Analisi Multivariata dei Dati. Regressione Multipla
|
|
|
- Caterina Bello
- 8 anni fa
- Visualizzazioni
Transcript
1 Analisi Multivariata dei Dati Regressione Multipla A M D Marcello Gallucci Milano-Bicocca Lezione: III
2 Effetti multipli Consideriamo ora il caso in cui la variabile dipendente possa essere spiegata da più di una variabile Parleremo di Regressione Multipla x byx.w y w byw. x
3 Esempio Effetti multipli Vogliamo predire il numero di sorrisi sia con il numero di birre che con il tratto estroversione del soggetto Regressione Multipla Birre byx.w Sorrisi Estrovers. byw. x
4 Effetti multipli La regressione multipla aggiunge termini lineari (altre VI) alla retta di regressione Legge di relazione della Regressione Multipla x y w Standardizzata yˆ z yx.w x z yw. x wz Non Standardizzata yˆ a byx.w x byw. x w
5 Interpretazione Il coefficiente di regressione esprime l effetto diretto di x su y, togliendo l effetto che passa indirettamente per w Effetto diretto byx.w byx byw. x bwx Effetto indiretto x bwx w byx.w byw. x y
6 Effetti Parziali Togliere l effetto indiretto è equivalente a bloccare la possibilità che x vada su y mediante w: Il coefficiente viene dunque detto coefficiente parziale, cioè l effetto di x parzializzando l effetto di w Effetto diretto Effetto indiretto x bwx w byx.w byw. x y
7 Rappresentazione geometrica yˆ a B y1 x1 B y x
8 Interpretazione geometrica Effetto Unico of X for X1=-10 Effetto unico di X per X1=0 Effetto unico di X per X1=10
9 Intercetta (o costante) L'intercetta indica il valore atteso della VD per tutte le VI uguali a 0 Y =a B y1. 0 B y.1 0 Yˆ a
10 Esempio Un ricercatore ha misurato la capacita di lettura e la produzione linguistica con due test in bimbi da 5 e 8 anni Si propone di studiare se la capacità di lettura è influenzata dalla produzione linguistica eta Validi Totale Frequenza Percentuale Percentuale valida Percentuale cumulata Statistiche descrittive N lettura lingua Validi (listwise) Minimo Massimo Media Deviazione std
11 Esempio Incominciamo con una regressione semplice lettura byxlingua Riepilogo del modello Modello 1 R R-quadrato a R-quadrato corretto.03 Errore std. della stima a. Stimatori: (Costante), lingua ANOVAb Modello 1 Varianza spiegata Coefficientia Modello 1 (Costante) lingua Coefficienti non standardizzati B Errore std a. Variabile dipendente: lettura Regressione Residuo Totale Somma dei quadrati df Media dei quadrati F a. Stimatori: (Costante), lingua b. Variabile dipendente: lettura Coefficienti standardizzati Beta.178 t Coefficienti di regressione Sig Sig..05a
12 Esempio Aggiungiamo l età lettura=b yx. w lingua b yw. x eta Riepilogo del modello Modello 1 R R-quadrato a R-quadrato corretto.401 Errore std. della stima a. Stimatori: (Costante), eta, lingua ANOVAb Modello 1 Varianza spiegata Regressione Residuo Totale Somma dei quadrati df Media dei quadrati F a. Stimatori: (Costante), eta, lingua b. Variabile dipendente: lettura Coefficientia Modello 1 (Costante) lingua eta Coefficienti non standardizzati B Errore std Coefficienti standardizzati Beta t Sig a. Variabile dipendente: lettura Notiamo come è cambiato l effetto della lettura Coefficienti di regressione Sig..000a
13 Esempio Concluderemo che la produzione linguistica è debolmente associata alla capacità di lettura Coefficientia Regressione semplice Modello 1 (Costante) lingua Coefficienti non standardizzati B Errore std Coefficienti standardizzati Beta.178 t Sig t Sig a. Variabile dipendente: lettura Coefficientia Regressione multipla Modello 1 (Costante) lingua eta Coefficienti non standardizzati B Errore std Coefficienti standardizzati Beta a. Variabile dipendente: lettura Ma questa associazione dipende dalle differenze dovute all età A parità di età, non vi è una relazione tra produzione linguistica e capacità di lettura
14 Varianza spiegata La sostanza e la stessa che nella regressione semplice se Y Yzz Xz s reg Wz s reg s y s e = = R y. xw sy sy
15 Varianza non spiegata Percentuale di varianza di errore, non spiegabile mediante la regressione e e =1 R y. xw a b c X Coefficiente di alienazione W Lezione III
16 Calcolo di R Il calcolo pratico della varianza spiegata puo essere effettuato partendo dalle correlazioni semplici R y. xw = yx e yw r r r yx r yw r wx 1 r wx a b c X W Lezione III
17 Decomposizione della varianza spiegata A questo punto ci possiamo chiedere quale sia l effetto unico o il contributo unico di ogni variabile alla varianza spiegata Y Quanto ogni VI contribuisce a spiegare varianza di Y? a b c X Quanto è l effetto unico di ogni variabile sulla variabilità della Y? W Lezione III
18 Effetti come informazione Immaginiamo l effetto di una VI sulla VD come informazione trasferita dalla VI alla VD Informa.. Adamo Eva Informazione condivisa Eva Eva Adamo Cose che solo Eva conosce Cose che solo Adamo conosce Lezione III
19 Effetti come informazione Inseriamo un secondo informatore Informa Adamo Eva Serpente Informa Intendiamo sapere chi ha informato Eva e quanta parte della informazione proviene dai due informatori Lezione III
20 Decomposizione della informazione Come si ripartisce l informazione di Eva Cose che solo Eva conosce Cose che conoscono tutti Eva Cose che Adamo ha detto a EVA Adamo Serpente Cose che Serpente a detto a Eva Cose che Adamo e Serpente conoscono ma non Eva
21 Effetti unici o parziali Quale e il contributo unico di Serpente alla conoscenza ottenuta da Eva? Cose che Serpente ha detto a Eva - Cose che tutti e tre conoscono e [ a c ] c=a L effetto unico di Serpente su Eva e dato dall effetto totale di Serpente rimuovendo l effetto condiviso con Adamo a b c Adamo Serpente
22 Effetti unici o parziali Quale e il contributo unico di Serpente alla conoscenza ottenuta da Eva? Cose che Serpente ha detto a Eva - Cose che tutti e tre conoscono e [ a c ] c=a L effetto unico di Serpente su Eva e dato dall effetto totale di Serpente parzializzando l effetto condiviso con Adamo a b c Adamo Serpente
23 Parzializzazione Parzializzare significa rimuovere l effetto di una (o piu ) VI, cioe calcolare gli effetti come se quella variabile abbia nessuna variabilita e Adamo Serpente Effetto parziale (unico, diretto) di Serpente Adamo parzializzato
24 Parzializzazione Parzializzare significa rimuovere l effetto di una (o piu ) VI, cioe calcolare gli effetti come se quella variabile abbia nessuna variabilita e Serpente Serpente parzializzato Adamo Effetto parziale (unico, diretto) di Adamo
25 Effetto Congiunto Qual e l effetto totale che i due informatori hanno su Eva? Quale % della conoscenza di Eva e dovuta agli informatori? Conoscenza di Eva - Conoscenza unica di Eva e 1 e=a b c a b c Adamo Serpente
26 Effetto Congiunto Qual e l effetto totale che i due informatori hanno su Eva? Quale % della conoscenza di Eva e dovuta agli informatori? Cose solo Serpente ha detto a Eva + Cose solo Adamo ha detto a Eva + Cose che tutti sanno a b c L effetto combinato di A e S e dato dai loro effetti unici (parziali) e dal loro contributo comune e a b c Adamo Serpente
27 Entra Statistica Siamo interessati agli effetti di due (o piu ) variabili indipendenti su una variabile dipendente Siamo in grado di stimare la regressione che li lega Y =a b yx.w x b yw.x w e Vogliamo quantificare il loro contributo unico e combinato mediante degli indici che rappresentino la grandezza dei vari effetti
28 Varianza Decomposta Decomponiamo la varianza della varibile dipendente Varianza completamente condivisa Varianza di errore e Contributo unico di X a b c X W Contributo unico di W Varianza condivisa tra X e W
29 Correlazione semplice (quadrata) Ricordiamo che nella regressione semplice, la correlazione quadrata semplice e la varianza condivisa (spiegata dalla VI) Varianza di errore e r yw W Contributo W
30 Correlazione semplice (quadrata) La correlazione semplice Varianza completamente condivisa Varianza di errore e r yw =a c Contributo unico di X a r yx =b c b c X W Contributo unico di W Varianza condivisa tra X e W
31 Contributo unico di VI Il contributo unico di una VI può essere stimato grazie al quadrato della correlazione parziale Correlazione parziale Varianza spiegata pr yw.x - Varianza spiegata da x e a = a+ e a b c X w
32 Correlazione parziale Il quadrato della correlazione parziale indica l effetto di una VI dopo aver rimosso tutta la variabilita delle altre Correlazione parziale pr yw.x a = a e e Varianza dovuta a w calcolata sul totale dopo aver tolto la varianza di x a b c X w Varianza di x e completamente rimossa Lezione III
33 Calcolo di pr Pr può essere calcolato partendo dalle correlazioni semplici pr yw.x = r yw r yx r wx 1 r 1 r yx e xw a c Oppure dai coefficienti standardizzati pr yw. x = β yw. x 1 r yx b X W pr yw.x = pr yw.x pr yw.x
34 Contributo unico di VI () Il contributo unico di una VI può essere anche stimato grazie al quadrato della correlazione semi-parziale Correlazione semi-parziale Varianza spiegata sr yw.x - Varianza spiegata da x e a = a+ b+ c + e a b c X w
35 Correlazione semi-parziale Il quadrato della correlazione parziale indica l effetto di una VI dopo aver rimosso tutta la variabilita delle altre Correlazione parziale sr yw.x a = a+ b+ c + e e Varianza unica dovuta a w come proporzione di tutta la varianza di Y a b c X w Varianza di x non rimossa nel calcolo della varianza totale
36 Correlazione semi-parziale In altri termini.. R yxw ryw sryx.w R=.5 R=.10 e e s r=.15 r a b c x w w Grazie a X, si spiega un 15% in piu
37 Esempio In ricerca sull anoressia sono state misurate su un campione di 85 donne la propria figura reale, la figura ideale e l autostima. Pictorial Body Image Scale
38 Output Coefficientia Modello 1 (Costante) Autostima Coefficienti non standardizzati B Errore std Coefficienti standardizzati Beta.58 t Sig a. Variabile dipendente: figura_ideale Lezione: II
39 Regressione con SPSS Inseriamo le variabili al posto giusto Variabile Dipendente Tutte le variabili Finestra Regressione Variabili Indipendenti Lezione III
40 Regressione con SPSS Inseriamo le variabili al posto giusto Opzioni ulteriori Marchiamo qui per ottenere le correlazioni semplici e parziali Lezione III
41 OUTPUT SPSS Bontà della regressione R Significatività Lezione III
42 OUTPUT SPSS Coefficienti e indici Significatività (notiamo che c è un test solo per ogni VI) r pr
43 Fine Fine della Lezione III
Il modello di regressione
Il modello di regressione Capitolo e 3 A M D Marcello Gallucci Milano-Bicocca Lezione: II Concentti fondamentali Consideriamo ora questa ipotetica ricerca: siamo andati in un pub ed abbiamo contato quanti
Analisi Multivariata dei Dati
Analisi Multivariata dei Dati Introduzione al corso e al modello statistico A M D Marcello Gallucci Milano-Bicocca Lezione: I Programma Odierno I numeri del corso Programma del corso Concetti Statistici
Introduzione all Analisi della Varianza (ANOVA)
Introduzione all Analisi della Varianza (ANOVA) AMD Marcello Gallucci [email protected] Variabili nella Regressione Nella regressione, la viariabile dipendente è sempre quantitativa e, per quello
Metodologie Quantitative
Metodologie Quantitative Regressione Lineare Multipla Mediazione e Path analysis I M Q Marco Perugini Milano-Bicocca 1 Regressione Multipla: utilizzo avanzato A seconda dello status delle variabili indipendenti,
Analisi avanzate basate sulla regressione (Cap. 7)
Analisi avanzate basate sulla regressione (Cap. 7) AMD Marcello Gallucci [email protected] Regressione Multipla A seconda dello status delle variabili indipendenti, possiamo differenziare diversi
Metodologie Quantitative
Metodologie Quantitative Regressione Lineare Multipla Mediazione e Path analysis I M Q Marco Perugini Milano-Bicocca 1 Regressione Multipla: utilizzo avanzato A seconda dello status delle variabili indipendenti,
Regressione Lineare Semplice e Correlazione
Regressione Lineare Semplice e Correlazione 1 Introduzione La Regressione è una tecnica di analisi della relazione tra due variabili quantitative Questa tecnica è utilizzata per calcolare il valore (y)
Assunzioni (Parte I)
Assunzioni (Parte I) A M D Marcello Gallucci [email protected] Lezione 10 Modello Lineare Generale La regressione semplice e multipla e l'anova sono sottocasi del modello lineare generale (GLM)
Il modello lineare misto
Il modello lineare misto (capitolo 9) A M D Marcello Gallucci Univerisità Milano-Bicocca Lezione: 15 GLM Modello Lineare Generale vantaggi Consente di stimare le relazioni fra due o più variabili Si applica
Statistica multivariata Donata Rodi 17/10/2016
Statistica multivariata Donata Rodi 17/10/2016 Quale analisi? Variabile Dipendente Categoriale Continua Variabile Indipendente Categoriale Chi Quadro ANOVA Continua Regressione Logistica Regressione Lineare
Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica
13. Regressione lineare parametrica Esistono numerose occasioni nelle quali quello che interessa è ricostruire la relazione di funzione che lega due variabili, la variabile y (variabile dipendente, in
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
ANALISI MULTIVARIATA
ANALISI MULTIVARIATA Marcella Montico Servizio di epidemiologia e biostatistica... ancora sulla relazione tra due variabili: la regressione lineare semplice VD: quantitativa VI: quantitativa Misura la
Analisi della Varianza Fattoriale
Analisi della Varianza Fattoriale AMD Marcello Gallucci [email protected] Ripasso dell ANOVA Lo studio degli effetti di una serie di variabili indipendenti nominale (gruppi) su un variabile dipendente
P S I C O M T R I A Marcello Gallucci. Analisi Fattoriale. Esempi. Milano-Bicocca. Lezione: 20
Analisi Fattoriale Esempi P S I C O M T R I A Marcello Gallucci Milano-Bicocca Lezione: 20 Esempio Descrizione della ricerca Un ricercatore intende stabilire se una manipolazione sperimentale basata sulla
Statistica. Capitolo 12. Regressione Lineare Semplice. Cap. 12-1
Statistica Capitolo 1 Regressione Lineare Semplice Cap. 1-1 Obiettivi del Capitolo Dopo aver completato il capitolo, sarete in grado di: Spiegare il significato del coefficiente di correlazione lineare
Analisi Fattoriale Concetti introduttivi Marcello Gallucci Milano-Bicocca
Analisi Fattoriale Concetti introduttivi A M D Marcello Gallucci Milano-Bicocca Scopi generali L Analisi Fattoriale (e varianti) si propone di estrarre un numero limitato di fattori (variabili latenti
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è
Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009)
Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009) Quesito: Posso stimare il numero di ore passate a studiare statistica sul voto conseguito all esame? Potrei calcolare il coefficiente di correlazione.
Strumenti informatici Calcolare il coefficiente di correlazione di Pearson con Excel e SPSS
Strumenti informatici 7.3 - Calcolare il coefficiente di correlazione di Pearson con Excel e SPSS Il coefficiente di correlazione di Pearson può essere calcolato con la funzione di Excel =CORRELAZIONE(Matrice1;Matrice2),
R - Esercitazione 6. Andrea Fasulo Venerdì 22 Dicembre Università Roma Tre
R - Esercitazione 6 Andrea Fasulo [email protected] Università Roma Tre Venerdì 22 Dicembre 2017 Il modello di regressione lineare semplice (I) Esempi tratti da: Stock, Watson Introduzione all econometria
Misure Ripetute. Partizione della Varianza. Marcello Gallucci
Misure Ripetute Partizione della Varianza Marcello Gallucci GLM l ANOVA a misure ripetute rappresenta un caso del modello lineare generale in cui la variabilità non è valutata tra gruppi ma tra misure
PROBABILITÀ ELEMENTARE
Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Regressione Lineare e Correlazione Argomenti della lezione Determinismo e variabilità Correlazione Regressione Lineare
Misure Ripetute. Analisi dei dati in disegni di ricerca con misure ripetute. Marcello Gallucci
Misure Ripetute Analisi dei dati in disegni di ricerca con misure ripetute Marcello Gallucci Introduzione Consideriamo una ricerca in cui un gruppo di pazienti è sottoposto ad un trattamento terapeutico
3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17
C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica
Statistica 1 A.A. 2015/2016
Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 35 Il modello di regressione
REGRESSIONE lineare e CORRELAZIONE. Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori
REGRESSIONE lineare e CORRELAZIONE Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori Y X La NATURA e la FORZA della relazione tra variabili si studiano con la REGRESSIONE
Tecniche statistiche di analisi del cambiamento
Tecniche statistiche di analisi del cambiamento 07-Anova con covariata (vers. 1.2, 20 marzo 2017) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2016-17
Il modello di regressione lineare multipla. Il modello di regressione lineare multipla
Introduzione E la generalizzazione del modello di regressione lineare semplice: per spiegare il fenomeno d interesse Y vengono introdotte p, con p > 1, variabili esplicative. Tale generalizzazione diventa
DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI.
Corso di Laurea Specialistica in Biologia Sanitaria, Universita' di Padova C.I. di Metodi statistici per la Biologia, Informatica e Laboratorio di Informatica (Mod. B) Docente: Dr. Stefania Bortoluzzi
Statistica di base per l analisi socio-economica
Laurea Magistrale in Management e comunicazione d impresa Statistica di base per l analisi socio-economica Giovanni Di Bartolomeo [email protected] Definizioni di base Una popolazione è l insieme
Lezioni di Statistica del 15 e 18 aprile Docente: Massimo Cristallo
UIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECOOMIA Corso di laurea in Economia Aziendale anno accademico 2012/2013 Lezioni di Statistica del 15 e 18 aprile 2013 Docente: Massimo Cristallo LA RELAZIOE
Regressione Semplice. Correlazioni. sconto leverage. sconto Correlazione di Pearson 1,275. Sign. (a due code),141
Regressione Semplice Analisi Per avere una prima idea della struttura di dipendenza fra le variabili in esame, possiamo cominciare col costruire la matrice di correlazione delle variabili presenti nel
Dispensa di Statistica
Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi
Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza.
Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza. Misure ripetute forniscono dati numerici distribuiti attorno ad un valore centrale indicabile con un indice (indice
Esercitazione 5 - Statistica (parte II) Davide Passaretti 9/3/2017
Esercitazione 5 - Statistica (parte II) Davide Passaretti 9/3/2017 Contents 1 Inferenza sulla regressione semplice 1 1.1 Test sulla pendenza della retta................................... 1 1.2 Test sull
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi:
DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano [email protected] si basano su tre elementi: le scale di misura sistema empirico: un insieme di entità non numeriche (es. insieme di persone; insieme
viii Indice generale
Indice generale 1 Introduzione al processo di ricerca 1 Sommario 1 Il processo di ricerca 3 Concetti e variabili 5 Scale di misura 8 Test di ipotesi 10 Evidenza empirica 10 Disegni di ricerca 11 Sintesi
ESERCITAZIONE IV - Soluzioni
umero di omicidi ESERCITAZIOE IV - Soluzioni Esercizio I. a),00 12,00 10,00 8,00 6,00 4,00 2,00 0,00 0 5 10 15 20 25 Popolazione povera (%) b) Poiché i due caratteri in analisi sono quantitativi per calcolare
STATISTICA. Esercizi vari
STATISTICA Esercizi vari Esercizio 5.6 p. 205 Variabile Coeff. Dev. std. Statistica t p-value Intercetta 23.384 1.592 14.691 0 Profondità -1.435 0.213-6.726 0 = 0.850 Esercizio 5.6 p. 205 Variabile Coeff.
lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1
lezione n. 6 (a cura di Gaia Montanucci) METODO MASSIMA VEROSIMIGLIANZA PER STIMARE β 0 E β 1 Distribuzione sui termini di errore ε i ε i ~ N (0, σ 2 ) ne consegue : ogni y i ha ancora distribuzione normale,
Variabili indipendenti qualitative. In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli.
Variabili indipendenti qualitative Di solito le variabili nella regressione sono variabili continue In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli Ad esempio:
L A B C di R. Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010
L A B C di R 0 20 40 60 80 100 2 3 4 5 6 7 8 Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010 La scelta del test statistico giusto La scelta della analisi
Metodologia Sperimentale Agronomica / Metodi Statistici per la Ricerca Ambientale
DIPARTIMENTO DI SCIENZE AGRARIE E AMBIENTALI PRODUZIONE, TERRITORIO, AGROENERGIA Marco Acutis [email protected] www.acutis.it CdS Scienze della Produzione e Protezione delle Piante (g59) CdS Biotecnologie
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri
La regressione lineare multipla
13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività
8. ANALISI DELLA COVARIANZA (ANCOVA)
8. ANALISI DELLA COVARIANZA (ANCOVA) L analisi della covarianza è un metodo statistico che risulta dalla combinazione dell analisi di regressione con l analisi della varianza. È utile quando all analisi
Quanti soggetti devono essere selezionati?
Quanti soggetti devono essere selezionati? Determinare una appropriata numerosità campionaria già in fase di disegno dello studio molto importante è molto Studi basati su campioni troppo piccoli non hanno
Test F per la significatività del modello
Test F per la significatività del modello Per verificare la significatività dell intero modello si utilizza il test F Si vuole verificare l ipotesi H 0 : β 1 = 0,, β k = 0 contro l alternativa che almeno
Correlazione e regressione
SMID a.a. 2004/2005 Corso di Metodi Statistici in Biomedicina Correlazione e regressione 28/1/2005 Relazioni Che rapporto c'è tra la pressione arteriosa e il peso corporeo? relazione tra due variabili
Metodologie Quantitative
Metodologie Quantitative Regressione Lineare Multipla Path Analysis II e Moderazione M Q Marco Perugini Milano-Bicocca 1 Dalla mediazione alla path analysis Notiamo che il modello considerato per la mediazione,
Istituzioni di Statistica
Istituzioni di Statistica CORSO DI LAUREA IN ECONOMIA DEL COMMERCIO INTERNAZIONALE CORSO DI LAUREA IN ECONOMIA E AMMINISTRAZIONE DELLE IMPRESE A.A. 2007/2008 DOCENTE: Marco Minozzo PROGRAMMA - STATISTICA
STATISTICA A K (60 ore)
STATISTICA A K (60 ore) Marco Riani [email protected] http://www.riani.it Richiami sulla regressione Marco Riani, Univ. di Parma 1 MODELLO DI REGRESSIONE y i = a + bx i + e i dove: i = 1,, n a + bx i rappresenta
La media e la mediana sono indicatori di centralità, che indicano un centro dei dati.
La media e la mediana sono indicatori di centralità, che indicano un centro dei dati. Un indicatore che sintetizza in un unico numero tutti i dati, nascondendo quindi la molteplicità dei dati. Per esempio,
La regressione lineare. Rappresentazione analitica delle distribuzioni
La regressione lineare Rappresentazione analitica delle distribuzioni Richiamiamo il concetto di dipendenza tra le distribuzioni di due caratteri X e Y. Ricordiamo che abbiamo definito dipendenza perfetta
Regressione e Correlazione (cap. 11) Importazione dati da file di testo
Regressione e Correlazione (cap. 11) Importazione dati da file di testo Introduzione Nella statistica applicata si osserva la relazione (dipendenza) tra due o più grandezze. Esigenza: determinare una funzione
Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25
Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità
ESERCIZI. Regressione lineare semplice CAPITOLO 12 Levine, Krehbiel, Berenson, Statistica II ed., 2006 Apogeo
Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova Docenti: Prof. L. Salmaso, Dott. L. Corain ESERCIZI Regressione lineare semplice
Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII
Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII Un breve richiamo sul test t-student Siano A exp (a 1, a 2.a n ) e B exp (b 1, b 2.b m ) due set di dati i cui
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA PROCEDURA/TECNICA DI ANALISI DEI DATI SPECIFICAMENTE DESTINATA A STUDIARE LA RELAZIONE TRA UNA VARIABILE NOMINALE (ASSUNTA
Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione
Consentono di descrivere la variabilità all interno della distribuzione di requenza tramite un unico valore che ne sintetizza le caratteristiche CAMPO DI VARIAZIONE DIFFERENZA INTERQUARTILE SCOSTAMENTO
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 2 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1.1
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 1 Outline 1 () Statistica 2 / 1 Outline 1 2 () Statistica 2 / 1 Outline 1 2 3 () Statistica 2 / 1
STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7:
esercitazione 7 p. 1/13 STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7: 20-05-2004 Luca Monno Università degli studi di Pavia [email protected] http://www.lucamonno.it
LABORATORIO DI PROBABILITA E STATISTICA
UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi 6 ESERCIZI RIEPILOGATIVI PRIME 3 LEZIONI REGRESSIONE LINEARE: SPORT - COLESTEROLO ESERCIZIO 8: La tabella seguente
x, y rappresenta la coppia di valori relativa La rappresentazione nel piano cartesiano dei punti ( x, y ),( x, y ),...,( x, y )
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 0/03 lezioni di statistica del 5 e 8 aprile 03 - di Massimo Cristallo - A. Le relazioni tra i fenomeni
Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill
Statistica - metodologie per le scienze economiche e sociali /e S Borra, A Di Ciaccio - McGraw Hill Es 6 Soluzione degli esercizi del capitolo 6 In base agli arrotondamenti effettuati nei calcoli, si possono
REGRESSIONE E CORRELAZIONE
REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.
Statistica Descrittiva Soluzioni 7. Interpolazione: minimi quadrati
ISTITUZIONI DI STATISTICA A. A. 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona
METODO DEI MINIMI QUADRATI
METODO DEI MINIMI QUADRATI Torniamo al problema della crescita della radice di mais in funzione del contenuto di saccarosio nel terreno di coltura. Ripetendo varie volte l esperimento con diverse quantità
UNIVERSITA DI PARMA FACOLTA DI ECONOMIA. Corso di pianificazione finanziaria A.a. 2003/2004. La stima del costo del capitale proprio
UNIVERSITA DI PARMA FACOLTA DI ECONOMIA Corso di pianificazione finanziaria A.a. 2003/2004 Parma, 21 ottobre 2003 La stima del costo del capitale proprio Il Weighted average cost of capital (Wacc) WACC
TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo
TOPOGRAFIA 2013/2014 L operazione di misura di una grandezza produce un numero reale che esprime il rapporto della grandezza stessa rispetto a un altra, a essa omogenea, assunta come unità di misura. L
Università del Piemonte Orientale. Corso di Laurea in Biotecnologie. Corso di Statistica Medica. Statistica Descrittiva: Variabili numeriche
Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica Statistica Descrittiva: Variabili numeriche Corso triennale biotecnologie - Statistica Medica Statistica descrittiva
Es. la performance all esame in relazione alle ore di studio a casa e alle abilità cognitive
Regressione Tale tecnica esamina e studia la relazione tra una o più variabili indipendenti e una variabile dipendente. L insieme dei parametri riassumono la relazione tra VD e VI, sotto le ipotesi che
Cluster Analysis Distanze ed estrazioni Marco Perugini Milano-Bicocca
Cluster Analysis Distanze ed estrazioni M Q Marco Perugini Milano-Bicocca 1 Scopi Lo scopo dell analisi dei Clusters è di raggruppare casi od oggetti sulla base delle loro similarità in una serie di caratteristiche
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative
i dati escludono vi sia una relazione tra variabile indipendente e variabile dipendente (rispettivamente
TEST DI AUTOVALUTAZIONE - SETTIMANA 6 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia Parte A. La retta di regressione.2
Metodologie Quantitative
Metodologie Quantitative Regressione Logistica II M Q Marco Perugini Milano-Bicocca 1 La regressione logistica La regressione logistica si propone di studiare e quantificare le relazioni tra una o più
VALIDAZIONE DEI METODI RADIOCHIMICI. Analisi di alcuni aspetti: 1. Taratura. 2. Ripetibilità. Dott. Maurizio Bettinelli.
VALIDAZIONE DEI METODI RADIOCHIMICI Analisi di alcuni aspetti: 1. Taratura (verifica di Linearità) 2. Ripetibilità Dott. Maurizio Bettinelli 29 settembre 2011 www.kosmosnet.it 1 www.kosmosnet.it 2 www.kosmosnet.it
CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi)
CHEMIOMETRIA Applicazione di metodi matematici e statistici per estrarre (massima) informazione chimica (affidabile) da dati chimici INCERTEZZA DI MISURA (intervallo di confidenza/fiducia) CONFRONTO CON
CAPITOLO 11 ANALISI DI REGRESSIONE
VERO FALSO CAPITOLO 11 ANALISI DI REGRESSIONE 1. V F Se c è una relazione deterministica tra due variabili,x e y, ogni valore dato di x,determinerà un unico valore di y. 2. V F Quando si cerca di scoprire
Statistica. Esercitazione 16. Alfonso Iodice D Enza [email protected]. Università degli studi di Cassino. Statistica. A. Iodice
Esercitazione 16 Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () 1 / 24 Studio della relazione tra due variabili Commonly Asked Questions Qual è la relazione tra la spesa
