Introduzione alla Simulazione Numerica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Introduzione alla Simulazione Numerica"

Transcript

1 Introduzione alla Simulazione Numerica Daniele Vigo D.E.I.S. - Università di Bologna rev Novembre 2001 Simulazione numerica Tecnica che permette di eseguire esperimenti su un modello (realizzato al computer) che imita il funzionamento di un sistema reale Applicata a sistemi molto complessi dinamici e non stazionari risorse scarse e sistemi di code non possibili un modelli analitici soddisfacenti La simulazione è uno degli strumenti maggiormente usati nella pianificazione e gestione di sistemi produttivi e logistici Simul.2 1

2 Simulazione numerica (2) La simulazione di un sistema prevede la rappresentazione cronologica degli stati attraverso cui esso evolve nel tempo Il modello di simulazione è un programma che riproduce il funzionamento del sistema: Consente di modellare il sistema in modo fedele e dettagliato Consente l inclusione esplicita nel modello di non stazionarietà, stocasticità ed evoluzione nel tempo Simul.3 Inconvenienti della simulazione Non sono modelli analitici: consentono di ottenere solo stime dei valori che si vogliono osservare I fenomeni stocastici nel modello sono descritti medianti distribuzioni di probabilità I risultati che si ottengono sono variabili aleatorie (simulando più volte il sistema si hanno risultati diversi) Replicazione degli esperimenti ed analisi con metodi statistici dei risultati che si ottengono dagli esperimenti di simulazione Simul. 2

3 Esempio: stazione di servizio 2 blocchi per il rifornimento (risorse) unica coda FIFO per l attesa delle auto (entità) terminato il servizio le auto escono dal sistema STAZIONE 1 STAZIONE 2 Simul.5 Stazione di servizio (2) Scopo: valutare il dimensionamento dell impianto tempo in coda lunghezza media e massima della coda proporzione del tempo in cui le stazioni sono occupate Dimensionamento soddisfacente? Individuazione dei colli di bottiglia del sistema Modifica e verifica di configurazione alternative Definizione dell unità di misura del tempo Simul.6 3

4 Stazione di servizio (3) Se ci sono già NMAX auto in coda l auto che arriva rinuncia al servizio Reperimento di dati sui tempi del sistema frequenza degli arrivi tempo di servizio Osservazioni e/o descrizione mediante variabili casuali con distribuzioni di probabilità tipiche Ipotesi: tempo (t) espresso in minuti sistema inizialmente (t = 0) vuoto ed inattivo Simul.7 Stazione di servizio () Esempio di dati di input (noti, osservati) in minuti auto arrivo interarrivo t attesa t servizio uscita Rinuncia 23 Simul.8

5 Comportamento dinamico auto arrivo interarrivo t attesa t servizio uscita NMAX = Rinuncia 23 A 1 I 1 A 2 I 2 A 3 I 3 A I A 5 A 6 A 7 I 5 I 6 rinuncia S1 S2 t F 1 F 2 F F 3 F 6 F Simul.9 Input del modello dati deterministici: numero delle risorse capacità delle code tempi di trasferimento, servizio, interarrivo (??) dati stocastici: tempi di trasferimento, servizio, interarrivo (??) da descrivere mediante distribuzioni tipiche quali? con quali parametri caratteristici? vengono generati nel corso della simulazione input stocastico output stocastico: Simul.10 5

6 Raccolta dati Fase difficile, costosa, lunga spesso frustrante il sistema può non esistere (impossibile osservarlo) dati non disponibili o incompleti (modifica del modello) Sensitività dell output all incertezza dell input Correlazione tra modello e dati disponibili Costo della raccolta dati da considerare nel budget del progetto Garbage In, Garbage Out (GIGO) Simul.11 Raccolta dati (2) Uso diretto dei dati disponibili nella simulazione lettura da file dei dati osservati (tempi, interarrivi ) tutti i dati usati sono veri non si possono generare dati non osservati potrebbero non essere abbastanza per più prove associazione dei dati a distribuzioni tipiche (fit) vengono generati valori casuali per dati non è detto che si ottenga un buon fit dei dati si possono ottenere valori non osservati si possono generare quanti dati si vogliono Simul.12 6

7 Fitting dei dati a distribuzioni Le distribuzioni tipiche sono definite da una forma analitica dipentente da un limitato numero di parametri Dato un insieme di osservazioni determinare la distribuzione (uniforme, esponenziale ) determinarne i parametri Valutazione della qualità del fitting scarto tra valori osservati e generati massima verosimiglianza, minimi quadrati Simul.13 Distribuzione uniforme f(x) 1/(b a) a b x f(x) = 1/(b a) per a x b, f(x) = 0 altrimenti parametri: a, b Simul.1 7

8 Distribuzione esponenziale λx f(x) = λ e per x 0 parametro: λ distribuzione degli intervalli di tempo con cui si verificano fenomeni rari ed indipendenti es. arrivi delle auto alla stazione di servizio λ = tempo medio di interarrivo Simul.15 f ( x ) = σ Distribuzione normale ( x µ ) 1 2 2σ e 2 π 2 parametri: µ, σ tipico andamento a campana descrive fenomeni somma di valori casuali indipendenti es. errori di diametro di pezzi prodotti Simul.16 8

