Cosa dobbiamo già conoscere?
|
|
|
- Riccardo Romano
- 9 anni fa
- Visualizzazioni
Transcript
1 Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili.
2 Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire quali sono gli esiti possibili e le loro probabilità. DEFINIZIONE(non matematica). Un esperimento aleatorio è un esperimento di cui a priori non si conosce l esito. NOTA: il termine aleatorio deriva dal latino alea che significa dado. È quindi sinonimo di casuale.
3 Fenomeni dove il modello è aleatorio Intrinsecamente aleatori: fisica quantistica. Deterministici ma con forte dipendenza dal dato iniziale: moneta. Deterministici ma con dipendenza da molte variabili non note: mercati finanziari. I modelli probabilistici sono usati quando abbiamo a che fare con incertezza o mancanza di informazione.
4 in biologia Le misurazioni sono spesso da ritenersi esperimenti aleatori: 1. perché affette da errore; 2. perché la quantità misurata presenta differenze fra diversi individui; 3. perché non si conoscono tutte le variabili in gioco. Come esempi basti considerare: 1. il diametro di una cellula fissata o la lunghezza di una certa proteina denaturata; 2. la lunghezza delle trote di un certo allevamento; 3. l efficacia o meno di un farmaco somministrato ad un individuo malato.
5 per fissare le idee a. Estrazioni del lotto: si pesca una pallina da un urna che ne contiene 90, numerate da 1 a 90. Esperimento: vedere che numero esce. b. Gioco del poker. Esperimento: vedere quali sono le 5 carte che ho in mano dopo che il mazziere ha distribuito. c. Lanciare più volte una moneta. Esperimento: contare quanti lanci sono necessari per vedere comparire testa. d. Durata di una lampadina. Esperimento: accendere una lampadina e cronometrare il tempo necessario affinché si fulmini.
6 per fissare le idee In tutti questi casi l esito non è noto ma si sa quali sono i casi possibili: a. Estrazioni del lotto: tutti i numeri interi da 1 a 90. b. Gioco del poker: tutte le cinquine di carte che si possono estrarre dal mazzo da poker. c. Lanciare più volte una moneta: tutti i numeri interi maggiori o uguali a 1. d. Durata di una lampadina: tutti i numeri reali maggiori o uguali a 0. Quando usare modelli probabilistici In tutti i casi in cui c è incertezza. La probabilità è un modello che usiamo in questi casi.
7 DEFINIZIONE. a. I possibili esiti di un esperimento aleatorio sono detti eventi elementari. b. L insieme costituito da tutti gli eventi elementari è lo spazio Ω. c. I sottoinsiemi di Ω sono gli eventi. d. Se Ω è finito o infinito numerabile allora è detto spazio discreto, se è infinito non numerabile è detto spazio continuo. Nota: numerabile significa i cui elementi si possono contare (cioè dire questo è il primo elemento, questo il secondo, etc.. Formalmente, sono numerabili gli insiemi che si possono mettere in corrispondenza biunivoca con i naturali (dunque N, Z, Q).
8 : il lotto a. Gli eventi elementari sono tutti i numeri interi da 1 a 90. b. Ω = {1, 2, 3,...,89, 90}. c. o di evento elementare: viene estratto il 5 ={5}. d. o di evento non elementare: viene estratto un numero compreso fra 87 e 90 ={87, 88, 89, 90}. e. Ω è un insieme finito, quindi discreto. Nota: cosa significa finito? Significa che possiamo scrivere un elenco di tutti gli elementi di Ω (magari ci metteremo un po!). Non confondete finito con limitato! Ad esempio l intervallo [2,3] è limitato ma infinito perché vi sono infiniti numeri ivi contenuti (non è neppure numerabile).
