull implementazione in virgola fissa di filtri numerici 4 settembre 2006 1 Introduction Nonostante al giorno d oggi i processori con aritmetica in virgola mobili siano molto comuni, esistono contesti
= < < < < < Matematica 1
NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato
Costo di esecuzione e complessità. Modello di costo e complessità di un algoritmo
Costo di esecuzione e complessità Modello di costo e complessità di un algoritmo Il costo di esecuzione di un algoritmo quantifica le risorse necessarie per l esecuzione dell algoritmo stesso numero di
Algoritmi di ordinamento in linguaggio C
Algoritmi di ordinamento in linguaggio C Ordinamento per inserimento Insertion Sort con funzione ausiliaria int inserisci_valore(int vett[], int dim, int valore) { int i = dim; while (i > 0 && vett[i-1]
Fondamenti di Informatica
Fondamenti di Informatica AlgoBuild: Strutture selettive, iterative ed array Prof. Arcangelo Castiglione A.A. 2016/17 AlgoBuild : Strutture iterative e selettive OUTLINE Struttura selettiva Esempi Struttura
2.2 Alberi di supporto di costo ottimo
. Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione
Alberi binari di ricerca
Alberi binari di ricerca Ilaria Castelli [email protected] Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/20010 I. Castelli Alberi binari di ricerca, A.A. 2009/20010
Algoritmi di ordinamento. Algoritmi. Selection sort semplificato - I. Selection sort semplificato - II
Algoritmi Ver..4 Algoritmi di ordinamento Lo scopo è ordinare in senso [de]crescente il contenuto di un vettore di N elementi senza utilizzare un secondo vettore Esiste molta letteratura scientifica a
Esercizi Capitolo 7 - Hash
Esercizi Capitolo 7 - Hash Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle rispettive
Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =
Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati Capitolo 8 Code con priorità: Heap binomiali Riepilogo Array non ord. Array ordinato Lista non ordinata Lista ordinata Find Min Insert Delete DelMin Incr. Key Decr. Key merge
Esercitazione del 09/03/ Soluzioni
Esercitazione del 09/03/2006 - Soluzioni. Conversione binario decimale ( Rappresentazione dell Informazione Conversione in e da un numero binario, slide 0) a. 0 2? 0 2 Base 2 Si cominciano a contare le
UNIVERSITA DEGLI STUDI DI PERUGIA
UNIVERSITA DEGLI STUDI DI PERUGIA REGISTRO DELLE LEZIONI E DELLE ALTRE ATTIVITÀ DIDATTICHE Anno accademico 2006-2007 Dott./Prof. Pinotti Maria Cristina Settore scientifico-disciplinare INF01 Facoltà Scienze
PROCESSI NON SEQUENZIALI E TIPI DI INTERAZIONE
PROCESSI NON SEQUENZIALI E TIPI DI INTERAZIONE 1 ALGORITMO, PROGRAMMA, PROCESSO Algoritmo Procedimento logico che deve essere eseguito per risolvere un determinato problema. Programma Descrizione di un
Macchine di Turing. Francesco Paoli. Istituzioni di logica, Francesco Paoli (Istituzioni di logica, ) Macchine di Turing 1 / 29
Macchine di Turing Francesco Paoli Istituzioni di logica, 2016-17 Francesco Paoli (Istituzioni di logica, 2016-17) Macchine di Turing 1 / 29 Alan M. Turing (1912-1954) Francesco Paoli (Istituzioni di logica,
Algoritmi e Strutture Dati
Analisi di algoritmi Maria Rita Di Berardini 2, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino 2 Polo di Scienze Università di Camerino ad Ascoli Piceno Parte I Analisi
Laboratorio di Algoritmi e Strutture Dati. Aniello Murano. people.na.infn.it/~murano/ Murano Aniello - Lab. di ASD Terza Lezione
Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ Heap e Heapsort Algoritmi di ordinamento Insertion Sort Quicksort Heapsort Insertion Sort L
Le etichette nei programmi. Istruzioni di branch: beq. Istruzioni di branch: bne. Istruzioni di jump: j
L insieme delle istruzioni (2) Architetture dei Calcolatori (lettere A-I) Istruzioni per operazioni logiche: shift Shift (traslazione) dei bit di una parola a destra o sinistra sll (shift left logical):
Rappresentazione di numeri interi
Corso di Calcolatori Elettronici I Esercizi Rappresentazione di numeri interi ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Interi senza segno Qual è l intervallo di rappresentazione
Introduzione alla programmazione Algoritmi e diagrammi di flusso. Sviluppo del software
Introduzione alla programmazione Algoritmi e diagrammi di flusso F. Corno, A. Lioy, M. Rebaudengo Sviluppo del software problema idea (soluzione) algoritmo (soluzione formale) programma (traduzione dell
Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla
Camil Demetrescu Irene Finocchi Giuseppe F. Italiano Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla Indice 1 Un introduzione informale agli algoritmi 1 2 Modelli di calcolo e metodologie di
SOMMARIO IL PROBLEMA DELLA RICERCA. Algoritmi di ricerca: Algoritmi di ordinamento: RICERCA LINEARE
SOMMARIO IL PROBLEMA DELLA RICERCA Algoritmi di ricerca: Ricerca lineare; Ricerca binaria (su elenchi già ordinati). Dato un array e un oggetto, stabilire se l oggetto è contenuto in un elemento dell array,
ALGORITMI DI ORDINAMENTO. Naive sort (o selection sort): Consideriamo algoritmi di ordinamento interni (elementi in memoria centrale).
ALGORITMI DI ORDINAMENTO Consideriamo algoritmi di ordinamento interni (elementi in memoria centrale). Vettore di elementi di un certo tipo, sul quale è definita una relazione d ordine totale (ad esempio,
Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari
Lezione 4 L artimetica binaria: I numeri relativi e frazionari Sommario I numeri relativi I numeri frazionari I numeri in virgola fissa I numeri in virgola mobile 1 Cosa sono inumeri relativi? I numeri
Sommario. Tabelle ad indirizzamento diretto e hash Funzioni Hash
Funzioni Hash Sommario Tabelle ad indirizzamento diretto e hash Funzioni Hash Requisiti Metodo della divisione Metodo della moltiplicazione Funzione Hash Universale La ricerca Talvolta si richiede che
Appunti di informatica. Lezione 10 anno accademico Mario Verdicchio
Appunti di informatica Lezione 10 anno accademico 2016-2017 Mario Verdicchio Esercizio Scrivere un programma che, data una sequenza di 10 interi (scelta dall utente), la ordini in ordine crescente Soluzione
Teorema di Thevenin generalizzato
Teorema di Thevenin generalizzato Si considerino due reti elettriche lineari, A e B, aventi rispettivamente N A e N B nodi interni. Esse si interfacciano attraverso n (n 3) fili di collegamento, in cui
ha come obiettivo quello di costruire a partire da A una matrice U, m n, che abbia il
Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 6 Eliminazione di Gauss con scambi di righe Sia A O una matrice m n. Abbiamo illustrato nella Lezione 5 un algoritmo che ha come
Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)
Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo
Matematica finanziaria
Matematica finanziaria La matematica finanziaria studia le operazioni che riguardano scambi di somme di denaro nel tempo. Sono operazioni di questo tipo, ad esempio, l investimento di un capitale in un
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati Capitolo 1 Un introduzione informale agli algoritmi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione informale di algoritmo Insieme di istruzioni, definite
2. ALGORITMO DEL SIMPLESSO
. ALGORITMO DEL SIMPLESSO R. Tadei Una piccola introduzione R. Tadei SIMPLESSO L obiettivo del capitolo è quello di fornire un algoritmo, l algoritmo del simplesso, che risolve qualsiasi problema di programmazione