9 Stazione di servizio: dati Arrivo delle auto: interarrivo distribuito esponenzialmente con v.m. λ Servizio: durata distribuita uniformemente in [T1, T2] Esperimento: dati λ, T1, T2, determinare tempo medio in coda delle auto numero di auto che non si fermano Simul.17 Modello di simulazione Suddivide un sistema in un insieme di elementi (entità) interagenti tra loro per l uso delle risorse scarse del sistema, cui sono associate code le entità hanno particolari caratteristiche (attributi) Ne descrive il funzionamento in termini di: attività che producono variazioni nello stato del Sistema (Eventi) percorso seguiti dalle entità nel transito all interno del Sistema (Processi) Simul.18 9

10 Entità Elementi di un modello (1) attori che si muovono nel sistema, ne cambiano lo stato ed interagiscono con altre entità Sono oggetti dinamici: entrano (creazione) ed escono (distruzione) dal sistema Normalmente rappresentano entità reali (es. auto, pezzi) In un dato istante esistono più entità dello stesso tipo Possono esserci diversi tipi di entità nel sistema (es. aerei,piloti,bagagli, passeggeri) Simul.19 Attributi Elementi di un modello (2) sono le caratteristiche descrittive ed identificative delle entità Tutte le entità dello stesso tipo hanno lo stesso insieme di attributi ma ciascuna ha valori diversi istante di arrivo istante di consegna accumulatori statistici possono essere immaginati come dati locali relativi a ciascuna entità Simul.20 10

11 Elementi di un modello (3) Variabili (globali) caratteristiche del modello complessivo (non delle entità) numero delle stazioni di servizio capacità massima della coda istante corrente del tempo simulato dati globali accessibili a tutte le parti del modello Simul.21 Risorse Elementi di un modello () ciò per cui le entità competono: stazioni di servizio spazio, operatori, macchine le entità ottengono una risorsa, la usano e la rilasciano sono parti permanenti del sistema (vita più lunga delle entità) Una risorsa può essere presente in più copie stazioni di servizio posti di un ristorante il numero può variare nel corso della simulazione Simul.22 11

12 C ode Elementi di un modello (5) luoghi nei quali le entità attendono la liberazione delle risorse generalmente sono collegate alle risorse Capacità infinita Capacità finita (cosa succede alle entità che arrivano a coda piena?) Politica di gestione della coda: FIFO (First In First Out) LIFO (Last In First Out) ordinata in base a valori degli attributi Simul.23 Elementi di un modello (6) Accumulatori statistici memorizzano le informazioni che si desidera osservare tempo medio nel sistema delle entità tempo medio in coda delle entità lunghezze medie delle code numero di entità simulate sono assimilabili a variabili globali Simul.2 12

13 Costruzione del modello (1) Richiede un elevato grado di conoscenza del sistema da simulare Diagramma di flusso per descrivere evoluzione e relazioni causa-effetto del sistema Individuazione delle componenti fondamentali (descrizione statica) Collegamento tra le componenti (descrizione dinamica) Regole operative che determinano il comportamento dei componenti ed il verificarsi degli eventi Definizione di distribuzioni di probabilitá Simul.25 Costruzione del modello (2) Non sempre un modello molto dettagliato consente di ottenere un maggior grado di informazione sul sistema Se il comportamento di un elemento non puó essere descritto in modo deterministico, meglio usare un fenomeno casuale piuttosto che valori medi Il modello puó essere formalizzato ottenendo un Programma di Simulazione eseguibile su calcolatore Simul.26 13

14 Costruzione del modello (3) Il programma viene attivato usando numeri casuali per generare eventi simulati nel tempo Ripetendo l esperimento si possono ottenere informazioni statistiche sul comportamento del sistlema Cambiando configurazione, si identifica la più promettente Simul.27 Programmazione degli Eventi (1) Evento: Istante in cui avviene una modifica dello stato (arrivo di un auto.) Sottoprogramma che contiene le istruzioni da eseguire nell istante in cui l evento avviene Eventi esogeni: esecuzione causata dall esterno (es. inizio simulazione, fine simulazione) Eventi endogeni: esecuzione causata da altri eventi (es. arrivo di un auto, fine servizio) Simul.28 1

15 Programmazione degli Eventi (2) Quando si verifica un evento si considerano tutte le sue possibili implicazioni sul sistema: aggiornamento dello stato (variabili globali, risorse) aggiornamento accumulatori statistici aggiornamento orologio del sistema Ogni evento determina quali eventi debbano avvenire nel futuro: dello stesso tipo di tipo diverso ed in quale istante avvengono (li innesca ) Simul.29 Programmazione degli Eventi (3) Coda del tempo: insieme ordinato degli eventi che devono avvenire (innescati) Al termine dell esecuzione di un evento si manda in esecuzione il prossimo prelevandolo dalla coda E necessario specificare la regola di terminazione spegnimento del sistema (coda del tempo vuota) trascorso un certo tempo simulato Simul.30 15

16 Diagramma degli inneschi sintetizza il comportamento dinamico del sistema Non c è coda INIZIO ARRIVO AUTO INIZIO SERVIZIO FINE C è coda SERVIZIO Simul.31 Stazione di servizio: eventi (1) Inizio Simulazione evento esogeno lettura dei parametri di ingresso (λ, T1, T2, NMAX, ) inizializzazione dello stato del sistema (stato stazioni, numero auto nel sistema, ) inizializzazione delle code avviamento del sistema (innesco del primo arrivo di un auto) Simul.32 16

17 Diagramma di flusso (1) INIZIO I leggi i parametri di ingresso; inizializza lo stato del sistema; innesca il primo evento ARRIVO subito; U Simul.33 Stazione di servizio: eventi (2) Arrivo di un auto evento endogeno generazione ritardo e innesco prossimo ARRIVO creazione entità auto arrivata se esiste stazione libera (K): occupala ed innesca un evento INIZIO SERVIZIO per l auto, altrimenti se coda contiene meno di NMAX auto: inserisci l auto in coda, altrimenti distruggi l auto (esce dal sistema) Simul.3 17

18 Diagramma di flusso (2) I ARRIVO F T:= valore casuale con disp. esp. V.M. λ; innesca prossimoarrivo con ritardo T Stampa le statistiche Ci sono NMAX auto in CODA? NO SI Raccogli le statistiche Considerate tutte le auto? NO SI Genera l auto Esiste stazione K libera? NO SI Occupa la stazione K; innesca un evento INIZIO_SERVIZIO per l auto e la stazione K con ritardo 0 U Inserisci l auto nell insieme CODA Simul.35 Stazione di servizio: eventi (3) Inizio servizio evento endogeno occupazione della stazione generazione ritardo e innesco evento FINE SERVIZIO INIZIO SERVIZIO I T:= valore casuale con distr. unif. in[t1,t2]; innesca un FINE SERVIZIO per l auto sulla stazione corrente con ritardo T; U Simul.36 18

19 Stazione di servizio: eventi () Fine servizio evento endogeno raccolta statistiche e distruzione auto che termina il servizio (esce dal sistema) se CODA contiene auto in attesa: preleva la prima auto da CODA innesca un inizio servizio per l auto e la stazione altrimenti (CODA vuota): libera la stazione Simul.37 Diagramma di flusso (3) I FINE SERVIZIO Raccogli le statistiche; distruggi l auto Considerate tutte le auto? NO SI Stampa le statistiche F Insieme CODA vuoto? NO SI Libera la stazione estrai la prima auto da CODA; innesca evento INIZIO SERVIZIO per l auto estratta e la stazione corrente con ritardo 0 U Simul.38 19

20 Processo: Interazione dei Processi (1) Eventi (ordinati cronologicamente) rappresentazione di ciò che succede ad un entità tipica nel sistema Comportamento complessivo del sistema descrivibile da processi interagenti tra loro I processi realizzano più azioni di durata maggiore di zero e interagiscono tra loro Istruzioni: attiva, ritarda di., aspetta fino a. Diagramma di flusso lineare che descrive il transito delle entità nel sistema stesso Simul.39 Interazione dei Processi (2) 1. Crea auto a intervalli distr. esp. di v.m. λ 2. Se stazione occupata inserisci auto in CODA (di capacità NMAX) 3. Occupa stazione; ritarda di un tempo distr. unif. in [T1,T2]. Libera stazione; se c è auto in coda attivala (dal punto 3) 5. Esci dal sistema Simul.0 20

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it Automazione Industriale (scheduling+mms) scheduling+mms adacher@dia.uniroma3.it Introduzione Sistemi e Modelli Lo studio e l analisi di sistemi tramite una rappresentazione astratta o una sua formalizzazione

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE INTRODUZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Introduzione alla simulazione Una simulazione è l imitazione

Dettagli

Introduzione al package ARENA

Introduzione al package ARENA Introduzione al package ARENA Daniele Vigo D.E.I.S. - Università di Bologna dvigo@deis.unibo.it rev. 1.2 - Marzo 2003 ARENA Applicazione Windows che permette di creare modelli ed eseguire simulazioni del

Dettagli

Scheduling della CPU. Sistemi multiprocessori e real time Metodi di valutazione Esempi: Solaris 2 Windows 2000 Linux

Scheduling della CPU. Sistemi multiprocessori e real time Metodi di valutazione Esempi: Solaris 2 Windows 2000 Linux Scheduling della CPU Sistemi multiprocessori e real time Metodi di valutazione Esempi: Solaris 2 Windows 2000 Linux Sistemi multiprocessori Fin qui si sono trattati i problemi di scheduling su singola

Dettagli

Parte 4. Progettazione di una simulazione

Parte 4. Progettazione di una simulazione Parte 4 Progettazione di una simulazione Fasi di uno studio di simulazione l approccio a cascata Problema Analisi e validazione Progettazione e test Sistema Modello concettuale Programma di simulazione

Dettagli

Tecniche di Simulazione: Introduzione. N. Del Buono:

Tecniche di Simulazione: Introduzione. N. Del Buono: Tecniche di Simulazione: Introduzione N. Del Buono: 2 Che cosa è la simulazione La SIMULAZIONE dovrebbe essere considerata una forma di COGNIZIONE (COGNIZIONE qualunque azione o processo per acquisire

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

CHIUSURE di MAGAZZINO di FINE ANNO

CHIUSURE di MAGAZZINO di FINE ANNO CHIUSURE di MAGAZZINO di FINE ANNO Operazioni da svolgere per il riporto delle giacenze di fine esercizio Il documento che segue ha lo scopo di illustrare le operazioni che devono essere eseguite per:

Dettagli

Un gioco con tre dadi

Un gioco con tre dadi Un gioco con tre dadi Livello scolare: biennio Abilità interessate Costruire lo spazio degli eventi in casi semplici e determinarne la cardinalità. Valutare la probabilità in diversi contesti problematici.

Dettagli

RAPPRESENTAZIONE GRAFICA DEGLI ALGORITMI

RAPPRESENTAZIONE GRAFICA DEGLI ALGORITMI RAPPRESENTAZIONE GRAFICA DEGLI ALGORITMI Diagramma di flusso L algoritmo può essere rappresentato in vari modi, grafici o testuali. Uno dei metodi grafici più usati e conosciuti è il cosiddetto diagramma

Dettagli

Esercizio 1: trading on-line

Esercizio 1: trading on-line Esercizio 1: trading on-line Si realizzi un programma Java che gestisca le operazioni base della gestione di un fondo per gli investimenti on-line Creazione del fondo (con indicazione della somma in inizialmente

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Sistemi di Servizio e Simulazione

Sistemi di Servizio e Simulazione Sistemi di Servizio e Simulazione Soluzioni degli esercizi di esame proposti negli appelli dell a.a.2004-05 Sono stati distribuiti sul sito web i testi di tre appelli di esame dell anno accademico 2004-05:

Dettagli

Aprire WEKA Explorer Caricare il file circletrain.arff Selezionare random split al 66% come modalità di test Selezionare J48 come classificatore e

Aprire WEKA Explorer Caricare il file circletrain.arff Selezionare random split al 66% come modalità di test Selezionare J48 come classificatore e Alberi di decisione Aprire WEKA Explorer Caricare il file circletrain.arff Selezionare random split al 66% come modalità di test Selezionare J48 come classificatore e lanciarlo con i parametri di default.

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Scheduling della CPU

Scheduling della CPU Scheduling della CPU Sistemi multiprocessori e real time Metodi di valutazione Esempi: Solaris 2 Windows 2000 Linux 6.1 Sistemi multiprocessori simmetrici Fin qui si sono trattati i problemi di scheduling

Dettagli

Il memory manager. Gestione della memoria centrale

Il memory manager. Gestione della memoria centrale Il memory manager Gestione della memoria centrale La memoria La memoria RAM è un vettore molto grande di WORD cioè celle elementari a 16bit, 32bit, 64bit (2Byte, 4Byte, 8Byte) o altre misure a seconda

Dettagli

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. Algoritmi 1 Sommario Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. 2 Informatica Nome Informatica=informazione+automatica. Definizione Scienza che si occupa dell

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Temi di Esame a.a. 2012-2013. Statistica - CLEF

Temi di Esame a.a. 2012-2013. Statistica - CLEF Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei

Dettagli

Corso di Amministrazione di Reti A.A. 2002/2003

Corso di Amministrazione di Reti A.A. 2002/2003 Struttura di Active Directory Corso di Amministrazione di Reti A.A. 2002/2003 Materiale preparato utilizzando dove possibile materiale AIPA http://www.aipa.it/attivita[2/formazione[6/corsi[2/materiali/reti%20di%20calcolatori/welcome.htm

Dettagli

Ottimizzazione delle interrogazioni (parte I)

Ottimizzazione delle interrogazioni (parte I) Ottimizzazione delle interrogazioni I Basi di Dati / Complementi di Basi di Dati 1 Ottimizzazione delle interrogazioni (parte I) Angelo Montanari Dipartimento di Matematica e Informatica Università di

Dettagli

Coordinazione Distribuita

Coordinazione Distribuita Coordinazione Distribuita Ordinamento degli eventi Mutua esclusione Atomicità Controllo della Concorrenza 21.1 Introduzione Tutte le questioni relative alla concorrenza che si incontrano in sistemi centralizzati,

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

A intervalli regolari ogni router manda la sua tabella a tutti i vicini, e riceve quelle dei vicini.

A intervalli regolari ogni router manda la sua tabella a tutti i vicini, e riceve quelle dei vicini. Algoritmi di routing dinamici (pag.89) UdA2_L5 Nelle moderne reti si usano algoritmi dinamici, che si adattano automaticamente ai cambiamenti della rete. Questi algoritmi non sono eseguiti solo all'avvio

Dettagli

Airone Gestione Rifiuti Funzioni di Esportazione e Importazione

Airone Gestione Rifiuti Funzioni di Esportazione e Importazione Airone Gestione Rifiuti Funzioni di Esportazione e Importazione Airone Funzioni di Esportazione Importazione 1 Indice AIRONE GESTIONE RIFIUTI... 1 FUNZIONI DI ESPORTAZIONE E IMPORTAZIONE... 1 INDICE...

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Ingegneria del Software T

Ingegneria del Software T Home Finance 1 Requisiti del cliente 1 Si richiede di realizzare un sistema per la gestione della contabilità familiare. Il sistema consente la classificazione dei movimenti di denaro e la loro memorizzazione.

Dettagli

OSSERVAZIONI TEORICHE Lezione n. 4

OSSERVAZIONI TEORICHE Lezione n. 4 OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze

Dettagli

Introduzione. Classificazione di Flynn... 2 Macchine a pipeline... 3 Macchine vettoriali e Array Processor... 4 Macchine MIMD... 6

Introduzione. Classificazione di Flynn... 2 Macchine a pipeline... 3 Macchine vettoriali e Array Processor... 4 Macchine MIMD... 6 Appunti di Calcolatori Elettronici Esecuzione di istruzioni in parallelo Introduzione... 1 Classificazione di Flynn... 2 Macchine a pipeline... 3 Macchine vettoriali e Array Processor... 4 Macchine MIMD...

Dettagli

Ing. Simone Giovannetti

Ing. Simone Giovannetti Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Ing. Simone Giovannetti Firenze, 29 Maggio 2012 1 Incertezza di Misura (1/3) La necessità di misurare nasce dall esigenza

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

SOFTWARE PER LA RILEVAZIONE DEI TEMPI PER CENTRI DI COSTO

SOFTWARE PER LA RILEVAZIONE DEI TEMPI PER CENTRI DI COSTO SOFTWARE PER LA RILEVAZIONE DEI TEMPI PER CENTRI DI COSTO Descrizione Nell ambito della rilevazione dei costi, Solari con l ambiente Start propone Time&Cost, una applicazione che contribuisce a fornire

Dettagli

GESTIONE DELLE TECNOLOGIE AMBIENTALI PER SCARICHI INDUSTRIALI ED EMISSIONI NOCIVE LEZIONE 10. Angelo Bonomi

GESTIONE DELLE TECNOLOGIE AMBIENTALI PER SCARICHI INDUSTRIALI ED EMISSIONI NOCIVE LEZIONE 10. Angelo Bonomi GESTIONE DELLE TECNOLOGIE AMBIENTALI PER SCARICHI INDUSTRIALI ED EMISSIONI NOCIVE LEZIONE 10 Angelo Bonomi CONSIDERAZIONI SUL MONITORAGGIO Un monitoraggio ottimale dipende dalle considerazioni seguenti:

Dettagli

Analisi sensitività. Strumenti per il supporto alle decisioni nel processo di Valutazione d azienda

Analisi sensitività. Strumenti per il supporto alle decisioni nel processo di Valutazione d azienda Analisi sensitività. Strumenti per il supporto alle decisioni nel processo di Valutazione d azienda Premessa Con l analisi di sensitività il perito valutatore elabora un range di valori invece di un dato

Dettagli

Basi di dati. (Sistemi Informativi) teoria e pratica con Microsoft Access. Basi di dati. Basi di dati. Basi di dati e DBMS DBMS DBMS

Basi di dati. (Sistemi Informativi) teoria e pratica con Microsoft Access. Basi di dati. Basi di dati. Basi di dati e DBMS DBMS DBMS Basi di Basi di (Sistemi Informativi) Sono una delle applicazioni informatiche che hanno avuto il maggiore utilizzo in uffici, aziende, servizi (e oggi anche sul web) Avete già interagito (magari inconsapevolmente)

Dettagli

MODELLO CLIENT/SERVER. Gianluca Daino Dipartimento di Ingegneria dell Informazione Università degli Studi di Siena daino@unisi.it

MODELLO CLIENT/SERVER. Gianluca Daino Dipartimento di Ingegneria dell Informazione Università degli Studi di Siena daino@unisi.it MODELLO CLIENT/SERVER Gianluca Daino Dipartimento di Ingegneria dell Informazione Università degli Studi di Siena daino@unisi.it POSSIBILI STRUTTURE DEL SISTEMA INFORMATIVO La struttura di un sistema informativo

Dettagli

PROGRAMMA SVOLTO NELLA SESSIONE N.

PROGRAMMA SVOLTO NELLA SESSIONE N. Università C. Cattaneo Liuc, Corso di Statistica, Sessione n. 1, 2014 Laboratorio Excel Sessione n. 1 Venerdì 031014 Gruppo PZ Lunedì 061014 Gruppo AD Martedì 071014 Gruppo EO PROGRAMMA SVOLTO NELLA SESSIONE

Dettagli

Prof. Giuseppe Chiumeo. Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto tre strutture di base:

Prof. Giuseppe Chiumeo. Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto tre strutture di base: LA STRUTTURA DI RIPETIZIONE La ripetizione POST-condizionale La ripetizione PRE-condizionale INTRODUZIONE (1/3) Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto

Dettagli

Gestione del processore e dei processi

Gestione del processore e dei processi Il processore è la componente più importante di un sistema di elaborazione e pertanto la sua corretta ed efficiente gestione è uno dei compiti principali di un sistema operativo Il ruolo del processore

Dettagli

Funzioni in C. Violetta Lonati

Funzioni in C. Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica Funzioni - in breve: Funzioni Definizione di funzioni

Dettagli

Progettaz. e sviluppo Data Base

Progettaz. e sviluppo Data Base Progettaz. e sviluppo Data Base! Progettazione Basi Dati: Metodologie e modelli!modello Entita -Relazione Progettazione Base Dati Introduzione alla Progettazione: Il ciclo di vita di un Sist. Informativo

Dettagli

Introduzione. Coordinazione Distribuita. Ordinamento degli eventi. Realizzazione di. Mutua Esclusione Distribuita (DME)

Introduzione. Coordinazione Distribuita. Ordinamento degli eventi. Realizzazione di. Mutua Esclusione Distribuita (DME) Coordinazione Distribuita Ordinamento degli eventi Mutua esclusione Atomicità Controllo della Concorrenza Introduzione Tutte le questioni relative alla concorrenza che si incontrano in sistemi centralizzati,

Dettagli

Cenni su algoritmi, diagrammi di flusso, strutture di controllo

Cenni su algoritmi, diagrammi di flusso, strutture di controllo Cenni su algoritmi, diagrammi di flusso, strutture di controllo Algoritmo Spesso, nel nostro vivere quotidiano, ci troviamo nella necessità di risolvere problemi. La descrizione della successione di operazioni

Dettagli

Cosa è un foglio elettronico

Cosa è un foglio elettronico Cosa è un foglio elettronico Versione informatica del foglio contabile Strumento per l elaborazione di numeri (ma non solo...) I valori inseriti possono essere modificati, analizzati, elaborati, ripetuti

Dettagli

Testi di Esercizi e Quesiti 1

Testi di Esercizi e Quesiti 1 Architettura degli Elaboratori, 2009-2010 Testi di Esercizi e Quesiti 1 1. Una rete logica ha quattro variabili booleane di ingresso a 0, a 1, b 0, b 1 e due variabili booleane di uscita z 0, z 1. La specifica

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

Soluzione dell esercizio del 2 Febbraio 2004

Soluzione dell esercizio del 2 Febbraio 2004 Soluzione dell esercizio del 2 Febbraio 2004 1. Casi d uso I casi d uso sono riportati in Figura 1. Figura 1: Diagramma dei casi d uso. E evidenziato un sotto caso di uso. 2. Modello concettuale Osserviamo

Dettagli

INFORMATICA 1 L. Mezzalira

INFORMATICA 1 L. Mezzalira INFORMATICA 1 L. Mezzalira Possibili domande 1 --- Caratteristiche delle macchine tipiche dell informatica Componenti hardware del modello funzionale di sistema informatico Componenti software del modello

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Fasi di creazione di un programma

Fasi di creazione di un programma Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma

Dettagli

FONDAMENTI di INFORMATICA L. Mezzalira

FONDAMENTI di INFORMATICA L. Mezzalira FONDAMENTI di INFORMATICA L. Mezzalira Possibili domande 1 --- Caratteristiche delle macchine tipiche dell informatica Componenti hardware del modello funzionale di sistema informatico Componenti software

Dettagli

ControlloCosti. Cubi OLAP. Controllo Costi Manuale Cubi

ControlloCosti. Cubi OLAP. Controllo Costi Manuale Cubi ControlloCosti Cubi OLAP I cubi OLAP Un Cubo (OLAP, acronimo di On-Line Analytical Processing) è una struttura per la memorizzazione e la gestione dei dati che permette di eseguire analisi in tempi rapidi,

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

FIRESHOP.NET. Gestione del taglia e colore. www.firesoft.it

FIRESHOP.NET. Gestione del taglia e colore. www.firesoft.it FIRESHOP.NET Gestione del taglia e colore www.firesoft.it Sommario SOMMARIO Introduzione... 3 Configurazione iniziale... 5 Gestione delle varianti... 6 Raggruppamento delle varianti... 8 Gestire le varianti

Dettagli

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate Introduzione alle relazioni multivariate Associazione e causalità Associazione e causalità Nell analisi dei dati notevole importanza è rivestita dalle relazioni causali tra variabili Date due variabili

Dettagli

Configurazione della ricerca desktop di Nepomuk. Sebastian Trüg Anne-Marie Mahfouf Traduzione della documentazione in italiano: Federico Zenith

Configurazione della ricerca desktop di Nepomuk. Sebastian Trüg Anne-Marie Mahfouf Traduzione della documentazione in italiano: Federico Zenith Configurazione della ricerca desktop di Nepomuk Sebastian Trüg Anne-Marie Mahfouf Traduzione della documentazione in italiano: Federico Zenith 2 Indice 1 Introduzione 4 1.1 Impostazioni di base....................................

