Analisi Multivariata dei Dati. Regressione Multipla

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi Multivariata dei Dati. Regressione Multipla"

Transcript

1 Analisi Multivariata dei Dati Regressione Multipla A M D Marcello Gallucci Milano-Bicocca Lezione: III

2 Effetti multipli Consideriamo ora il caso in cui la variabile dipendente possa essere spiegata da più di una variabile Parleremo di Regressione Multipla x byx.w y w byw. x

3 Esempio Effetti multipli Vogliamo predire il numero di sorrisi sia con il numero di birre che con il tratto estroversione del soggetto Regressione Multipla Birre byx.w Sorrisi Estrovers. byw. x

4 Effetti multipli La regressione multipla aggiunge termini lineari (altre VI) alla retta di regressione Legge di relazione della Regressione Multipla x y w Standardizzata yˆ z yx.w x z yw. x wz Non Standardizzata yˆ a byx.w x byw. x w

5 Interpretazione Il coefficiente di regressione esprime l effetto diretto di x su y, togliendo l effetto che passa indirettamente per w Effetto diretto byx.w byx byw. x bwx Effetto indiretto x bwx w byx.w byw. x y

6 Effetti Parziali Togliere l effetto indiretto è equivalente a bloccare la possibilità che x vada su y mediante w: Il coefficiente viene dunque detto coefficiente parziale, cioè l effetto di x parzializzando l effetto di w Effetto diretto Effetto indiretto x bwx w byx.w byw. x y

7 Rappresentazione geometrica yˆ a B y1 x1 B y x

8 Interpretazione geometrica Effetto Unico of X for X1=-10 Effetto unico di X per X1=0 Effetto unico di X per X1=10

9 Intercetta (o costante) L'intercetta indica il valore atteso della VD per tutte le VI uguali a 0 Y =a B y1. 0 B y.1 0 Yˆ a

10 Esempio Un ricercatore ha misurato la capacita di lettura e la produzione linguistica con due test in bimbi da 5 e 8 anni Si propone di studiare se la capacità di lettura è influenzata dalla produzione linguistica eta Validi Totale Frequenza Percentuale Percentuale valida Percentuale cumulata Statistiche descrittive N lettura lingua Validi (listwise) Minimo Massimo Media Deviazione std

11 Esempio Incominciamo con una regressione semplice lettura byxlingua Riepilogo del modello Modello 1 R R-quadrato a R-quadrato corretto.03 Errore std. della stima a. Stimatori: (Costante), lingua ANOVAb Modello 1 Varianza spiegata Coefficientia Modello 1 (Costante) lingua Coefficienti non standardizzati B Errore std a. Variabile dipendente: lettura Regressione Residuo Totale Somma dei quadrati df Media dei quadrati F a. Stimatori: (Costante), lingua b. Variabile dipendente: lettura Coefficienti standardizzati Beta.178 t Coefficienti di regressione Sig Sig..05a

12 Esempio Aggiungiamo l età lettura=b yx. w lingua b yw. x eta Riepilogo del modello Modello 1 R R-quadrato a R-quadrato corretto.401 Errore std. della stima a. Stimatori: (Costante), eta, lingua ANOVAb Modello 1 Varianza spiegata Regressione Residuo Totale Somma dei quadrati df Media dei quadrati F a. Stimatori: (Costante), eta, lingua b. Variabile dipendente: lettura Coefficientia Modello 1 (Costante) lingua eta Coefficienti non standardizzati B Errore std Coefficienti standardizzati Beta t Sig a. Variabile dipendente: lettura Notiamo come è cambiato l effetto della lettura Coefficienti di regressione Sig..000a

13 Esempio Concluderemo che la produzione linguistica è debolmente associata alla capacità di lettura Coefficientia Regressione semplice Modello 1 (Costante) lingua Coefficienti non standardizzati B Errore std Coefficienti standardizzati Beta.178 t Sig t Sig a. Variabile dipendente: lettura Coefficientia Regressione multipla Modello 1 (Costante) lingua eta Coefficienti non standardizzati B Errore std Coefficienti standardizzati Beta a. Variabile dipendente: lettura Ma questa associazione dipende dalle differenze dovute all età A parità di età, non vi è una relazione tra produzione linguistica e capacità di lettura

14 Varianza spiegata La sostanza e la stessa che nella regressione semplice se Y Yzz Xz s reg Wz s reg s y s e = = R y. xw sy sy

15 Varianza non spiegata Percentuale di varianza di errore, non spiegabile mediante la regressione e e =1 R y. xw a b c X Coefficiente di alienazione W Lezione III

16 Calcolo di R Il calcolo pratico della varianza spiegata puo essere effettuato partendo dalle correlazioni semplici R y. xw = yx e yw r r r yx r yw r wx 1 r wx a b c X W Lezione III

17 Decomposizione della varianza spiegata A questo punto ci possiamo chiedere quale sia l effetto unico o il contributo unico di ogni variabile alla varianza spiegata Y Quanto ogni VI contribuisce a spiegare varianza di Y? a b c X Quanto è l effetto unico di ogni variabile sulla variabilità della Y? W Lezione III

18 Effetti come informazione Immaginiamo l effetto di una VI sulla VD come informazione trasferita dalla VI alla VD Informa.. Adamo Eva Informazione condivisa Eva Eva Adamo Cose che solo Eva conosce Cose che solo Adamo conosce Lezione III

19 Effetti come informazione Inseriamo un secondo informatore Informa Adamo Eva Serpente Informa Intendiamo sapere chi ha informato Eva e quanta parte della informazione proviene dai due informatori Lezione III

20 Decomposizione della informazione Come si ripartisce l informazione di Eva Cose che solo Eva conosce Cose che conoscono tutti Eva Cose che Adamo ha detto a EVA Adamo Serpente Cose che Serpente a detto a Eva Cose che Adamo e Serpente conoscono ma non Eva

21 Effetti unici o parziali Quale e il contributo unico di Serpente alla conoscenza ottenuta da Eva? Cose che Serpente ha detto a Eva - Cose che tutti e tre conoscono e [ a c ] c=a L effetto unico di Serpente su Eva e dato dall effetto totale di Serpente rimuovendo l effetto condiviso con Adamo a b c Adamo Serpente

22 Effetti unici o parziali Quale e il contributo unico di Serpente alla conoscenza ottenuta da Eva? Cose che Serpente ha detto a Eva - Cose che tutti e tre conoscono e [ a c ] c=a L effetto unico di Serpente su Eva e dato dall effetto totale di Serpente parzializzando l effetto condiviso con Adamo a b c Adamo Serpente

23 Parzializzazione Parzializzare significa rimuovere l effetto di una (o piu ) VI, cioe calcolare gli effetti come se quella variabile abbia nessuna variabilita e Adamo Serpente Effetto parziale (unico, diretto) di Serpente Adamo parzializzato

24 Parzializzazione Parzializzare significa rimuovere l effetto di una (o piu ) VI, cioe calcolare gli effetti come se quella variabile abbia nessuna variabilita e Serpente Serpente parzializzato Adamo Effetto parziale (unico, diretto) di Adamo

25 Effetto Congiunto Qual e l effetto totale che i due informatori hanno su Eva? Quale % della conoscenza di Eva e dovuta agli informatori? Conoscenza di Eva - Conoscenza unica di Eva e 1 e=a b c a b c Adamo Serpente

26 Effetto Congiunto Qual e l effetto totale che i due informatori hanno su Eva? Quale % della conoscenza di Eva e dovuta agli informatori? Cose solo Serpente ha detto a Eva + Cose solo Adamo ha detto a Eva + Cose che tutti sanno a b c L effetto combinato di A e S e dato dai loro effetti unici (parziali) e dal loro contributo comune e a b c Adamo Serpente

27 Entra Statistica Siamo interessati agli effetti di due (o piu ) variabili indipendenti su una variabile dipendente Siamo in grado di stimare la regressione che li lega Y =a b yx.w x b yw.x w e Vogliamo quantificare il loro contributo unico e combinato mediante degli indici che rappresentino la grandezza dei vari effetti

28 Varianza Decomposta Decomponiamo la varianza della varibile dipendente Varianza completamente condivisa Varianza di errore e Contributo unico di X a b c X W Contributo unico di W Varianza condivisa tra X e W

29 Correlazione semplice (quadrata) Ricordiamo che nella regressione semplice, la correlazione quadrata semplice e la varianza condivisa (spiegata dalla VI) Varianza di errore e r yw W Contributo W

30 Correlazione semplice (quadrata) La correlazione semplice Varianza completamente condivisa Varianza di errore e r yw =a c Contributo unico di X a r yx =b c b c X W Contributo unico di W Varianza condivisa tra X e W

31 Contributo unico di VI Il contributo unico di una VI può essere stimato grazie al quadrato della correlazione parziale Correlazione parziale Varianza spiegata pr yw.x - Varianza spiegata da x e a = a+ e a b c X w

32 Correlazione parziale Il quadrato della correlazione parziale indica l effetto di una VI dopo aver rimosso tutta la variabilita delle altre Correlazione parziale pr yw.x a = a e e Varianza dovuta a w calcolata sul totale dopo aver tolto la varianza di x a b c X w Varianza di x e completamente rimossa Lezione III

33 Calcolo di pr Pr può essere calcolato partendo dalle correlazioni semplici pr yw.x = r yw r yx r wx 1 r 1 r yx e xw a c Oppure dai coefficienti standardizzati pr yw. x = β yw. x 1 r yx b X W pr yw.x = pr yw.x pr yw.x

34 Contributo unico di VI () Il contributo unico di una VI può essere anche stimato grazie al quadrato della correlazione semi-parziale Correlazione semi-parziale Varianza spiegata sr yw.x - Varianza spiegata da x e a = a+ b+ c + e a b c X w

35 Correlazione semi-parziale Il quadrato della correlazione parziale indica l effetto di una VI dopo aver rimosso tutta la variabilita delle altre Correlazione parziale sr yw.x a = a+ b+ c + e e Varianza unica dovuta a w come proporzione di tutta la varianza di Y a b c X w Varianza di x non rimossa nel calcolo della varianza totale

36 Correlazione semi-parziale In altri termini.. R yxw ryw sryx.w R=.5 R=.10 e e s r=.15 r a b c x w w Grazie a X, si spiega un 15% in piu

37 Esempio In ricerca sull anoressia sono state misurate su un campione di 85 donne la propria figura reale, la figura ideale e l autostima. Pictorial Body Image Scale

38 Output Coefficientia Modello 1 (Costante) Autostima Coefficienti non standardizzati B Errore std Coefficienti standardizzati Beta.58 t Sig a. Variabile dipendente: figura_ideale Lezione: II

39 Regressione con SPSS Inseriamo le variabili al posto giusto Variabile Dipendente Tutte le variabili Finestra Regressione Variabili Indipendenti Lezione III

40 Regressione con SPSS Inseriamo le variabili al posto giusto Opzioni ulteriori Marchiamo qui per ottenere le correlazioni semplici e parziali Lezione III

41 OUTPUT SPSS Bontà della regressione R Significatività Lezione III

42 OUTPUT SPSS Coefficienti e indici Significatività (notiamo che c è un test solo per ogni VI) r pr

43 Fine Fine della Lezione III

Il modello di regressione

Il modello di regressione Il modello di regressione Capitolo e 3 A M D Marcello Gallucci Milano-Bicocca Lezione: II Concentti fondamentali Consideriamo ora questa ipotetica ricerca: siamo andati in un pub ed abbiamo contato quanti

Dettagli

Analisi Multivariata dei Dati

Analisi Multivariata dei Dati Analisi Multivariata dei Dati Introduzione al corso e al modello statistico A M D Marcello Gallucci Milano-Bicocca Lezione: I Programma Odierno I numeri del corso Programma del corso Concetti Statistici

Dettagli

Introduzione all Analisi della Varianza (ANOVA)

Introduzione all Analisi della Varianza (ANOVA) Introduzione all Analisi della Varianza (ANOVA) AMD Marcello Gallucci [email protected] Variabili nella Regressione Nella regressione, la viariabile dipendente è sempre quantitativa e, per quello

Dettagli

Metodologie Quantitative

Metodologie Quantitative Metodologie Quantitative Regressione Lineare Multipla Mediazione e Path analysis I M Q Marco Perugini Milano-Bicocca 1 Regressione Multipla: utilizzo avanzato A seconda dello status delle variabili indipendenti,

Dettagli

Analisi avanzate basate sulla regressione (Cap. 7)

Analisi avanzate basate sulla regressione (Cap. 7) Analisi avanzate basate sulla regressione (Cap. 7) AMD Marcello Gallucci [email protected] Regressione Multipla A seconda dello status delle variabili indipendenti, possiamo differenziare diversi

Dettagli

Metodologie Quantitative

Metodologie Quantitative Metodologie Quantitative Regressione Lineare Multipla Mediazione e Path analysis I M Q Marco Perugini Milano-Bicocca 1 Regressione Multipla: utilizzo avanzato A seconda dello status delle variabili indipendenti,

Dettagli

Regressione Lineare Semplice e Correlazione

Regressione Lineare Semplice e Correlazione Regressione Lineare Semplice e Correlazione 1 Introduzione La Regressione è una tecnica di analisi della relazione tra due variabili quantitative Questa tecnica è utilizzata per calcolare il valore (y)

Dettagli

Assunzioni (Parte I)

Assunzioni (Parte I) Assunzioni (Parte I) A M D Marcello Gallucci [email protected] Lezione 10 Modello Lineare Generale La regressione semplice e multipla e l'anova sono sottocasi del modello lineare generale (GLM)

Dettagli

Il modello lineare misto

Il modello lineare misto Il modello lineare misto (capitolo 9) A M D Marcello Gallucci Univerisità Milano-Bicocca Lezione: 15 GLM Modello Lineare Generale vantaggi Consente di stimare le relazioni fra due o più variabili Si applica

Dettagli

Statistica multivariata Donata Rodi 17/10/2016

Statistica multivariata Donata Rodi 17/10/2016 Statistica multivariata Donata Rodi 17/10/2016 Quale analisi? Variabile Dipendente Categoriale Continua Variabile Indipendente Categoriale Chi Quadro ANOVA Continua Regressione Logistica Regressione Lineare

Dettagli

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica 13. Regressione lineare parametrica Esistono numerose occasioni nelle quali quello che interessa è ricostruire la relazione di funzione che lega due variabili, la variabile y (variabile dipendente, in

Dettagli

Esercitazione del

Esercitazione del Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36

Dettagli

ANALISI MULTIVARIATA

ANALISI MULTIVARIATA ANALISI MULTIVARIATA Marcella Montico Servizio di epidemiologia e biostatistica... ancora sulla relazione tra due variabili: la regressione lineare semplice VD: quantitativa VI: quantitativa Misura la

Dettagli

Analisi della Varianza Fattoriale

Analisi della Varianza Fattoriale Analisi della Varianza Fattoriale AMD Marcello Gallucci [email protected] Ripasso dell ANOVA Lo studio degli effetti di una serie di variabili indipendenti nominale (gruppi) su un variabile dipendente

Dettagli

P S I C O M T R I A Marcello Gallucci. Analisi Fattoriale. Esempi. Milano-Bicocca. Lezione: 20

P S I C O M T R I A Marcello Gallucci. Analisi Fattoriale. Esempi. Milano-Bicocca. Lezione: 20 Analisi Fattoriale Esempi P S I C O M T R I A Marcello Gallucci Milano-Bicocca Lezione: 20 Esempio Descrizione della ricerca Un ricercatore intende stabilire se una manipolazione sperimentale basata sulla

Dettagli

Statistica. Capitolo 12. Regressione Lineare Semplice. Cap. 12-1

Statistica. Capitolo 12. Regressione Lineare Semplice. Cap. 12-1 Statistica Capitolo 1 Regressione Lineare Semplice Cap. 1-1 Obiettivi del Capitolo Dopo aver completato il capitolo, sarete in grado di: Spiegare il significato del coefficiente di correlazione lineare

Dettagli

Analisi Fattoriale Concetti introduttivi Marcello Gallucci Milano-Bicocca

Analisi Fattoriale Concetti introduttivi Marcello Gallucci Milano-Bicocca Analisi Fattoriale Concetti introduttivi A M D Marcello Gallucci Milano-Bicocca Scopi generali L Analisi Fattoriale (e varianti) si propone di estrarre un numero limitato di fattori (variabili latenti

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è

Dettagli

Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009)

Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009) Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009) Quesito: Posso stimare il numero di ore passate a studiare statistica sul voto conseguito all esame? Potrei calcolare il coefficiente di correlazione.

Dettagli

Strumenti informatici Calcolare il coefficiente di correlazione di Pearson con Excel e SPSS

Strumenti informatici Calcolare il coefficiente di correlazione di Pearson con Excel e SPSS Strumenti informatici 7.3 - Calcolare il coefficiente di correlazione di Pearson con Excel e SPSS Il coefficiente di correlazione di Pearson può essere calcolato con la funzione di Excel =CORRELAZIONE(Matrice1;Matrice2),

Dettagli

R - Esercitazione 6. Andrea Fasulo Venerdì 22 Dicembre Università Roma Tre

R - Esercitazione 6. Andrea Fasulo Venerdì 22 Dicembre Università Roma Tre R - Esercitazione 6 Andrea Fasulo [email protected] Università Roma Tre Venerdì 22 Dicembre 2017 Il modello di regressione lineare semplice (I) Esempi tratti da: Stock, Watson Introduzione all econometria

Dettagli

Misure Ripetute. Partizione della Varianza. Marcello Gallucci

Misure Ripetute. Partizione della Varianza. Marcello Gallucci Misure Ripetute Partizione della Varianza Marcello Gallucci GLM l ANOVA a misure ripetute rappresenta un caso del modello lineare generale in cui la variabilità non è valutata tra gruppi ma tra misure

Dettagli

PROBABILITÀ ELEMENTARE

PROBABILITÀ ELEMENTARE Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti

Dettagli

Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica

Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Regressione Lineare e Correlazione Argomenti della lezione Determinismo e variabilità Correlazione Regressione Lineare

Dettagli

Misure Ripetute. Analisi dei dati in disegni di ricerca con misure ripetute. Marcello Gallucci

Misure Ripetute. Analisi dei dati in disegni di ricerca con misure ripetute. Marcello Gallucci Misure Ripetute Analisi dei dati in disegni di ricerca con misure ripetute Marcello Gallucci Introduzione Consideriamo una ricerca in cui un gruppo di pazienti è sottoposto ad un trattamento terapeutico

Dettagli

3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17

3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17 C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 35 Il modello di regressione

Dettagli

REGRESSIONE lineare e CORRELAZIONE. Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori

REGRESSIONE lineare e CORRELAZIONE. Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori REGRESSIONE lineare e CORRELAZIONE Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori Y X La NATURA e la FORZA della relazione tra variabili si studiano con la REGRESSIONE

Dettagli

Tecniche statistiche di analisi del cambiamento

Tecniche statistiche di analisi del cambiamento Tecniche statistiche di analisi del cambiamento 07-Anova con covariata (vers. 1.2, 20 marzo 2017) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2016-17

Dettagli

Il modello di regressione lineare multipla. Il modello di regressione lineare multipla

Il modello di regressione lineare multipla. Il modello di regressione lineare multipla Introduzione E la generalizzazione del modello di regressione lineare semplice: per spiegare il fenomeno d interesse Y vengono introdotte p, con p > 1, variabili esplicative. Tale generalizzazione diventa

Dettagli

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI.

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI. Corso di Laurea Specialistica in Biologia Sanitaria, Universita' di Padova C.I. di Metodi statistici per la Biologia, Informatica e Laboratorio di Informatica (Mod. B) Docente: Dr. Stefania Bortoluzzi

Dettagli

Statistica di base per l analisi socio-economica

Statistica di base per l analisi socio-economica Laurea Magistrale in Management e comunicazione d impresa Statistica di base per l analisi socio-economica Giovanni Di Bartolomeo [email protected] Definizioni di base Una popolazione è l insieme

Dettagli

Lezioni di Statistica del 15 e 18 aprile Docente: Massimo Cristallo

Lezioni di Statistica del 15 e 18 aprile Docente: Massimo Cristallo UIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECOOMIA Corso di laurea in Economia Aziendale anno accademico 2012/2013 Lezioni di Statistica del 15 e 18 aprile 2013 Docente: Massimo Cristallo LA RELAZIOE

Dettagli

Regressione Semplice. Correlazioni. sconto leverage. sconto Correlazione di Pearson 1,275. Sign. (a due code),141

Regressione Semplice. Correlazioni. sconto leverage. sconto Correlazione di Pearson 1,275. Sign. (a due code),141 Regressione Semplice Analisi Per avere una prima idea della struttura di dipendenza fra le variabili in esame, possiamo cominciare col costruire la matrice di correlazione delle variabili presenti nel

Dettagli

Dispensa di Statistica

Dispensa di Statistica Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza

Dettagli

LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell

LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi

Dettagli

Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza.

Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza. Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza. Misure ripetute forniscono dati numerici distribuiti attorno ad un valore centrale indicabile con un indice (indice

Dettagli

Esercitazione 5 - Statistica (parte II) Davide Passaretti 9/3/2017

Esercitazione 5 - Statistica (parte II) Davide Passaretti 9/3/2017 Esercitazione 5 - Statistica (parte II) Davide Passaretti 9/3/2017 Contents 1 Inferenza sulla regressione semplice 1 1.1 Test sulla pendenza della retta................................... 1 1.2 Test sull

Dettagli

STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo

STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)

Dettagli

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi:

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi: DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano [email protected] si basano su tre elementi: le scale di misura sistema empirico: un insieme di entità non numeriche (es. insieme di persone; insieme

Dettagli

viii Indice generale

viii Indice generale Indice generale 1 Introduzione al processo di ricerca 1 Sommario 1 Il processo di ricerca 3 Concetti e variabili 5 Scale di misura 8 Test di ipotesi 10 Evidenza empirica 10 Disegni di ricerca 11 Sintesi

Dettagli

ESERCITAZIONE IV - Soluzioni

ESERCITAZIONE IV - Soluzioni umero di omicidi ESERCITAZIOE IV - Soluzioni Esercizio I. a),00 12,00 10,00 8,00 6,00 4,00 2,00 0,00 0 5 10 15 20 25 Popolazione povera (%) b) Poiché i due caratteri in analisi sono quantitativi per calcolare

Dettagli

STATISTICA. Esercizi vari

STATISTICA. Esercizi vari STATISTICA Esercizi vari Esercizio 5.6 p. 205 Variabile Coeff. Dev. std. Statistica t p-value Intercetta 23.384 1.592 14.691 0 Profondità -1.435 0.213-6.726 0 = 0.850 Esercizio 5.6 p. 205 Variabile Coeff.

Dettagli

lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1

lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1 lezione n. 6 (a cura di Gaia Montanucci) METODO MASSIMA VEROSIMIGLIANZA PER STIMARE β 0 E β 1 Distribuzione sui termini di errore ε i ε i ~ N (0, σ 2 ) ne consegue : ogni y i ha ancora distribuzione normale,

Dettagli

Variabili indipendenti qualitative. In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli.

Variabili indipendenti qualitative. In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli. Variabili indipendenti qualitative Di solito le variabili nella regressione sono variabili continue In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli Ad esempio:

Dettagli

L A B C di R. Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010

L A B C di R. Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010 L A B C di R 0 20 40 60 80 100 2 3 4 5 6 7 8 Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010 La scelta del test statistico giusto La scelta della analisi

Dettagli

Metodologia Sperimentale Agronomica / Metodi Statistici per la Ricerca Ambientale

Metodologia Sperimentale Agronomica / Metodi Statistici per la Ricerca Ambientale DIPARTIMENTO DI SCIENZE AGRARIE E AMBIENTALI PRODUZIONE, TERRITORIO, AGROENERGIA Marco Acutis [email protected] www.acutis.it CdS Scienze della Produzione e Protezione delle Piante (g59) CdS Biotecnologie

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

8. ANALISI DELLA COVARIANZA (ANCOVA)

8. ANALISI DELLA COVARIANZA (ANCOVA) 8. ANALISI DELLA COVARIANZA (ANCOVA) L analisi della covarianza è un metodo statistico che risulta dalla combinazione dell analisi di regressione con l analisi della varianza. È utile quando all analisi

Dettagli

Quanti soggetti devono essere selezionati?

Quanti soggetti devono essere selezionati? Quanti soggetti devono essere selezionati? Determinare una appropriata numerosità campionaria già in fase di disegno dello studio molto importante è molto Studi basati su campioni troppo piccoli non hanno

Dettagli

Test F per la significatività del modello

Test F per la significatività del modello Test F per la significatività del modello Per verificare la significatività dell intero modello si utilizza il test F Si vuole verificare l ipotesi H 0 : β 1 = 0,, β k = 0 contro l alternativa che almeno

Dettagli

Correlazione e regressione

Correlazione e regressione SMID a.a. 2004/2005 Corso di Metodi Statistici in Biomedicina Correlazione e regressione 28/1/2005 Relazioni Che rapporto c'è tra la pressione arteriosa e il peso corporeo? relazione tra due variabili

Dettagli

Metodologie Quantitative

Metodologie Quantitative Metodologie Quantitative Regressione Lineare Multipla Path Analysis II e Moderazione M Q Marco Perugini Milano-Bicocca 1 Dalla mediazione alla path analysis Notiamo che il modello considerato per la mediazione,

Dettagli

Istituzioni di Statistica

Istituzioni di Statistica Istituzioni di Statistica CORSO DI LAUREA IN ECONOMIA DEL COMMERCIO INTERNAZIONALE CORSO DI LAUREA IN ECONOMIA E AMMINISTRAZIONE DELLE IMPRESE A.A. 2007/2008 DOCENTE: Marco Minozzo PROGRAMMA - STATISTICA

Dettagli

STATISTICA A K (60 ore)

STATISTICA A K (60 ore) STATISTICA A K (60 ore) Marco Riani [email protected] http://www.riani.it Richiami sulla regressione Marco Riani, Univ. di Parma 1 MODELLO DI REGRESSIONE y i = a + bx i + e i dove: i = 1,, n a + bx i rappresenta

Dettagli

La media e la mediana sono indicatori di centralità, che indicano un centro dei dati.

La media e la mediana sono indicatori di centralità, che indicano un centro dei dati. La media e la mediana sono indicatori di centralità, che indicano un centro dei dati. Un indicatore che sintetizza in un unico numero tutti i dati, nascondendo quindi la molteplicità dei dati. Per esempio,

Dettagli

La regressione lineare. Rappresentazione analitica delle distribuzioni

La regressione lineare. Rappresentazione analitica delle distribuzioni La regressione lineare Rappresentazione analitica delle distribuzioni Richiamiamo il concetto di dipendenza tra le distribuzioni di due caratteri X e Y. Ricordiamo che abbiamo definito dipendenza perfetta

Dettagli

Regressione e Correlazione (cap. 11) Importazione dati da file di testo

Regressione e Correlazione (cap. 11) Importazione dati da file di testo Regressione e Correlazione (cap. 11) Importazione dati da file di testo Introduzione Nella statistica applicata si osserva la relazione (dipendenza) tra due o più grandezze. Esigenza: determinare una funzione

Dettagli

Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25

Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25 Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità

Dettagli

ESERCIZI. Regressione lineare semplice CAPITOLO 12 Levine, Krehbiel, Berenson, Statistica II ed., 2006 Apogeo

ESERCIZI. Regressione lineare semplice CAPITOLO 12 Levine, Krehbiel, Berenson, Statistica II ed., 2006 Apogeo Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova Docenti: Prof. L. Salmaso, Dott. L. Corain ESERCIZI Regressione lineare semplice

Dettagli

Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII

Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII Un breve richiamo sul test t-student Siano A exp (a 1, a 2.a n ) e B exp (b 1, b 2.b m ) due set di dati i cui

Dettagli

PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA

PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA PROCEDURA/TECNICA DI ANALISI DEI DATI SPECIFICAMENTE DESTINATA A STUDIARE LA RELAZIONE TRA UNA VARIABILE NOMINALE (ASSUNTA

Dettagli

Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione

Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione Consentono di descrivere la variabilità all interno della distribuzione di requenza tramite un unico valore che ne sintetizza le caratteristiche CAMPO DI VARIAZIONE DIFFERENZA INTERQUARTILE SCOSTAMENTO

Dettagli

STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE

STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 2 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1.1

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 1 Outline 1 () Statistica 2 / 1 Outline 1 2 () Statistica 2 / 1 Outline 1 2 3 () Statistica 2 / 1

Dettagli

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7:

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7: esercitazione 7 p. 1/13 STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7: 20-05-2004 Luca Monno Università degli studi di Pavia [email protected] http://www.lucamonno.it

Dettagli

LABORATORIO DI PROBABILITA E STATISTICA

LABORATORIO DI PROBABILITA E STATISTICA UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi 6 ESERCIZI RIEPILOGATIVI PRIME 3 LEZIONI REGRESSIONE LINEARE: SPORT - COLESTEROLO ESERCIZIO 8: La tabella seguente

Dettagli

x, y rappresenta la coppia di valori relativa La rappresentazione nel piano cartesiano dei punti ( x, y ),( x, y ),...,( x, y )

x, y rappresenta la coppia di valori relativa La rappresentazione nel piano cartesiano dei punti ( x, y ),( x, y ),...,( x, y ) Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 0/03 lezioni di statistica del 5 e 8 aprile 03 - di Massimo Cristallo - A. Le relazioni tra i fenomeni

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statistica - metodologie per le scienze economiche e sociali /e S Borra, A Di Ciaccio - McGraw Hill Es 6 Soluzione degli esercizi del capitolo 6 In base agli arrotondamenti effettuati nei calcoli, si possono

Dettagli

REGRESSIONE E CORRELAZIONE

REGRESSIONE E CORRELAZIONE REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.

Dettagli

Statistica Descrittiva Soluzioni 7. Interpolazione: minimi quadrati

Statistica Descrittiva Soluzioni 7. Interpolazione: minimi quadrati ISTITUZIONI DI STATISTICA A. A. 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona

Dettagli

METODO DEI MINIMI QUADRATI

METODO DEI MINIMI QUADRATI METODO DEI MINIMI QUADRATI Torniamo al problema della crescita della radice di mais in funzione del contenuto di saccarosio nel terreno di coltura. Ripetendo varie volte l esperimento con diverse quantità

Dettagli

UNIVERSITA DI PARMA FACOLTA DI ECONOMIA. Corso di pianificazione finanziaria A.a. 2003/2004. La stima del costo del capitale proprio

UNIVERSITA DI PARMA FACOLTA DI ECONOMIA. Corso di pianificazione finanziaria A.a. 2003/2004. La stima del costo del capitale proprio UNIVERSITA DI PARMA FACOLTA DI ECONOMIA Corso di pianificazione finanziaria A.a. 2003/2004 Parma, 21 ottobre 2003 La stima del costo del capitale proprio Il Weighted average cost of capital (Wacc) WACC

Dettagli

TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo

TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo TOPOGRAFIA 2013/2014 L operazione di misura di una grandezza produce un numero reale che esprime il rapporto della grandezza stessa rispetto a un altra, a essa omogenea, assunta come unità di misura. L

Dettagli

Università del Piemonte Orientale. Corso di Laurea in Biotecnologie. Corso di Statistica Medica. Statistica Descrittiva: Variabili numeriche

Università del Piemonte Orientale. Corso di Laurea in Biotecnologie. Corso di Statistica Medica. Statistica Descrittiva: Variabili numeriche Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica Statistica Descrittiva: Variabili numeriche Corso triennale biotecnologie - Statistica Medica Statistica descrittiva

Dettagli

Es. la performance all esame in relazione alle ore di studio a casa e alle abilità cognitive

Es. la performance all esame in relazione alle ore di studio a casa e alle abilità cognitive Regressione Tale tecnica esamina e studia la relazione tra una o più variabili indipendenti e una variabile dipendente. L insieme dei parametri riassumono la relazione tra VD e VI, sotto le ipotesi che

Dettagli

Cluster Analysis Distanze ed estrazioni Marco Perugini Milano-Bicocca

Cluster Analysis Distanze ed estrazioni Marco Perugini Milano-Bicocca Cluster Analysis Distanze ed estrazioni M Q Marco Perugini Milano-Bicocca 1 Scopi Lo scopo dell analisi dei Clusters è di raggruppare casi od oggetti sulla base delle loro similarità in una serie di caratteristiche

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative

Dettagli

i dati escludono vi sia una relazione tra variabile indipendente e variabile dipendente (rispettivamente

i dati escludono vi sia una relazione tra variabile indipendente e variabile dipendente (rispettivamente TEST DI AUTOVALUTAZIONE - SETTIMANA 6 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia Parte A. La retta di regressione.2

Dettagli

Metodologie Quantitative

Metodologie Quantitative Metodologie Quantitative Regressione Logistica II M Q Marco Perugini Milano-Bicocca 1 La regressione logistica La regressione logistica si propone di studiare e quantificare le relazioni tra una o più

Dettagli

VALIDAZIONE DEI METODI RADIOCHIMICI. Analisi di alcuni aspetti: 1. Taratura. 2. Ripetibilità. Dott. Maurizio Bettinelli.

VALIDAZIONE DEI METODI RADIOCHIMICI. Analisi di alcuni aspetti: 1. Taratura. 2. Ripetibilità. Dott. Maurizio Bettinelli. VALIDAZIONE DEI METODI RADIOCHIMICI Analisi di alcuni aspetti: 1. Taratura (verifica di Linearità) 2. Ripetibilità Dott. Maurizio Bettinelli 29 settembre 2011 www.kosmosnet.it 1 www.kosmosnet.it 2 www.kosmosnet.it

Dettagli

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi)

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi) CHEMIOMETRIA Applicazione di metodi matematici e statistici per estrarre (massima) informazione chimica (affidabile) da dati chimici INCERTEZZA DI MISURA (intervallo di confidenza/fiducia) CONFRONTO CON

Dettagli

CAPITOLO 11 ANALISI DI REGRESSIONE

CAPITOLO 11 ANALISI DI REGRESSIONE VERO FALSO CAPITOLO 11 ANALISI DI REGRESSIONE 1. V F Se c è una relazione deterministica tra due variabili,x e y, ogni valore dato di x,determinerà un unico valore di y. 2. V F Quando si cerca di scoprire

Dettagli

Statistica. Esercitazione 16. Alfonso Iodice D Enza [email protected]. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 16. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 16 Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () 1 / 24 Studio della relazione tra due variabili Commonly Asked Questions Qual è la relazione tra la spesa

Dettagli