LABORATORIO DI PROBABILITA E STATISTICA
|
|
|
- Cristiano Romani
- 8 anni fa
- Visualizzazioni
Transcript
1 UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi 6 ESERCIZI RIEPILOGATIVI PRIME 3 LEZIONI
2 REGRESSIONE LINEARE: SPORT - COLESTEROLO ESERCIZIO 8: La tabella seguente riporta i risultati di uno studio su 8 persone, per le quali si sono misurati il numero dedicate allo sport settimanalmente e il livello di colesterolo. Analizzare la relazione fra i due fenomeni utilizzando la regressione lineare, disegnando il grafico, calcolando i parametri della retta interpolante, i residui con grafico, il coefficiente di correlazione lineare e giudicandone la bontà di accostamento. N. ore sport sett. Livello colesterolo 1, , ,5 204
3 ES. STUDIO RELAZIONE ORE DI SPORT - COLESTEROLO > sport=c(1.5, 10, 8.5, 7, 1, 3, 5, 2.5) > colesterolo=c(205, 157, 168, 174, 220, 192, 180, 204) > plot(sport, colesterolo) > rettasport=lm(colesterolo~sport) > abline(rettasport, col="blue") > segments(sport, fitted(rettasport), sport, colesterolo, lty=2) > title(main="regressione lineare fra Ore dedicate allo sport e colesterolo") Per scrivere la tilde ~ in Ubuntu premere: ALT GR + ì
4 ES. STUDIO RELAZIONE ORE DI SPORT - COLESTEROLO
5 ES. STUDIO RELAZIONE ORE DI SPORT - COLESTEROLO > summary (rettasport) Call: lm(formula = colesterolo ~ sport) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-09 *** sport e-05 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 6 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 6 DF, p-value: 6.874e-05
6 residuals(rettasport) ES. STUDIO RELAZIONE ORE DI SPORT - COLESTEROLO # I PARAMETRI TROVATI SONO a= E b= QUINDI IL MODELLO TEORICO SARA : Y = *sport # EFFETTUIAMO L ANALISI DEI RESIDUI > plot(fitted(rettasport), residuals(rettasport)) > abline(0, 0) fitted(rettasport) L analisi dei residui conferma che questi si distribuiscono in maniera uniforme e apparentemente casuale attorno all asse zero, quindi si può confermare l ipotesi di distribuzione casuale degli stessi, con media nulla e incorrelazione.
7 ES. STUDIO RELAZIONE ORE DI SPORT - COLESTEROLO # CALCOLIAMO IL COEFFICIENTE DI CORRELAZIONE LINEARE: > R=cor(sport, colesterolo) > R [1] # POICHE R E MOLTO VICINO A -1 POSSIAMO AFFERMARE CHE C E UNA FORTE RELAZIONE LINEARE INDIRETTA FRA LE DUE VARIABILI # CALCOLIAMO IL COEFFICIENTE DI DETERMINAZIONE FACENDO IL QUADRATO DI R PER GIUDICARE LA BONTA DI ACCOSTAMENTO: > R2=R^2 > R2 [1] # DATO CHE R2 E QUASI UGUALE A 1, DICIAMO CHE IL MODELLO TEORICO USATO SI ADATTA MOLTO BENE AI VALORI OSSERVATI
8 REGRESSIONE LINEARE: carotene - eritema ESERCIZIO 9: Una ricerca sulla relazione fra quantità assunta di un integratore a base di beta carotene e il rischio di subire un eritema solare ha dato i risultati presenti in tabella. Analizzare la relazione fra i due fenomeni utilizzando la regressione lineare, disegnando il grafico, calcolando i parametri della retta interpolante, i residui con grafico, il coefficiente di correlazione lineare e giudicandone la bontà di accostamento. Quantità beta Rischio eritema carotene
9 ES. STUDIO RELAZIONE carotene - eritema > carotene=c(0, 10, 5, 15) > eritema=c(50, 15, 35, 0) > plot(carotene, eritema) > rettascott=lm(eritema~carotene) > abline(rettascott, col="blue") > segments(carotene, fitted(rettascott), carotene, eritema, lty=2) > title(main="regressione lineare fra Assunzione di carotene e eritema")
10 ES. STUDIO RELAZIONE carotene - eritema
11 ES. STUDIO RELAZIONE carotene - eritema > summary (rettascott) Call: lm(formula = eritema ~ carotene) Residuals: Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) *** carotene ** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 2 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: 578 on 1 and 2 DF, p-value:
12 residuals(rettascott) ES. STUDIO RELAZIONE carotene - eritema # I PARAMETRI TROVATI SONO a=50.5 E b=-3.4 QUINDI IL MODELLO TEORICO SARA : Y = *carotene # EFFETTUIAMO L ANALISI DEI RESIDUI > plot(fitted(rettascott), residuals(rettascott)) > abline(0, 0) fitted(rettascott) L analisi dei residui conferma che questi si distribuiscono in maniera uniforme e apparentemente casuale attorno all asse zero, quindi si può confermare l ipotesi di distribuzione casuale degli stessi, con media nulla e incorrelazione.
13 ES. STUDIO RELAZIONE carotene - eritema # CALCOLIAMO IL COEFFICIENTE DI CORRELAZIONE LINEARE: > R=cor(carotene, eritema) > R [1] # POICHE R E NEGATIVO, POSSIAMO AFFERMARE CHE C E UNA FORTE RELAZIONE LINEARE INDIRETTA FRA LE DUE VARIABILI
14 ES. STUDIO RELAZIONE carotene - eritema # CALCOLIAMO IL COEFFICIENTE DI CORRELAZIONE LINEARE: > R=cor(carotene, eritema) > R [1] # POICHE R E MOLTO VICINO A -1 POSSIAMO AFFERMARE CHE C E UNA FORTE RELAZIONE LINEARE INDIRETTA FRA LE DUE VARIABILI
15 ES. STUDIO RELAZIONE carotene - eritema # CALCOLIAMO IL COEFFICIENTE DI DETERMINAZIONE FACENDO IL QUADRATO DI R PER GIUDICARE LA BONTA DI ACCOSTAMENTO: > R2=R^2 > R2 [1] # DATO CHE R2 E QUASI UGUALE A 1, IL MODELLO TEORICO USATO SI ADATTA MOLTO BENE AI VALORI OSSERVATI
16 REGRESSIONE LINEARE: vitamina c - radicali ESERCIZIO 10: Una ricerca sulla relazione fra quantità assunta di un integratore a base di vitamina C e il livello di radicali liberi sulle pareti cellulari vascolari ha dato i risultati presenti in tabella. Analizzare la relazione fra i due fenomeni utilizzando la regressione lineare, disegnando il grafico, calcolando i parametri della retta interpolante, i residui con grafico, il coefficiente di correlazione lineare e giudicandone la bontà di accostamento. Quantità di vitamina C Livello radicali liberi
17 ES. STUDIO RELAZIONE vitamina c - radicali > vitaminac=c(0, 2, 5, 6) > radicali=c(58, 27, 10, 5) > plot(vitaminac, radicali) > rettavit=lm(radicali~vitaminac) > abline(rettavit, col="blue") > segments(vitaminac, fitted(rettavit), vitaminac, radicali, lty=2) > title(main="regressione lineare fra Assunzione di vitamina C e radicali")
18 ES. STUDIO RELAZIONE vitamina c - radicali
19 ES. STUDIO RELAZIONE vitamina c - radicali > summary (rettavit) Call: lm(formula = radicali ~ vitaminac) Residuals: Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) * vitaminac * --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 2 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 2 DF, p-value:
20 residuals(rettavit) ES. STUDIO RELAZIONE vitamina c - radicali # I PARAMETRI TROVATI SONO a= E b= QUINDI IL MODELLO TEORICO SARA : Y = *vitaminac # EFFETTUIAMO L ANALISI DEI RESIDUI > plot(fitted(rettavit), residuals(rettavit)) > abline(0, 0) fitted(rettavit) L analisi dei residui conferma che questi si distribuiscono in maniera uniforme e apparentemente casuale attorno all asse zero, quindi si può confermare l ipotesi di distribuzione casuale degli stessi, con media nulla e incorrelazione.
21 ES. STUDIO RELAZIONE vitamina c - radicali # CALCOLIAMO IL COEFFICIENTE DI CORRELAZIONE LINEARE: > R=cor(vitaminac, radicali) > R [1] # POICHE R E MOLTO VICINO A -1 POSSIAMO AFFERMARE CHE C E UNA FORTE RELAZIONE LINEARE INDIRETTA FRA LE DUE VARIABILI # CALCOLIAMO IL COEFFICIENTE DI DETERMINAZIONE FACENDO IL QUADRATO DI R PER GIUDICARE LA BONTA DI ACCOSTAMENTO: > R2=R^2 > R2 [1] # DATO CHE R2 E QUASI UGUALE A 1, DICIAMO CHE IL MODELLO TEORICO USATO SI ADATTA MOLTO BENE AI VALORI OSSERVATI
LABORATORIO DI PROBABILITA E STATISTICA
UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi Corso di laurea in Informatica e Bioinformatica 4 ESERCIZI RIEPILOGATIVI PRIME 3 LEZIONI 1 - STATISTICA DESCRITTIVA
LABORATORIO DI PROBABILITA E STATISTICA
LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi 3 LA REGRESSIONE LINEARE ES. STUDIO RELAZIONE ALTEZZA - PESO Soggetto Altezza Peso A 174 75 B 166 63 C 173 70 D 171 71 E 168 68 F 167 68 G 165
Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009)
Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009) Quesito: Posso stimare il numero di ore passate a studiare statistica sul voto conseguito all esame? Potrei calcolare il coefficiente di correlazione.
LABORATORIO DI PROBABILITA E STATISTICA
UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi Corso di laurea in Informatica e Bioinformatica 9 ESERCIZI DI RIPASSO FINALE (1 di 2) 1 - STATISTICA DESCRITTIVA
Analisi grafica residui in R. Da output grafico analisi regressionelm1.csv Vedi dispensa. peso-statura
Analisi grafica residui in R Da output grafico analisi regressionelm1.csv Vedi dispensa peso-statura 1) Il plot in alto a sinistra mostra gli errori residui contro i loro valori stimati. I residui devono
LABORATORIO DI PROBABILITA E STATISTICA
LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi Bonus ESERCIZI DI RIPASSO FINALE 1 - STATISTICA DESCRITTIVA TABLET ESERCIZIO 1: La seguente tabella riporta i volumi di vendita (in migliaia
Esercizio 1 GRAFICO 1. X e Y sono indipendenti. X e Y non sono correlate. La correlazione tra X e Y è <1. X e Y sono perfettamente correlate
Esercizio 1 Osservare il grafico 1 riportato in figura che mette in relazione una variabile dipendente Y ed una variabile indipendente X e rispondere alle seguenti domande. 400 300 200 GRAFICO 1 100 0
REGRESSIONE lineare e CORRELAZIONE. Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori
REGRESSIONE lineare e CORRELAZIONE Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori Y X La NATURA e la FORZA della relazione tra variabili si studiano con la REGRESSIONE
Probabilità e Statistica Prova del 29/07/2016 Traccia E TEORIA Università degli Studi di Verona Laurea in Informatica e Bioinformatica A.A.
Prova del 29/07/2016 Traccia E TEORIA ESERCIZIO 1 X f(x) 4 24 0 20 9 18 5 38 Sulla distribuzione di valori presentata in tabella, calcolare: (a) la media aritmetica, la media armonica e la media geometrica;
Validazione dei modelli Strumenti quantitativi per la gestione
Validazione dei modelli Strumenti quantitativi per la gestione Emanuele Taufer Validazione dei modelli Il data set Auto I dati Il problema analizzato Validation set approach Diagramma a dispersione Test
Introduzione alla Regressione Logistica
Introduzione alla Regressione Logistica Contenuto regressione lineare semplice e multipla regressione logistica lineare semplice La funzione logistica Stima dei parametri Interpretazione dei coefficienti
Modelli con predittori qualitativi e modelli con interazioni
Modelli con predittori qualitativi e modelli con interazioni Strumenti quantitativi per la gestione Emanuele Taufer Utilizzare variabili indipendenti qualitative (VIQ) Codifica binaria 0,1 Esempio: salari
Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza
Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza 3 maggio 2005 Esercizio 1 Consideriamo l esempio del libro di testo Annette
Fac-simile prova di esame
UNIVERSITÀ CA FOSCARI DI VENEZIA FACOLTÀ DI ECONOMIA Statistica Computazionale I Prof. Stefano Tonellato COGNOME.................................... NOME.................................... MATRICOLA....................................
Esercitazione 5 - Statistica (parte II) Davide Passaretti 9/3/2017
Esercitazione 5 - Statistica (parte II) Davide Passaretti 9/3/2017 Contents 1 Inferenza sulla regressione semplice 1 1.1 Test sulla pendenza della retta................................... 1 1.2 Test sull
ESERCITAZIONE C. Analisi di dati sperimentali PARTE 3: REGRESIONE
Università degli Studi di Padova Facoltà di Scienze MM.FF.NN. Corso di Laurea Magistrale: Biologia Sanitaria/Biologia Molecolare Insegnamento: Statistica Applicata Docente: Prof.ssa Alessandra R. Brazzale
Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12)
Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 011-1) REGRESSIONE LINEARE SEMPLICE OPEN STATISTICA 8.44 Per 8 settimanali, appartenenti alla medesima fascia di prezzo e presenti in edicola
Regressione lineare multipla Strumenti quantitativi per la gestione
Regressione lineare multipla Strumenti quantitativi per la gestione Emanuele Taufer Regressione lineare multipla (RLM) Esempio: RLM con due predittori Stima dei coefficienti e previsione Advertising data
Statistica. Capitolo 12. Regressione Lineare Semplice. Cap. 12-1
Statistica Capitolo 1 Regressione Lineare Semplice Cap. 1-1 Obiettivi del Capitolo Dopo aver completato il capitolo, sarete in grado di: Spiegare il significato del coefficiente di correlazione lineare
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
Laboratorio di Statistica Aziendale Modello di regressione lineare semplice
Laboratorio di Statistica Aziendale Modello di regressione lineare semplice Dott.ssa Michela Pasetto [email protected] Caricamento del dataset Il dataset SalesData si trova nella cartella condivisa
Regressione lineare semplice
Regressione lineare semplice Strumenti quantitativi per la gestione Emanuele Taufer Regressione lineare (RL) La regressione lineare per i dati Advertising Analisi d interesse Regressione lineare semplice
DAL CAMPIONE ALLA POPOLAZIONE: LA STIMA DEI PARAMETRI
DAL CAMPIONE ALLA POPOLAZIONE: LA STIMA DEI PARAMETRI Andrea Onofri Dipartimento di Scienze Agrarie ed Ambientali Università degli Studi di Perugia Versione on-line: http://www.unipg.it/ onofri/rtutorial/index.html
STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7:
esercitazione 7 p. 1/13 STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7: 20-05-2004 Luca Monno Università degli studi di Pavia [email protected] http://www.lucamonno.it
Indice. 1 Introduzione ai modelli lineari 2. 2 Dataset 3. 3 Il Modello 8. 4 In pratica 12 4.1 Peso e percorrenza... 12
Indice 1 Introduzione ai modelli lineari 2 2 Dataset 3 3 Il Modello 8 4 In pratica 12 41 Peso e percorrenza 12 1 Capitolo 1 Introduzione ai modelli lineari Quando si analizzano dei dati, spesso si vuole
lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1
lezione n. 6 (a cura di Gaia Montanucci) METODO MASSIMA VEROSIMIGLIANZA PER STIMARE β 0 E β 1 Distribuzione sui termini di errore ε i ε i ~ N (0, σ 2 ) ne consegue : ogni y i ha ancora distribuzione normale,
Variabili indipendenti qualitative. In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli.
Variabili indipendenti qualitative Di solito le variabili nella regressione sono variabili continue In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli Ad esempio:
Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione
Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2010/2011 Statistica Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Regressione Lineare e Correlazione Argomenti della lezione Determinismo e variabilità Correlazione Regressione Lineare
Esercizi di statistica
Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..
PROBABILITÀ ELEMENTARE
Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti
Verifica di ipotesi sui coefficienti di regressione. Verifica di ipotesi sul coefficiente angolare
Verifica di ipotesi sui coefficienti di regressione Per il momento supponiamo di muoverci nel contesto del modello gaussiano. Vogliamo capire se alcune nostre congetture sui coefficienti di regressione
Test F per la significatività del modello
Test F per la significatività del modello Per verificare la significatività dell intero modello si utilizza il test F Si vuole verificare l ipotesi H 0 : β 1 = 0,, β k = 0 contro l alternativa che almeno
Regressione Lineare Semplice e Correlazione
Regressione Lineare Semplice e Correlazione 1 Introduzione La Regressione è una tecnica di analisi della relazione tra due variabili quantitative Questa tecnica è utilizzata per calcolare il valore (y)
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 2 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1.1
Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2009/2010.
Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2009/2010 Statistica Esercitazione 4 12 maggio 2010 Dipendenza in media. Covarianza e
STATISTICA A K (60 ore)
STATISTICA A K (60 ore) Marco Riani [email protected] http://www.riani.it Richiami sulla regressione Marco Riani, Univ. di Parma 1 MODELLO DI REGRESSIONE y i = a + bx i + e i dove: i = 1,, n a + bx i rappresenta
Laboratorio di R - 3 a lezione Prof. Mauro Gasparini
Laboratorio di R - 3 a lezione Prof. Mauro Gasparini 1. Verifica di ipotesi: il test t di Student In R è disponibile la funzione t.test che effettua il test t di Student ad un campione, a due campioni
Statistica multivariata Donata Rodi 17/10/2016
Statistica multivariata Donata Rodi 17/10/2016 Quale analisi? Variabile Dipendente Categoriale Continua Variabile Indipendente Categoriale Chi Quadro ANOVA Continua Regressione Logistica Regressione Lineare
Statistica - metodologie per le scienze economiche e sociali S. Borra, A. Di Ciaccio - McGraw Hill
- metodologie per le scienze economiche e sociali S. Borra, A. Di Ciaccio - McGraw Hill Es. Soluzione degli esercizi del capitolo 8 home - indice In base agli arrotondamenti effettuati nei calcoli, si
Statistica Descrittiva Soluzioni 7. Interpolazione: minimi quadrati
ISTITUZIONI DI STATISTICA A. A. 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona
Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione
Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2011/2012 Statistica Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate.
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi
Esame di Statistica A-Di Prof. M. Romanazzi
1 Università di Venezia Esame di Statistica A-Di Prof. M. Romanazzi 22 Gennaio 2016 Cognome e Nome..................................... N. Matricola.......... Valutazione Il punteggio massimo teorico di
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria [email protected] Il concetto di interpolazione In matematica, e in particolare in
docente: J. Mortera/P. Vicard Nome
A opportuni passaggi). Verrà accettato in consegna solo il presente plico. 2. [9] Una certa zona è servita da 4 compagnie telefoniche. Per ciascuna compagnia è stato rilevato il costo al minuto (in centesimi
CAPITOLO 11 ANALISI DI REGRESSIONE
VERO FALSO CAPITOLO 11 ANALISI DI REGRESSIONE 1. V F Se c è una relazione deterministica tra due variabili,x e y, ogni valore dato di x,determinerà un unico valore di y. 2. V F Quando si cerca di scoprire
Regressione Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007
Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il costo mensile Y di produzione e il corrispondente volume produttivo X per uno dei propri stabilimenti. Volume
CAPITOLO 5 Introduzione ai piani fattoriali
Douglas C. Montgomery Progettazione e analisi degli esperimenti 2006 McGraw-Hill CAPITOLO 5 Introduzione ai piani fattoriali Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria
Laboratorio di Statistica 1 con R Esercizi per la Relazione. I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati
Laboratorio di Statistica 1 con R Esercizi per la Relazione I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati nel corso. Esercizio 1. 1. Facendo uso dei comandi
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,
Statistica di base per l analisi socio-economica
Laurea Magistrale in Management e comunicazione d impresa Statistica di base per l analisi socio-economica Giovanni Di Bartolomeo [email protected] Definizioni di base Una popolazione è l insieme
Data Mining. Prova parziale del 20 aprile 2017: SOLUZIONE
Università degli Studi di Padova Corso di Laurea Magistrale in Informatica a.a. 2016/2017 Data Mining Docente: Annamaria Guolo Prova parziale del 20 aprile 2017: SOLUZIONE ISTRUZIONI: La durata della prova
Analisi Multivariata dei Dati. Regressione Multipla
Analisi Multivariata dei Dati Regressione Multipla A M D Marcello Gallucci Milano-Bicocca Lezione: III Effetti multipli Consideriamo ora il caso in cui la variabile dipendente possa essere spiegata da
Regressione lineare semplice
Regressione lineare semplice Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Statistica con due variabili var. nominale, var. nominale: gruppo sanguigno - cancro
> Ciliegi <- read.table("i:/modelli/cherry.dat", + col.names=c( diametro, altezza, volume ))
Laboratorio 2 Modello lineare semplice 2.1 Analisi dei dati CHERRY.DAT Riprendiamo l insieme di dati Ciliegi della precedente lezione. Se non era stato salvato, bisogna rileggerlo da file: > Ciliegi
La regressione lineare. Rappresentazione analitica delle distribuzioni
La regressione lineare Rappresentazione analitica delle distribuzioni Richiamiamo il concetto di dipendenza tra le distribuzioni di due caratteri X e Y. Ricordiamo che abbiamo definito dipendenza perfetta
ANALISI DELLA VARIANZA
ANALISI DELLA VARIANZA Il data set coagulation contenuto nella libreria faraway contiene i tempi di coagulazione del sangue (misurato in secondi) di 24 animali sottoposti casualmente a quattro tipi di
Modelli non lineari Strumenti quantitativi per la gestione
Modelli non lineari Strumenti quantitativi per la gestione Emanuele Taufer Metodi per affrontare problemi non lineari Regressione polinomiale Esempio: modellare i picchi di domanda di energia Fattori che
R - Esercitazione 6. Andrea Fasulo Venerdì 22 Dicembre Università Roma Tre
R - Esercitazione 6 Andrea Fasulo [email protected] Università Roma Tre Venerdì 22 Dicembre 2017 Il modello di regressione lineare semplice (I) Esempi tratti da: Stock, Watson Introduzione all econometria
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
Multicollinearità. Strumenti quantitativi per la gestione
Multicollinearità Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/3c_mc.html#(1) 1/13 Quando non tutto va come dovrebbe Si parla di multi-collinearità
Regressione multipla
Regressione multipla L obiettivo è costruire un modello probabilistico per spiegare la variabile y tramite più di una variabile indipendente x 1, x 2,..., x k. Esempio: Per un efficiente progettazione
STATISTICA BIVARIATA: ALCUNI STIMOLI DI APPROFONDIMENTO (Tecn. Lab. Biomedico e Tecn. Fisiop. e Perfus. Cardiovascolare 3 Anno)
STATISTICA BIVARIATA: ALCUNI STIMOLI DI APPROFONDIMENTO (Tecn. Lab. Biomedico e Tecn. Fisiop. e Perfus. Cardiovascolare 3 Anno) 1) ASSOCIAZIONE TRA DUE CARATTERI RISCHIO RELATIVO E ODDS RATIO In uno studio
1. Esistono differenze nella resistenza tra le varie marche?
Laboratorio 10 Analisi della varianza 10.1 Analisi del dataset STURDY.DAT I dati riportati nel file sturdy.dat si riferiscono ad un esperimento effettuato per studiare la resistenza allo strappo di diverse
Regressione Semplice. Correlazioni. sconto leverage. sconto Correlazione di Pearson 1,275. Sign. (a due code),141
Regressione Semplice Analisi Per avere una prima idea della struttura di dipendenza fra le variabili in esame, possiamo cominciare col costruire la matrice di correlazione delle variabili presenti nel
Il modello di regressione
Il modello di regressione Capitolo e 3 A M D Marcello Gallucci Milano-Bicocca Lezione: II Concentti fondamentali Consideriamo ora questa ipotetica ricerca: siamo andati in un pub ed abbiamo contato quanti
REGRESSIONE LINEARE SEMPLICE
REGRESSIONE LINEARE SEMPLICE Legacy Edition Copyright 25 ottobre 2012 Luca La Rocca [email protected] UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA Indice 2 Previsione di un carattere quantitativo
Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill
Statistica - metodologie per le scienze economiche e sociali /e S Borra, A Di Ciaccio - McGraw Hill Es 6 Soluzione degli esercizi del capitolo 6 In base agli arrotondamenti effettuati nei calcoli, si possono
STATISTICA 1 ESERCITAZIONE 6
STATISTICA 1 ESERCITAZIONE 6 Dott. Giuseppe Pandolfo 5 Novembre 013 CONCENTRAZIONE Osservando l ammontare di un carattere quantitativo trasferibile su un collettivo statistico può essere interessante sapere
REGRESSIONE E CORRELAZIONE
REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2
DISTRIBUZIONI DOPPIE (ANALISI DESCRITTIVE) Fulvio De Santis a.a Prerequisiti Popolazione, unità, carattere Come nascono i dati:
DISTRIBUZIONI DOPPIE (ANALISI DESCRITTIVE) Fulvio De Santis a.a. 2007-2008 Prerequisiti Popolazione, unità, carattere Come nascono i dati: osservazione e sperimentazione Popolazione: reale e virtuale Classificazione