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

VALORE DELLE MERCI SEQUESTRATE

VALORE DELLE MERCI SEQUESTRATE La contraffazione in cifre: NUOVA METODOLOGIA PER LA STIMA DEL VALORE DELLE MERCI SEQUESTRATE Roma, Giugno 2013 Giugno 2013-1 Il valore economico dei sequestri In questo Focus si approfondiscono alcune

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -

Dettagli

Scheduling della CPU:

Scheduling della CPU: Coda dei processi pronti (ready( queue): Scheduling della CPU primo ultimo PCB i PCB j PCB k contiene i descrittori ( process control block, PCB) dei processi pronti. la strategia di gestione della ready

Dettagli

1 Processo, risorsa, richiesta, assegnazione 2 Concorrenza 3 Grafo di Holt 4 Thread 5 Sincronizzazione tra processi

1 Processo, risorsa, richiesta, assegnazione 2 Concorrenza 3 Grafo di Holt 4 Thread 5 Sincronizzazione tra processi 1 Processo, risorsa, richiesta, assegnazione 2 Concorrenza 3 Grafo di Holt 4 Thread 5 Sincronizzazione tra processi Il processo E' un programma in esecuzione Tipi di processo Stati di un processo 1 indipendenti

Dettagli

Gestione Iter Manuale Sistemista. Gestione Iter Manuale Sistemista

Gestione Iter Manuale Sistemista. Gestione Iter Manuale Sistemista Gestione Iter Manuale Sistemista Paragrafo-Pagina di Pagine 1-1 di 8 Versione 3 del 24/02/2010 SOMMARIO 1 A Chi è destinato... 1-3 2 Pre requisiti... 2-3 3 Obiettivi... 3-3 4 Durata della formazione...

Dettagli

Tesina di Identificazione dei Modelli e Analisi dei Dati

Tesina di Identificazione dei Modelli e Analisi dei Dati Tesina di Identificazione dei Modelli e Analisi dei Dati Ceccarelli Egidio e Papi Alessio 19 Luglio 2000 1 Indice 1 Introduzione 3 2 Valutazioni relative all identificazione 3 3 Prove 4 4 Conclusioni 5

Dettagli

Sistemi Operativi. Scheduling della CPU SCHEDULING DELLA CPU. Concetti di Base Criteri di Scheduling Algoritmi di Scheduling

Sistemi Operativi. Scheduling della CPU SCHEDULING DELLA CPU. Concetti di Base Criteri di Scheduling Algoritmi di Scheduling SCHEDULING DELLA CPU 5.1 Scheduling della CPU Concetti di Base Criteri di Scheduling Algoritmi di Scheduling FCFS, SJF, Round-Robin, A code multiple Scheduling in Multi-Processori Scheduling Real-Time

Dettagli

Sistemi Operativi SCHEDULING DELLA CPU. Sistemi Operativi. D. Talia - UNICAL 5.1

Sistemi Operativi SCHEDULING DELLA CPU. Sistemi Operativi. D. Talia - UNICAL 5.1 SCHEDULING DELLA CPU 5.1 Scheduling della CPU Concetti di Base Criteri di Scheduling Algoritmi di Scheduling FCFS, SJF, Round-Robin, A code multiple Scheduling in Multi-Processori Scheduling Real-Time

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

11. Evoluzione del Software

11. Evoluzione del Software 11. Evoluzione del Software Andrea Polini Ingegneria del Software Corso di Laurea in Informatica (Ingegneria del Software) 11. Evoluzione del Software 1 / 21 Evoluzione del Software - generalità Cosa,

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

Problematiche connesse alla normativa e alle procedure antiriciclaggio per i professionisti

Problematiche connesse alla normativa e alle procedure antiriciclaggio per i professionisti Problematiche connesse alla normativa e alle procedure antiriciclaggio per i professionisti Vantaggi dell utilizzo di un software standardizzato Fabio Roncarati Problematiche connesse alla normativa e

Dettagli

Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Alfonso Iodice D Enza April 26, 2007 1...prima di cominciare Contare, operazione solitamente semplice, può diventare complicata se lo scopo

Dettagli

come nasce una ricerca

come nasce una ricerca PSICOLOGIA SOCIALE lez. 2 RICERCA SCIENTIFICA O SENSO COMUNE? Paola Magnano paola.magnano@unikore.it ricevimento: martedì ore 10-11 c/o Studio 16, piano -1 PSICOLOGIA SOCIALE COME SCIENZA EMPIRICA le sue

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

Light CRM. Documento Tecnico. Descrizione delle funzionalità del servizio

Light CRM. Documento Tecnico. Descrizione delle funzionalità del servizio Documento Tecnico Light CRM Descrizione delle funzionalità del servizio Prosa S.r.l. - www.prosa.com Versione documento: 1, del 11 Luglio 2006. Redatto da: Michela Michielan, michielan@prosa.com Revisionato

Dettagli

LE CARTE DI CONTROLLO (4)

LE CARTE DI CONTROLLO (4) LE CARTE DI CONTROLLO (4) Tipo di carta di controllo Frazione difettosa Carta p Numero di difettosi Carta np Dimensione campione Variabile, solitamente >= 50 costante, solitamente >= 50 Linea centrale

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

La candela accesa. Descrizione generale. Obiettivi. Sequenza didattica e metodo di lavoro. Esperimenti sulla crescita delle piante

La candela accesa. Descrizione generale. Obiettivi. Sequenza didattica e metodo di lavoro. Esperimenti sulla crescita delle piante Esperimenti sulla crescita delle piante unità didattica 1 La candela accesa Durata 60 minuti Materiali per ciascun gruppo - 1 candela - 1 vaso di vetro - 1 cronometro - 1 cannuccia - fiammiferi - 1 pezzo

Dettagli

SPC e distribuzione normale con Access

SPC e distribuzione normale con Access SPC e distribuzione normale con Access In questo articolo esamineremo una applicazione Access per il calcolo e la rappresentazione grafica della distribuzione normale, collegata con tabelle di Clienti,

Dettagli

Verifica e Validazione del Simulatore

Verifica e Validazione del Simulatore Verifica e del Simulatore I 4 passi principali del processo simulativo Formulare ed analizzare il problema Sviluppare il Modello del Sistema Raccolta e/o Stima dati per caratterizzare l uso del Modello

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST 1 Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: analisi

Dettagli

Istruzioni (1): L elaborato verrà letto, compilato e fatto girare per verificare la correttezza della sintassi e delle operazioni svolte

Istruzioni (1): L elaborato verrà letto, compilato e fatto girare per verificare la correttezza della sintassi e delle operazioni svolte Istruzioni (1): L elaborato può essere svolto in gruppi di massimo 4 persone (si raccomanda caldamente l aggregazione) NON dovete annunciarmi preventivamente che elaborato volete fare: sceglietene uno

Dettagli

Metodi e Modelli Matematici di Probabilità per la Gestione

Metodi e Modelli Matematici di Probabilità per la Gestione Metodi e Modelli Matematici di Probabilità per la Gestione Prova scritta del 30/1/06 Esercizio 1 Una banca ha N correntisti. Indichiamo con N n il numero di correntisti esistenti il giorno n-esimo. Descriviamo

Dettagli

12. Evoluzione del Software

12. Evoluzione del Software 12. Evoluzione del Software Andrea Polini Ingegneria del Software Corso di Laurea in Informatica (Ingegneria del Software) 12. Evoluzione del Software 1 / 21 Evoluzione del Software - generalità Cosa,

Dettagli

Appunti di Sistemi Elettronici

Appunti di Sistemi Elettronici Prof.ssa Maria Rosa Malizia 1 LA PROGRAMMAZIONE La programmazione costituisce una parte fondamentale dell informatica. Infatti solo attraverso di essa si apprende la logica che ci permette di comunicare

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Il Sistema Operativo. C. Marrocco. Università degli Studi di Cassino

Il Sistema Operativo. C. Marrocco. Università degli Studi di Cassino Il Sistema Operativo Il Sistema Operativo è uno strato software che: opera direttamente sull hardware; isola dai dettagli dell architettura hardware; fornisce un insieme di funzionalità di alto livello.

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

COLLI. Gestione dei Colli di Spedizione. Release 5.20 Manuale Operativo

COLLI. Gestione dei Colli di Spedizione. Release 5.20 Manuale Operativo Release 5.20 Manuale Operativo COLLI Gestione dei Colli di Spedizione La funzione Gestione Colli consente di generare i colli di spedizione in cui imballare gli articoli presenti negli Ordini Clienti;

Dettagli

Posizionamento ottimale di sensori per il monitoraggio degli inquinanti nelle reti idriche

Posizionamento ottimale di sensori per il monitoraggio degli inquinanti nelle reti idriche Posizionamento ottimale di sensori per il monitoraggio degli inquinanti nelle reti idriche Fulvio BOANO Politecnico di Torino Dipartimento di Ingegneria dell Ambiente, del Territorio e delle Infrastrutture

Dettagli

SCHEDULATORI DI PROCESSO

SCHEDULATORI DI PROCESSO Indice 5 SCHEDULATORI DI PROCESSO...1 5.1 Schedulatore Round Robin...1 5.2 Schedulatore a priorità...2 5.2.1 Schedulatore a code multiple...3 5.3 Schedulatore Shortest Job First...3 i 5 SCHEDULATORI DI

Dettagli

Nozione di algoritmo. Gabriella Trucco

Nozione di algoritmo. Gabriella Trucco Nozione di algoritmo Gabriella Trucco Programmazione Attività con cui si predispone l'elaboratore ad eseguire un particolare insieme di azioni su particolari informazioni (dati), allo scopo di risolvere

Dettagli