9 : il poker a. Gli eventi elementari sono tutte le cinquine di carte fatte con carte del mazzo da poker. b. o di evento elementare: c. o di evento non elementare: ho in mano un tris (tris di Re, di Regine,..., e poi le rimanenti due carte sono libere ). d. Ω è un insieme finito, quindi discreto. (Quanti elementi ha?)
10 : i lanci per vedere testa a. Gli eventi elementari sono tutti i numeri interi maggiori o uguali a 1. b. Ω = {1, 2, 3,...} = N. c. o di evento elementare: servono esattamente 3 lanci per vedere testa = CCT ={3}. d. o di evento non elementare: ottengo testa con al massimo 3 lanci = T, CT, CCT = {1, 2, 3}. e. Ω è un insieme numerabile, quindi discreto.
11 : la lampadina a. Gli eventi elementari sono tutti i numeri reali maggiori o uguali a 0. b. Ω = [0, + ) = R +. c. o di evento elementare: la lampadina dura esattamente 10 ore ={10}. d. o di evento non elementare: la lampadina dura almeno 10 ore =(10, + ). e. Ω è un insieme non numerabile (è più numeroso, non si riesce a numerare tutti i numeri reali...), quindi è uno spazio continuo. Nota: gli esempi di spazi continui che incontreremo sono R, R + e in generale gli intervalli reali come [2, 6.8], ( 2, 2 2), (, 1) etc.
12 Gli eventi sono sottoinsiemi di Ω Qualche pagina fa abbiamo visto che: DEFINIZIONE. I sottoinsiemi di Ω sono gli eventi. È a questo punto opportuno vedere che significato hanno le varie relazioni insiemistiche dal punto di vista del linguaggio degli eventi. Se Ω è discreto tutti i suoi sottoinsiemi sono eventi. In generale non è detto che tutti i sottoinsiemi di Ω siano eventi, ma di questo problema tecnico non ci occuperemo.
13 Eventi ed insiemi Dobbiamo pensare che quando noi effettuiamo un esperimento aleatorio, c è un grande sacco Ω da cui il caso pesca un singolo esito ω. Ω ω1 ω2 ω4 ω5 ω 3 ω6 ω 7 Quindi {ω 1 } è l evento l esito dell esperimento è ω 1. Si dice anche che si verifica l esito ω 1.
14 Se abbiamo un sottoinsieme A 1 A è l evento l esito dell esperimento sta in A, cioè è uno fra ω 4, ω 5, ω 6 2 A c è l evento l esito dell esperimento non sta in A, cioè è uno fra ω 1, ω 2, ω 3, ω 7 3 Ω è l evento certo: infatti sicuramente l esito estratto sarà uno degli elementi di Ω. 4 (insieme vuoto) è l evento impossibile: non può verificarsi nessuno dei suoi elementi (semplicemente perché non ha elementi!).
15 L unione di due eventi Ω A B A B è l evento l esito dell esperimento è un elemento di A oppure di B (o di entrambi)
16 L intersezione di due eventi A B è l evento l esito dell esperimento è un elemento sia di A che di B
17 La differenza di due eventi A \ B è l evento l esito dell esperimento è un elemento di A ma non di B
18 Eventi incompatibili Se A e B sono disgiunti, cioè non hanno elementi in comune, ovvero A B = Ω A B allora A e B sono eventi incompatibili, infatti non si possono verificare contemporaneamente in quanto ciò significherebbe che l esito dell esperimento aleatorio è un elemento sia di A che di B.
19 Implicazione logica Se A e B sono tali che B A, cioè tutti gli elementi di B sono anche elementi di A allora il verificarsi di B implica il verificarsi di A. Infatti se l esito dell esperimento aleatorio è un elemento di B lo è anche di A.
(concetto classico di probabilità)
Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi
Tabella 7. Dado truccato
0 ALBERTO SARACCO 4. Compiti a casa 7novembre 200 4.. Ordini di grandezza e calcolo approssimato. Esercizio 4.. Una valigia misura 5cm di larghezza, 70cm di lunghezza e 45cm di altezza. Quante palline
Calcolo delle probabilità
Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità
Esercizi di Probabilità e Statistica
Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca
Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni
Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6
Calcolo delle Probabilità
Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello
Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.
Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:
Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?
Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento
Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:
Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette
Probabilità e statistica
Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità
LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010
LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno
Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.
Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo
PROBABILITA CONDIZIONALE
Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,
Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche
Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)
Probabilità discreta
Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che
Test statistici di verifica di ipotesi
Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall
Matematica Applicata. Probabilità e statistica
Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato
PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)
L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello
E NECESSARIO RICORRERE ALLE VARIABILI CASUALI
IL CONCETTO DI VARIABILE CASUALE Associare una misura di probabilità al verificarsi di un certo evento (come esito di un esperimento) non sempre è sufficiente a risolvere gran parte dei problemi reali
Esercizi di Calcolo delle Probabilita (I)
Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:
LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di
STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica
Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a:
TEST DI AUTOVALUTAZIONE - SETTIMANA 2 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Si considerino gli
CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate
CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability
Calcolo delle Probabilità
Calcolo delle Probabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE AREA TECNICO ASSISTENZIALI
APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)
ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,
Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi
In molte situazioni una raccolta di dati (=esiti di esperimenti aleatori) viene fatta per prendere delle decisioni sulla base di quei dati. Ad esempio sperimentazioni su un nuovo farmaco per decidere se
PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE
Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -
OSSERVAZIONI TEORICHE Lezione n. 4
OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze
FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.
01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)
Un modello matematico di investimento ottimale
Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Investimento per un singolo agente
1 Probabilità condizionata
1 Probabilità condizionata Accade spesso di voler calcolare delle probabilità quando si è in possesso di informazioni parziali sull esito di un esperimento, o di voler calcolare la probabilità di un evento
Capitolo 4 Probabilità
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.
E naturale chiedersi alcune cose sulla media campionaria x n
Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile
Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)
Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:
ESERCIZI EVENTI E VARIABILI ALEATORIE
ESERCIZI EVENTI E VARIABILI ALEATORIE 1) Considera la tabella seguente, che descrive la situazione occupazionale di 63 persone in relazione al titolo di studio. Occupazione SI NO Titolo Licenza media 5%
Probabilità e Statistica Esercitazioni. a.a. 2006/2007
Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
Elementi di calcolo delle probabilità
Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo
Funzioni. Funzioni /2
Funzioni Una funzione f è una corrispondenza tra due insiemi A e B che a ciascun elemento di A associa un unico elemento di B. Si scrive: f : A B l'insieme A si chiama il dominio della funzione f, l'insieme
STATISTICA E PROBABILITá
STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano
Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita
Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi
Calcolo delle probabilità
Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche
Teoria della probabilità Assiomi e teoremi
Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Assiomi e teoremi A.A. 2008-09 Alberto Perotti DELEN-DAUIN Esperimento casuale Esperimento
1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme.
Esercizi difficili sul calcolo delle probabilità. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di, fra di esse vi sia un solo asso, di qualunque seme. Le parole a caso
Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità...
Indice 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo............................. 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità.............. 5 i Capitolo 1 Introduzione
Capitolo 2. Operazione di limite
Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A
Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006
Calcolo delle probabilità riassunto veloce Laboratorio di Bioinformatica Corso aa 2005-2006 Teoria assiomatica della probabilità S = spazio campionario = insieme di tutti i possibili esiti di un esperimento
Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.
Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo
Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo.
Capitolo 1 9 Ottobre 00 Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. 000, Milano Esercizio 1.0.1 (svolto in classe [II recupero Ing. Matematica aa.00-0-rivisitato]nel
Per lo svolgimento del corso risulta particolarmente utile considerare l insieme
1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R
PROBABILITA CONDIZIONALE
Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,
TEOREMI SULLA PROBABILITÀ
TEOREMI SULLA PROBABILITÀ o Probabilità totale oprobabilità contraria oprobabilità condizionata odipendenza stocastica oprobabilità composta oformula di Bayes oproblemi di riepilogo Probabilità di eventi
La variabile casuale Binomiale
La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola
Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica
Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Lucio Demeio Dipartimento di Scienze Matematiche Università Politecnica delle Marche 1. Esercizio. Siano X ed Y due variabili
Teoria degli insiemi
Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di
= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:
Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del
Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.
DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti
( x) ( x) 0. Equazioni irrazionali
Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza
Probabilità II Variabili casuali discrete
Probabilità II Variabili casuali discrete Definizioni principali. Valore atteso e Varianza. Teorema di Bienaymé - Čebičev. V.C. Notevoli: Bernoulli e Binomiale. Concetto di variabile casuale Cos'è una
4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0
Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice
L insieme N dei numeri naturali è infinito?
L insieme N dei numeri naturali è infinito? L infinito! Nessun altro problema ha mai scosso così profondamente lo spirito umano; nessuna altra idea ha stimolato così proficuamente il suo intelletto; e
Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.
Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo [email protected] Incompatibilità ed indipendenza stocastica. Probabilità condizionate, legge della probabilità totale, Teorema
Matematica generale CTF
Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione
1 Giochi a due, con informazione perfetta e somma zero
1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una
1. PRIME PROPRIETÀ 2
RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,
Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il
Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti
Appunti ed esercizi di combinatoria. Alberto Carraro
Appunti ed esercizi di combinatoria Alberto Carraro December 2, 2009 01 Le formule principali per contare Disposizioni Sia A un insieme di n 1 elementi distinti Le sequenze di 1 k n elementi scelti senza
Algoritmi (9 CFU) (A.A. 2009-10)
Algoritmi (9 CFU) (A.A. 2009-10) Probabilità e Algoritmi randomizzati Prof. V. Cutello Algoritmi 1 Overview Definiamo concetti di base di probabilità Variabili casuali e valore medio Algoritmi randomizzati
Test sul calcolo della probabilità
Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è
Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente
Funzioni In matematica, una funzione f da X in Y consiste in: 1. un insieme X detto dominio di f 2. un insieme Y detto codominio di f 3. una legge che ad ogni elemento x in X associa uno ed un solo elemento
Uguali? Diversi! Addomesticare l infinito Varese, ottobre 2009 M. Dedò
Uguali? Diversi! Addomesticare l infinito Varese, ottobre 2009 M. Dedò Che cosa c entra l idea di uguali e diversi con l infinito? Tantissimi è uguale a infinito? Tutti gli infiniti sono uguali? O ci sono
ELEMENTI DI CALCOLO DELLE PROBABILITA
Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica
VINCERE AL BLACKJACK
VINCERE AL BLACKJACK Il BlackJack è un gioco di abilità e fortuna in cui il banco non può nulla, deve seguire incondizionatamente le regole del gioco. Il giocatore è invece posto continuamente di fronte
Esercizi sul calcolo delle probabilità
Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità
Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo
Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: [email protected]
Osservazioni sulla continuità per le funzioni reali di variabile reale
Corso di Matematica, I modulo, Università di Udine, Osservazioni sulla continuità Osservazioni sulla continuità per le funzioni reali di variabile reale Come è noto una funzione è continua in un punto
Dalla geometria in 3D alla geometria in 2D dal cubo al quadrato
Dalla geometria in 3D alla geometria in 2D dal cubo al quadrato Firenze, 5 maggio 2013 Scuola Città Pestalozzi 8 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE Classe prima e seconda Paola Bertini, Antonio
Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.
Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame del 18/7/2013 NOME COGNOME N. Matr. Rispondere ai punti degli esercizi nel modo più completo possibile, cercando
ASSOCIAZIONE ANFFAS ONLUS UDINE. presenta LA NOSTRA VISION. Questo documento è in versione facile da leggere
ASSOCIAZIONE ANFFAS ONLUS UDINE presenta LA NOSTRA VISION Questo documento è in versione facile da leggere - Michele Bertotti - Chiara Billo - Elena Casarsa - Anna Latargia - Lucrezia Pittolo - Erika Pontelli
QUANTIZZAZIONE diverse fasi del processo di conversione da analogico a digitale quantizzazione
QUANTIZZAZIONE Di seguito lo schema che illustra le diverse fasi del processo di conversione da analogico a digitale. Dopo aver trattato la fase di campionamento, occupiamoci ora della quantizzazione.
IL METODO PER IMPOSTARE E RISOLVERE I PROBLEMI DI FISICA (NB non ha nulla a che vedere con il metodo scientifico)
IL METODO PER IMPOSTARE E RISOLVERE I PROBLEMI DI FISICA (NB non ha nulla a che vedere con il metodo scientifico) [nota: Nel testo sono riportate tra virgolette alcune domande che insegnanti e studenti
CALCOLO COMBINATORIO
CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,
da 2 a 5 giocatori, dai 10 anni in su, durata 30 minuti
da 2 a 5 giocatori, dai 10 anni in su, durata 30 minuti OBIETTIVO Il vincitore è colui che, dopo due round di gioco, delle sue 11 ordinazioni, ne ha consegnate il maggior numero. CONTENUTO DELLA SCATOLA
Dimensione di uno Spazio vettoriale
Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione
Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.
Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni
Fare Matematica in prima elementare IL NUMERO
Fare Matematica in prima elementare IL NUMERO Il NUMERO CONTARE PER CONTARE La filastrocca dei numeri Contare per contare, cioè ripetere la filastrocca dei numeri, contribuisce a far maturare la consapevolezza
Esericizi di calcolo combinatorio
Esericizi di calcolo combinatorio Alessandro De Gregorio Sapienza Università di Roma alessandrodegregorio@uniroma1it Problema (riepilogativo) La segretaria di un ufficio deve depositare 3 lettere in 5
1 Principali funzioni e loro domini
Principali funzioni e loro domini Tipo di funzione Rappresentazione Dominio Polinomio intero p() = a n + + a n R p() Polinomio fratto q() 6= q() 2n Radici pari p f() f() 2n+ Radici dispari p f() R Moduli
Antonella Martinucci, Rossana Nencini, 2013 IL PESO. classe quarta
Antonella Martinucci, Rossana Nencini, 2013 IL PESO classe quarta I bambini utilizzano spontaneamente il concetto di pesante? Collochiamo su un banco alcuni oggetti: penne matite gomme fogli scottex quaderni
Tasso di interesse e capitalizzazione
Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo
Modulo didattico sulla misura di grandezze fisiche: la lunghezza
Modulo didattico sulla misura di grandezze fisiche: la lunghezza Lezione 1: Cosa significa confrontare due lunghezze? Attività n 1 DOMANDA N 1 : Nel vostro gruppo qual è la matita più lunga? DOMANDA N
Elementi di Statistica descrittiva Parte I
Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)
Tutorato di Probabilità e Statistica
Università Ca Foscari di Venezia Dipartimento di informatica 20 aprile 2006 Variabili aleatorie... Example Giochiamo alla roulette per tre volte 1 milione sull uscita del numero 29. Qual è la probabilità
Strutturazione logica dei dati: i file
Strutturazione logica dei dati: i file Informazioni più complesse possono essere composte a partire da informazioni elementari Esempio di una banca: supponiamo di voler mantenere all'interno di un computer
1. Distribuzioni campionarie
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie
Corrispondenze e funzioni
Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei
Appunti sulla Macchina di Turing. Macchina di Turing
Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso
risulta (x) = 1 se x < 0.
Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente
