Logica per la Programmazione
|
|
|
- Virginio Andreoli
- 8 anni fa
- Visualizzazioni
Transcript
1 Logica per la Programmazione Lezione 6 Logica del Primo Ordine Motivazioni Sintassi Interpretazioni Formalizzazione A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 95
2 Limiti del Calcolo Proposizionale Nella formalizzazione di enunciati dichiarativi, gli enunciati atomici non hanno struttura (sono rappresentati da variabili proposizionali) Es: Alberto va al cinema con Bruno o va al teatro con Carlo Introduciamo 4 proposizioni atomiche: AC Alberto va al cinema BC Bruno va al cinema AT Alberto va al teatro CT Carlo va al teatro Formula proposizionale: (AC BC) (AT CT) Tuttavia, Alberto, Bruno,... cinema..., gli individui del nostro discorso e le relazioni tra di essi ( andare al ) scompaiono... A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 96
3 Limiti del Calcolo Proposizionale (2) Le formule proposizionali possono descrivere relazioni logiche tra un numero finito di enunciati, ma Vorremmo esprimere proprietà di un infinità di individui: tutti i numeri pari maggiori di due non sono primi In CP(?) ( 4 non è primo ) ( 6 non è primo )... NO! esiste almeno un numero naturale maggiore di due che non è primo In CP(?) ( 3 non è primo ) ( 4 non è primo )... NO! Vorremmo poter esprimere proprietà generali come se x è pari allora x+1 è dispari... e riconoscere che da esse derivano proprietà specifiche come se 4 è pari allora 5 è dispari A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 97
4 Limiti del Calcolo Proposizionale (3) Anche se descriviamo proprietà di un numero finito di enunciati vorremmo descriverli in maniera compatta tutti gli studenti di LPP vanno al cinema In CP(?) S 1 S 2 S 3 S 4... S 150 tutti gli studenti di LPP tranne uno vanno al cinema In CP(?) ( S 1 S 2 S 3 S 4... S 150 ) (S 1 S 2 S 3 S 4... S 150 ) (S 1 S 2 S 3 S 4... S 150 ) (S 1 S 2 S 3 S 4... S 150 )... (S 1 S 2 S 3 S 4... S 150 ) A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 98
5 Verso la Logica del Primo Ordine La Logica del Primo Ordine (LPO) estende (include) il Calcolo Proposizionale Con le formule di LPO si possono denotare/rappresentare esplicitamente gli elementi del dominio di interesse (gli individui, usando i termini) si possono esprimere proprietà di individui e relazioni tra due o più individui (usando i predicati) si può quantificare una formula, dicendo che vale per almeno un individuo, o per tutti gli individui (usando i quantificatori) A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 99
6 La Logica del Primo Ordine Presenteremo Sintassi, Semantica e Sistema di Dimostrazioni Useremo formule della LPO per formalizzare enunciati dichiarativi La Semantica di una formula di LPO è sempre un valore booleano assegnato in base ad una Interpretazione (ma determinato in modo molto più complesso!!!!) Come per il Calcolo Proposizionale, ci interessano le formule che sono sempre vere (formule valide analoghe alle tautologie) Non esistono tabelle di verità: per vedere se una formula à valida occorre dimostrarlo (e non sempre è possibile trovare una dimostrazione) A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 100
7 Espressività della Logica del Primo Ordine Esempi (li analizzeremo meglio in seguito): Tutti i numeri pari maggiori di due non sono primi: ( x.pari(x) x > 2 primo(x)) Esiste almeno un numero naturale maggiori di due che non è primo ( x.x > 2 primo(x)) Se x è pari allora x+1 è dispari (*) ( x.pari(x) dispari(x + 1)) (*) implica se 4 è pari allora 5 è dispari ( x.pari(x) dispari(x + 1)) (pari(4) dispari(5)) A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 101
8 Logica del Primo Ordine: commenti Nella Logica del Primo Ordine ci sono due categorie sintattiche e semantiche differenti i termini che sono passati come argomenti dei predicati e denotano elementi del dominio di riferimento le formule costruite a partire dai predicati e che assumono valore booleano A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 102
9 La Sintassi della Logica del Primo Ordine: l Alfabeto Un alfabeto del primo ordine comprende: Un insieme V di simboli di variabile Un insieme C di simboli di costante Un insieme F di simboli di funzione, ognuno con la sua arietà (o numero di argomenti) Un insieme P di simboli di predicato, ognuno con la sua arietà (eventualmente 0) I simboli,,,,, (connettivi logici) I simboli, (quantificatori) I simboli ( ) [parentesi], [virgola]. [punto] A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 103
10 La Sintassi della Logica del Primo Ordine: la Grammatica Estende la grammatica del Calcolo Proposizionale con nuove produzioni dove Fbf ::= Fbf Fbf Fbf Fbf Fbf Fbf Fbf Fbf Fbf Fbf Atom Atom Atom ::= T F Pred (Fbf ) (FbfQuant) FbfQuant ::= ( Var.Fbf ) ( Var.Fbf ) Pred := PIde PIde(Term{, Term}) Term ::= Const Var FIde(Term{, Term}) Var V è un simbolo di variabile, Const C è un simbolo di costante, FIde F è un simbolo di funzione, e PIde P è un simbolo di predicato. A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 104
11 Sintassi della Logica del Primo Ordine: i Termini I termini denotano elementi del dominio di interesse ( individui ). Sono definiti dalla categoria sintattica Term: Term ::= Const Var FIde(Term{, Term}) Quindi i termini sono definiti induttivamente, a partire da un alfabeto V, C, F e P, nel modo seguente: Ogni costante c C è un termine Ogni variabile x V è un termine Se f F è un simbolo di funzione con arietà n e t 1,..., t n sono termini, allora f (t 1,..., t n ) è un termine A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 105
12 Termini: Esempi a, con a C x, con x V g(a), con g F di arietà 1 f (x, g(a)), con f F di arietà 2 Notazione: I ben noti simboli di funzione binari a volte sono rappresentati con notazione infissa. Esempio: x + (1 z), è un termine con +, F con arietà 2 A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 106
13 Sintassi della Logica del Primo Ordine: le Formule (1) Le formule rappresentano enunciati dichiarativi. Sono definite induttivamente come segue, fissato un alfabeto V, C, F e P : Se p P è un simbolo di predicato allora se ha arietà 0 allora p è una formula. Corrisponde a una variabile proposizionale nel CP, e lo scriviamo p invece di p() se ha arietà n > 0 e t 1,..., t n sono termini allora p(t 1,..., t n ) è una formula. Queste sono le formule corrispondenti alla categoria sintattica Pred: Pred := PIde PIde(Term{, Term}) A volte usiamo notazione infissa per simboli di arietà 2. Esempio: x=y o z f (x) con =,, P con arietà 2 A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 107
14 Sintassi della Logica del Primo Ordine: le Formule (2) Le rimanenti categorie sintattiche sono Fbf ::= Fbf Fbf Fbf Fbf Fbf Fbf Fbf Fbf Fbf Fbf Atom Atom Atom ::= T F Pred (Fbf ) (FbfQuant) FbfQuant ::= ( Var.Fbf ) ( Var.Fbf ) e definiscono le formule induttivamente come segue T e F sono formule Se P è una formula allora P è una formula Se P e Q sono formule allora P Q, P Q, P Q, P Q, P Q sono formule Se P è una formula e x V, allora ( x.p) e ( x.p) Se P è una formula allora anche (P) è una formula A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 108
15 Sintassi delle Formule: Esempi Tutti i numeri pari maggiori di due non sono primi ( x.pari(x) x>2 primo(x)) Se x è pari allora il successore di x è dispari ( x.pari(x) dispari(x+1)) Se x è pari allora x + 1 è dispari implica se 4 è pari allora 5 è dispari ( x.pari(x) dispari(x+1) (pari(4) dispari(5)) Simboli di Variabile? Simboli di Predicato? Simboli di Funzione? Simboli di Costante? A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 109
16 Occorrenze di Variabili Libere o Legate In una formula quantificata come ( x.p) o ( y.p) la sottoformula P è detta la portata del quantificatore. Una occorrenza di variabile x è legata se compare nella portata di un quantificatore altrimenti è detta libera. Esempio: ( y.z = y (x = y ( x.x = z z = y))) Portata di y? Portata di x? Occorrenze di variabili legate? Occorrenze di variabili libere? A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 110
17 Formule Aperte e Chiuse Il nome di una variabile legata può essere cambiato grazie alle leggi di ridenominazione: ( x.p) ( y.p[y/x]) se y non compare in P (Ridenom.) ( x.p) ( y.p[y/x]) se y non compare in P (Ridenom.) Attenzione: qui P[y/x] rappresenta la formula P in cui TUTTE le occorrenze di x sono sostituite da y Una formula che contiene occorrenze di variabili libere è detta aperta Spesso scriveremo P(x) per indicare che x è libera nella formula P Una formula senza variabili libere è detta chiusa. Considereremo principalmente formule chiuse. A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 111
18 Interpretazione e Semantica Come in Calcolo Proposizionale la semantica di una formula chiusa di LPO si determina rispetto ad una interpretazione Una interpretazione assegna la semantica ad una formula chiusa fissando il significato dei simboli che compaiono: Il dominio di interesse (un insieme) A quali elementi del dominio corrispondono i simboli di costante in C A quali funzioni sul dominio corrispondono i simboli di funzione in F A quali proprietà o relazioni corrispondono i simboli di predicato in P Componendo i valori delle formule atomiche nelle formule composte si arriva a stabilire il valore di verità della formula complessiva Procedimento simile a quello del calcolo proposizionale, ma reso più complesso dalla necessità di calcolare funzioni e predicati, e dalla presenza dei quantificatori A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 112
19 Esempio: Semantica di Formula dipende da Interpretazione Consideriamo la formula chiusa: ( x.p(x) q(x)) Intepretazione 1: Il dominio è quello degli esseri umani Il predicato p significa essere maschio Il predicato q significa essere femmina La formula è vera Intepretazione 2: Il dominio è quello dei numeri naturali Il predicato p significa essere numero primo Il predicato q significa essere numero pari La formula è falsa A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 113
20 Interpretazione: Definizione Formale Dato un linguaggio del primo ordine, ovvero fissato un alfabeto V, C, F e P, una intepretazione I = (D, α) è costituita da: Un insieme D, detto dominio dell intepretazione Una funzione di interpretazione α che associa: ad ogni costante c C del linguaggio un elemento del dominio D, rappresentato da α(c) ad ogni simbolo di funzione f F di arietà n una funzione α(f ) che data una n-upla di elementi di D restituisce un elemento di D. Ovvero α(f ) = D n D ad ogni simbolo di predicato p P di arietà zero (un simbolo proposizionale) un valore di verità indicato da α(p) ad ogni simbolo di predicato p P di arietà n (un predicato n-ario), una funzione α(p) che data una n-upla di elementi di D restituisce un valore di verità. Ovvero α(p) = D n {T, F} A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 114
21 Formalizzazione di Enunciati: Linee Guida (1) Finora abbiamo associato un valore di verità alle formule in modo informale: vedremo in seguito la definizione formale della semantica Per formalizzare un enunciato E dobbiamo fornire: un alfabeto A = (C, F, P, V) e un interpretazione I = (D, α) una formula del primo ordine che, per l interpretazione I, sia vera se e solo se l enunciato E è vero A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 115
22 Formalizzazione di Enunciati: Linee Guida (2) Dato un enunciato E, per identificare l alfabeto A e l interpretazione I = (D, α) individuiamo il dominio D di cui parla l enunciato per ogni individuo d D menzionato in E, introduciamo un simbolo di costante c C e fissiamo α(c) = d per ogni operatore op menzionato in E che applicato a elementi di D restituisce un individuo di D, introduciamo un simbolo di funzione f F e fissiamo α(f ) = op per ogni proprietà di individui o relazione tra individui R menzionata in E, introduciamo un simbolo di predicato p P e fissiamo α(p) = R A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 116
23 Formalizzazione di Enunciati: Esempio Tutti i numeri pari maggiori di due non sono primi Dominio: numeri naturali: N Elementi del dominio menzionati: due Introduciamo la costante 2 C con α(2) = 2 N Proprietà o relazioni tra naturali menzionate: n è pari : introduciamo pari P con arietà 1 e α(pari)(n) = T se n N è pari, F altrimenti n è primo : introduciamo primo P con arietà 1 e α(pari)(n) = T se n N è primo, F altrimenti n è maggiore di m : introduciamo > P con arietà 2 e α(>)(n, m) = T se n è maggiore di m, F altrimenti Formula: ( x.pari(x) x > 2 primo(x)) A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 117
24 Formalizzazione di Enunciati: Esempi Alberto non segue LPP ma va al cinema con Bruno o con Carlo Tutti gli studenti di LPP vanno al cinema Tutti gli studenti di LPP tranne uno vanno al cinema A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 118
25 Alfabeto ed Interpretazione Alberto non segue LPP ma va al cinema con Bruno o con Carlo Dominio: l insieme delle persone Costanti: le persone Alberto, Bruno e Carlo. Introduciamo le costanti A, B, C C tali che α(a) = la persona Alberto, α(b) = la persona Bruno e α(c) = la persona Carlo Operatori sul dominio menzionati: nessun simbolo di funzione Proprietà o relazioni tra persone: introduciamo un simbolo di predicato vacinema P con arietà 1 e α(vacinema)(d) = T se d va al cinema, F altrimenti introduciamo un simbolo di predicato seguelpp P con arietà 1 e α(seguelpp)(d) = T se d segue LPP, F altrimenti introduciamo un simbolo di predicato = P con arietà 2 con il significato standard A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 119
26 Formalizzazione di Enunciati: Formule Alberto non segue LPP ma va al cinema con Bruno o con Carlo: seguelpp(a) (vacinema(a) (vacinema(b) vacinema(c))) Tutti gli studenti di LPP vanno al cinema: ( x.seguelpp(x) vacinema(x)) Tutti gli studenti di LPP tranne uno vanno al cinema: ( x.seguelpp(x) vacinema(x) ( y.seguelpp(y) (x = y) vacinema(y)) A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 120
27 Formalizzazione di Enunciati: Esercizio (1) Formalizzare l enunciato: Due persone sono parenti se hanno un antenato in comune Dominio: l insieme delle persone Costanti, operatori sul dominio menzionati: nessuno Proprietà o relazioni tra persone: d1 e d 2 sono parenti : introduciamo parenti P con arietà 2 e α(parenti)(d 1, d 2 ) = T se d 1 e d 2 sono parenti, F altrimenti d 1 è antenato di d 2 : introduciamo antenato P con arietà 2 e α(antenato)(d 1, d 2 ) = T se d 1 è antenato di d 2, F altrimenti Formula: ( x.( y.( z.antenato(z, x) antenato(z, y)) parenti(x, y))) A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 121
28 Formalizzazione di Enunciati: Esercizio (1) Se un numero naturale è pari allora il suo successore è dispari Dominio: numeri naturali: N Operatori sul dominio menzionati: successore Introduciamo il simbolo succ F con arietà 1 e α(succ)(n) = n + 1 Proprietà o relazioni tra naturali menzionate: n è pari : introduciamo pari P come prima n è dispari : introduciamo dispari P con arietà 1 e α(dispari)(n) = T se n N è dispari, F altrimenti Formula: ( x.pari(x) dispari(succ(x))) A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag. 122
Logica per la Programmazione
Logica per la Programmazione Lezione 6 Logica del Primo Ordine Motivazioni Sintassi Interpretazioni Formalizzazione pag. 1 Limiti del Calcolo Proposizionale Nella formalizzazione di enunciati dichiarativi,
LOGICA DEL PRIMO ORDINE: MOTIVAZIONI, SINTASSI E INTERPRETAZIONI. Corso di Logica per la Programmazione A.A Andrea Corradini
LOGICA DEL PRIMO ORDINE: MOTIVAZIONI, SINTASSI E INTERPRETAZIONI Corso di Logica per la Programmazione A.A. 2013 Andrea Corradini LIMITI DEL CALCOLO PROPOSIZIONALE Nella formalizzazione di enunciati dichiarativi,
LOGICA DEL PRIMO ORDINE: MOTIVAZIONI, SINTASSI E INTERPRETAZIONI
LOGICA DEL PRIMO ORDINE: MOTIVAZIONI, SINTASSI E INTERPRETAZIONI LIMITI DEL CALCOLO PROPOSIZIONALE Nella formalizzazione di enunciati dichiarativi, gli enunciati atomici non hanno struttura (sono rappresentati
CALCOLO PROPOSIZIONALE. Corso di Logica per la Programmazione Andrea Corradini
CALCOLO PROPOSIZIONALE Corso di Logica per la Programmazione Andrea Corradini [email protected] UN PROBLEMA DI DEDUZIONE LOGICA (da un test d ingresso) Tre amici, Antonio, Bruno e Corrado, sono incerti
Logica per la Programmazione
Logica del Primo Ordine: Motivazioni, Sintassi e Interpretazioni Logica per la Programmazione Lezione 1 Calcolo Proposizionale: sintassi e semantica Tautologie Esempi di Formalizzazione di Enunciati pag.
CALCOLO PROPOSIZIONALE
CALCOLO PROPOSIZIONALE UN PROBLEMA DI DEDUZIONE LOGICA (da un test d ingresso) Tre amici, Antonio, Bruno e Corrado, sono incerti se andare al cinema. Si sa che: Se Corrado va al cinema, allora ci va anche
Ragionamento Automatico Richiami di calcolo dei predicati
Richiami di logica del primo ordine Ragionamento Automatico Richiami di calcolo dei predicati (SLL: Capitolo 7) Sintassi Semantica Lezione 2 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 2 0
Logica proposizionale
Fondamenti di Informatica per la Sicurezza a.a. 2008/09 Logica proposizionale Stefano Ferrari UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI TECNOLOGIE DELL INFORMAZIONE Stefano Ferrari Università degli
Logica: materiale didattico
Logica: materiale didattico M. Cialdea Mayer. Logica (dispense): http://cialdea.dia.uniroma3.it/teaching/logica/materiale/dispense-logica.pdf Logica dei Predicati (Logica per l Informatica) 01: Logica
Logica per la Programmazione
Logica per la Programmazione Lezione 2 Dimostrazione di tautologie Proof System pag. 1 Un Problema di Deduzione Logica [da un test di ingresso] Tre amici, Antonio, Bruno e Corrado, sono incerti se andare
Prerequisiti Matematici
Prerequisiti Matematici Richiami di teoria degli insiemi Relazioni d ordine, d equivalenza Richiami di logica Logica proposizionale, tabelle di verità, calcolo dei predicati Importante: Principio di Induzione
Logica. Claudio Sacerdoti Coen 07/10/ : Connotazione, denotazione, invarianza per sostituzione. Universitá di Bologna
Logica 3: Connotazione, denotazione, invarianza per sostituzione Universitá di Bologna 07/10/2015 Outline 1 Connotazione, denotazione, invarianza per sostituzione Connotazione vs
Logica proposizionale
Logica proposizionale Proposizione: frase compiuta che è sempre o vera o falsa. Connettivi Posti in ordine di precedenza: not, and, or, implica, doppia implicazione Sintassi Le proposizioni sono costituite
NOZIONI DI LOGICA PROPOSIZIONI.
NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale
BREVE CENNO DI LOGICA CLASSICA La logica può essere definita come la scienza che studia le condizioni in base alle quali un ragionamento risulta
BREVE CENNO DI LOGICA CLASSICA La logica può essere definita come la scienza che studia le condizioni in base alle quali un ragionamento risulta corretto e vero. Un ragionamento è corretto se segue uno
Semantica proposizionale. Unit 2, Lez 3 e 4 Corso di Logica
Semantica proposizionale Unit 2, Lez 3 e 4 Corso di Logica Sommario Semantica dei connettivi Costruzione delle tavole di verità Tautologie, contraddizioni e contingenze Semantica delle forme argomentative
Linguaggi di programmazione - Principi e paradigmi 2/ed Maurizio Gabbrielli, Simone Martini Copyright The McGraw-Hill Companies srl
Approfondimento 2.1 Non è questo il testo dove trattare esaurientemente queste tecniche semantiche. Ci accontenteremo di dare un semplice esempio delle tecniche basate sui sistemi di transizione per dare
10 Logica classica predicativa
10 Logica classica predicativa Dopo aver studiato la logica classica proposizionale, ovvero la logica delle proposizioni classiche, passiamo a studiare la logica classica predicativa, ovvero quella dei
Introduzione alla logica matematica
Introduzione alla logica matematica, Paolo Bison, A.A. 2004-05, 2004-10-26 p.1/29 Introduzione alla logica matematica Silvana Badaloni Paolo Bison Fondamenti di Informatica 1 A.A. 2004/05 Università di
LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)
LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema
NOZIONI DI LOGICA. Premessa
NOZIONI DI LOGICA Premessa Il compito principale della logica è quello di studiare il nesso di conseguenza logica tra proposizioni, predisponendo delle tecniche per determinare quando la verità di una
Logica proposizionale
Definire un linguaggio formale Logica proposizionale Sandro Zucchi 2013-14 Definiamo un linguaggio formale LP (che appartiene a una classe di linguaggi detti linguaggi della logica proposizionale) Per
11. Lezione Corso di Logica (prima parte) 13 maggio Maria Emilia Maietti. ricevimento: martedi ore
11. Lezione Corso di Logica (prima parte) 13 maggio 2011 Maria Emilia Maietti ricevimento: martedi ore 17.30-19.30 email: [email protected] 374 lucidi lezioni in http://www.math.unipd.it/ maietti/lez.html
INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.
INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme
Logica: nozioni di base
Fondamenti di Informatica Sistemi di Elaborazione delle Informazioni Informatica Applicata Logica: nozioni di base Antonella Poggi Anno Accademico 2012-2013 DIPARTIMENTO DI SCIENZE DOCUMENTARIE LINGUISTICO
LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)
LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 3 Sommario. Introduciamo il Calcolo dei Predicati del I ordine e ne dimostriamo le proprietà fondamentali. Discutiamo il trattamento dell identità
Introduzione alla logica
Corso di Intelligenza Artificiale 2011/12 Introduzione alla logica iola Schiaffonati Dipartimento di Elettronica e Informazione Sommario 2 Logica proposizionale (logica di Boole) Logica del primo ordine
Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2017/2018
Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2017/2018 Andrea Corradini e Francesca Levi Dipartimento di Informatica E-mail: [email protected], [email protected] A. Corradini
Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2015/2016
Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2015/2016 Andrea Corradini e Francesca Levi Dipartimento di Informatica E-mail: [email protected], [email protected] A. Corradini
Una Breve Introduzione alla Logica
Una Breve Introduzione alla Logica LOGICA La LOGICA è la disciplina che studia le condizioni di correttezza del ragionamento Occorre dire, anzitutto, quale oggetto riguardi ed a quale disciplina spetti
LOGICA MATEMATICA PER INFORMATICA
LOGICA MATEMATICA PER INFORMATICA A.A. 10/11, DISPENSA N. 2 Sommario. Assiomi dell identità, modelli normali. Forma normale negativa, forma normale prenessa, forma normale di Skolem. 1. L identità Esistono
Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/2017
Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/2017 Andrea Corradini e Francesca Levi Dipartimento di Informatica E-mail: [email protected], [email protected] A. Corradini
DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI. Corso di Logica per la Programmazione
DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI Corso di Logica per la Programmazione SULLE LEGGI DEL CALCOLO PROPOSIZIONALE Abbiamo visto le leggi per l'equivalenza ( ),
LA LOGICA DI HOARE. Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella
LA LOGICA DI HOARE Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella INTRODUZIONE Dall inizio del corso ad ora abbiamo introdotto, un po alla volta, un linguaggio logico
Cosa si intende con stato
Il concetto di stato Cosa si intende con stato I una particolare configurazione delle informazioni di una macchina, che in qualche modo memorizza le condizioni in cui si trova, e che cambia nel tempo passando
Proposizioni e verità
Proposizioni e verità Claudia Casadio Logica e Psicologia del Pensiero Laurea Triennale - Parte Istituzionale A.A. 2007-08 Contents 1 Proposizione.......................................... 3 2 Verità...............................................
LOGICA MATEMATICA PER INFORMATICA
LOGICA MATEMATICA PER INFORMATICA A.A. 10/11, SETTIMANA N. 1 Sommario. Introduciamo il linguaggio e la sintassi e la semantica della Logica del I Ordine. Introduciamo i concetti di teoria, teoria completa,
Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1
Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente
Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati;
Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Implicazione logica. Equivalenza logica; Condizione necessaria,
Logica proposizionale
Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_2 V1.1 Logica proposizionale Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio personale
DIMOSTRAZIONE DI IMPLICAZIONI TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini
DIMOSTRAZIONE DI IMPLICAZIONI TAUTOLOGICHE Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini DIGRESSIONE: SULLA SINTASSI DEL CALCOLO PROPOSIZIONALE Abbiamo già presentato la grammatica
Descrizione delle operazioni di calcolo. Espressioni costanti semplici
Descrizione delle operazioni di calcolo Come abbiamo detto l interprete è in grado di generare nuovi valori a partire da valori precedentemente acquisiti o generati. Il linguaggio di programmazione permette
Introduzione alla logica proposizionale. Unit 2 Corso di Logica
Introduzione alla logica proposizionale Unit 2 Corso di Logica Sommario Forme argomentative Variabili proposizionali Operatori e simboli logici Formalizzazione Regole di formazione Dalle proposizioni alle
Cenni di logica e calcolo proposizionale
Cenni di logica e calcolo proposizionale Corso di Laurea in Informatica Università degli Studi di Bari (sede Brindisi) Analisi Matematica S.Milella ([email protected]) Cenni di logica 1 / 10 Proposizioni
Introduzione ad alcuni sistemi di logica modale
Introduzione ad alcuni sistemi di logica modale Laura Porro 16 maggio 2008 1 Il calcolo proposizionale Prendiamo come primitivi i simboli del Calcolo Proposizionale (PC) tradizionale a due valori 1 : un
Richiami di Algebra di Commutazione
LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n Prof. Rosario Cerbone [email protected] http://digilander.libero.it/rosario.cerbone a.a. 6-7 Richiami di Algebra di Commutazione In questa
Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni.
Elementi di logica SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Quantificatori: elementi fondamentali del linguaggio matematico. quantificatore
1 IL LINGUAGGIO MATEMATICO
1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti
Richiami teorici ed esercizi di Logica
Facoltà di ingegneria Università della Calabria Corsi di Potenziamento Matematica e Logica A. A. 2008-2009 Richiami teorici ed esercizi di Logica Proposizioni logiche: Ogni espressione matematica alla
Maiuscole e minuscole
Maiuscole e minuscole Abilità interessate Distinguere tra processi induttivi e processi deduttivi. Comprendere il ruolo e le caratteristiche di un sistema assiomatico. Riconoscere aspetti sintattici e
Quiz sui linguaggi regolari
Fondamenti dell Informatica 1 semestre Quiz sui linguaggi regolari Prof. Giorgio Gambosi a.a. 2016-2017 Problema 1: Data l espressione regolare a, definita su {a, b}, descrivere il linguaggio corrispondente
DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini
DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini INFERENZE CORRETTE E TAUTOLOGIE Il Calcolo Proposizionale permette di formalizzare
Elementi di Logica Teoria degli insiemi
Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Elementi di Logica Teoria degli insiemi Proff. A. Albanese E. Mangino Dipartimento di Matematica e Fisica E. De Giorgi - Università
Esercitazioni per il corso di Logica Matematica
Esercitazioni per il corso di Logica Matematica Luca Motto Ros 22 febbraio 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano
Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A
Cenni di logica Hynek Kovarik Università di Brescia Analisi Matematica A Hynek Kovarik (Università di Brescia) Cenni di logica Analisi Matematica A 1 / 21 Scopo: introdurre nozioni di logica & terminologia
Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA
Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Introduzione George Boole (1815-1864) nel 1854 elaborò una algebra basata su predicati logici. Valori
Rappresentazione dei dati in memoria
Rappresentazione dei dati in memoria La memoria Una memoria deve essere un insieme di oggetti a più stati. Questi oggetti devono essere tali che: le dimensioni siano limitate il tempo necessario per registrare
Informatica. Logica e Algebra di Boole
Informatica Logica e Algebra di Boole La logica è la scienza del corretto ragionamento e consiste nello studio dei principi e dei metodi che consentono di individuare il corretto ragionamento. Lo studioso
Circuiti digitali. Operazioni Logiche: Algebra di Boole. Esempio di circuito. Porte Logiche. Fondamenti di Informatica A Ingegneria Gestionale
Operazioni Logiche: lgebra di oole Fondamenti di Informatica Ingegneria Gestionale Università degli Studi di rescia Docente: Prof. lfonso Gerevini Circuiti digitali Il calcolatore può essere visto come
METODI MATEMATICI PER L INFORMATICA
METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una
Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <[email protected]> Universitá di Bologna
Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica
