Analisi avanzate basate sulla regressione (Cap. 7)
|
|
|
- Feliciano Gori
- 8 anni fa
- Visualizzazioni
Transcript
1 Analisi avanzate basate sulla regressione (Cap. 7) AMD Marcello Gallucci
2 Regressione Multipla A seconda dello status delle variabili indipendenti, possiamo differenziare diversi tipi di tecniche statistiche Analisi della mediazione Path analysis (satura)
3 Regressione Multipla A seconda dello status delle variabili indipendenti, possiamo differenziare tre tipi di tecniche statistiche Analisi della mediazione VI sono teoricamente organizzate in cause esogene e cause endogene Path analysis (satura) Analisi della covarianza
4 Regressione Multipla A seconda dello status delle variabili indipendenti, possiamo differenziare tre tipi di tecniche statistiche Analisi della mediazione VI sono teoricamente organizzate in cause esogene e cause endogene Path analysis (satura) VI e VD sono teoricamente organizzate un modello preciso Analisi della covarianza
5 Regressione Multipla A seconda dello status delle variabili indipendenti, possiamo differenziare tre tipi di tecniche statistiche Analisi della mediazione VI sono teoricamente organizzate in cause esogene e cause endogene Path analysis (satura) Analisi della covarianza VI e VD sono teoricamente organizzate un modello preciso VI sono teoricamente organizzate in predittori e variabili di disturbo
6 Analisi della mediazione
7 Mediazione Per variabile mediatrice intendiamo una variabile che è responsabile dell effetto di un altra variabile sulla variabile dipendente VI sono teoricamente organizzate in cause esogene e cause endogene Cause esogene sono quelle variabili esplicative la cui variabilità è data e non spiegata dal modello Cause endogene sono quelle variabili esplicative la cui variabilità è (parzialmente) spiegata dal modello Variabili dipendenti sono quelle variabili di cui vogliamo spiegare la variabilità
8 Status delle VI Causa esogena VD Causa esogena La variabilità di questa variabile è data (esterna al modello) Cause endogene VD La variabilità di questa variabile è sia predetta dal modello che usata per predire la VD La variabilità di questa variabile è ciò che vogliamo spiegare (predire) con il modello
9 Cause? Notiamo subito che la dicitura cause non può essere giustificata statisticamente. Assumiamo che una teoria, la logica, o specifiche metodologie ci consentano di interpretare il modello come un modello causale Ricordiamoci sempre che Sesso Modo di vestire Modo di vestire sesso...sono statisticamente equivalenti
10 Modello di mediazione Causa esogena VD Osserviamo un effetto di una VI sulla VD Causa esogena VD mediatore Vogliamo sapere se questo effetto sia dovuto all intervento di una terza variabile
11 Modello di mediazione: Esempio # birre # sorrisi Osserviamo un effetto di una VI sulla VD A cosa è dovuto questo effetto?
12 Modello di mediazione: Esempio # birre # sorrisi Ipotizziamo che tale effetto sia dovuto alla ridotta capacità di controllo # birre # sorrisi controllo Vogliamo sapere se la ridotta capacità di controllo è responsabile (media l effetto) dei maggiori sorrisi
13 Mediazione: Logica X Y Vogliamo sapere se una parte dell effetto semplice sia mediato dalla variabile mediatrice X Y mediatore
14 Mediazione: Logica Condizione logiche: 1 Dobbiamo osservare l effetto semplice (b 0) x Y 2 La variabile esogena deve avere un effetto sul mediatore X Mediatore 3 Il mediatore deve avere un effetto sull VD, parzializzando la V. esogena X Y Mediator
15 Mediazione: Logica Condizione logiche: 1 # birre deve avere un effetto su # sorrisi x Y 2 # birre deve far diminuire il controllo X Mediatore 3 La mancanza di controllo deve far aumentare # sorrisi (al netto di # birre) X Y Mediatore
16 Mediazione Se queste condizioni valgono, allora una parte dell effetto della variabile esogena sarà mediato dalla variabile mediatrice Causa esogena VD mediatore Una parte dell effetto passa per il mediatore Come lo calcoliamo questo effetto?
17 Effetti di regressione Definizione dei coefficienti parziali Effetto semplice=effetto diretto + effetto indiretto b yx byx. w byw. x b wx x b yx. w Effetto diretto b wx Effetto indiretto w b yw. x y
18 Effetto mediato L effetto mediato non è altro che l effetto indiretto b yx byx. w byw. x b wx birre b yx. w Effetto diretto b wx Effetto indiretto= effetto mediato controllo b yw. x sorrisi
19 Calcolo dell effetto mediato Per calcolarlo basterà effettuare due regressioni che ci daranno i coefficienti che ci interessano 2 Mediatore come VD e esogena come VI X b wx Mediatore 3 VD come VD e variabile esogena e mediatore come variabili indipendenti X Y Effetto Mediato indiretto b wx b yw. x Mediator b yw. x
20 Calcolo dell Effetto mediato (2) Data la relazione Effetto semplice=effetto diretto + effetto mediato b yx byx. w byw. x b wx avremo necessariamente: Effetto mediato = effetto semplice effetto diretto b yw. x bwx byx byx. w
21 Esempio: SPSS Supponiamo di voler testare se la campagna pubblicitaria abbia avuto effetto in quanto rende salienti i rischi associati al fumo. Ipotesi: una maggiore esposizione alla campagna incrementa l'avversione al fumo in quanto rende salienti i rischi del fumo, e la salienza dei rischi aumenta l'avversione al fumo.
22 Modello da stimare Ipotesi: una maggiore esposizione alla campagna incrementa l'avversione al fumo in quanto rende salienti i rischi del fumo, e la salienza dei rischi aumenta l'avversione al fumo. Modello 1 esposizione c avversione Modello 2 esposizione c' avversione a b per. rischi
23 Modello 1 In primo luogo stimiamo la relazione semplice tra la variabile esogena e quella dipendente Modello 1 esposizione C=9.933 avversione
24 Calcolo dell effetto mediato Poi stimiamo l effetto della variabile esogena sul mediatore 2 Mediatore come VD e esogena come VI esposizione a=5.522 per. rischi
25 Calcolo dell effetto mediato Poi stimiamo l effetto della variabile mediatrice sulla dipendente c'=1.975 esposizione avversione 3 Il mediatore deve avere un effetto sull VD, parzializzando la V. esogena per. rischi b=1.441
26 Effetto mediato Calcoliamo l effetto mediato E y.m.x =a b=b mx b y.mx =7.957 Modello 2 esposizione c' avversione a=5.522 per. rischi b=1.441
27 Effetto mediato Calcoliamo l effetto mediato Una parte dell effetto di esposizione sull'avversione è dovuta all'aumento della percezione del rischio Modello 2 esposizione c' avversione a=5.522 per. rischi b=1.441 E y.m.x =a b=b mx b ym.x =7.957
28 Effetto mediato come riduzione dell'effetto Calcoliamo l effetto mediato Modello 1 esposizione C=9.933 avversione Modello 2 esposizione c'=1.975 avversione a b per. rischi E y.m.x =c c' =b yx b yx.m =7.957
29 Effetto mediato come riduzione dell'effetto Calcoliamo l effetto mediato Modello 1 esposizione c=9.933 avversione L effetto di esposizione, dopo aver parzializzato la percezione del rischio risulta ridotto Modello 2 c'=1.975 esposizione avversione a b per. rischi E y.m.x =c c' =b yx b yx.m =7.957
30 Effetto mediato L effetto mediato è quella parte dell effetto semplice che influenza la variabile dipendente attraverso l effetto della variabile mediatrice E y.m.x =a b=b mx b ym.x L effetto mediato rappresenta la riduzione dell effetto di una variabile esogena, dopo aver parzializzato l effetto della variabile mediatrice E y.m.x =c c' =b yx b yx.m
31 Inferenza sull effetto mediato Possiamo dire che l effetto mediato è significativamente diverso da zero (non è casuale) L effetto mediato sarà statisticamente diverso da zero se i suoi componenti (b wx e b yw.x ) saranno statisticamente diversi da zero
32 Mediazione totale o parziale Quando l effetto della variabile esogena, parzializzando l effetto del mediatore, risulta non significativo, diremo che la mediazione è totale Quando l effetto della variabile esogena, parzializzando l effetto del mediatore, risulta ridotta ma ancora significativa, diremo che la mediazione è parziale
33 Variabili intervenenti e mediatori Notiamo che un risultato simile lo avevamo ottenuto con l esempio dello stipendio, pubblicazioni, e anzianità
34 Effetti totali diretti e indiretti (coeffic.) Effetto semplice Pub 12.4 Stipendio pub verso anz. pub 1.2 Effetto diretto.15 anzianità 70.7 stipendio Effetto indiretto=.15*70.7=10.6 Lezione: 12
35 Variabili intervenenti e mediatori Anche se statisticamente i due modelli sono uguali, nel caso dell anzianità parleremo di variabile interveniente Non abbiamo nessuna giustificazione per assumere che ci sia un nesso causale tale che il numero di pubblicazioni causano l anzianità
36 Effetti totali diretti e indiretti (coeffic.) Questo modello non avrebbe nessun senso pub anzianità 70.7 stipendio
37 Variabili intervenienti Diremo dunque che anzianità è una variabile interveniente tra pubblicazioni e stipendio, ma non una variabile che media gli effetti di pubblicazioni su stipendio pub stipendio anzianità
38 Variabili intervenenti e mediatori Considereremo effetti di mediazione quegli effetti indiretti che possono essere strutturati secondo una logica causale (Esogena- >mediatore->dipendente) Considereremo effetti intervenenti quegli effetti indiretti che non possono essere strutturati secondo una logica causale di tale tipo La differenza tra i due tipi di effetti non è statistica, ma logica (statisticamente ci vengono le stesse stime)
39 Dalla mediazione alla path analysis Notiamo che il modello considerato per la mediazione, è un semplice modello di path analysis. La path analysis (tra l altro) consente stimare le relazioni tra variabili strutturate in un modello logico definito X W Y
40 Path analysis Per modelli semplici di path analysis (detti saturi), si possono stimare i coefficienti con l uso di alcune regressioni, seguendo semplici regole (che conosciamo): Le variabile che ricevono freccia sono dipendenti Le variabile che mandano la freccia sono indipendenti Stimeremo tante regressioni quante sono le variabili che ricevono una freccia
41 Path analysis a X W c d b e Q Y
42 Path analysis X d Q a c e f W b Y Regressione 1 Regressione 2 a b wx b yw. x e b b yx. w Regressione 3 c b qw. xy d bqx. wy f b qy. wx
43 Path analysis Usando differenti regressioni possiamo stimare i coefficienti di un path diagram, sotto la condizione che il modello preveda tutti i possibili path (frecce). Questi modelli sono detti saturi Modello Saturo Modello non Saturo X Q X Q W Y W Y Stimabile con regressioni Non Stimabile con regressioni
44 Fine Fine della Lezione IV
Metodologie Quantitative
Metodologie Quantitative Regressione Lineare Multipla Mediazione e Path analysis I M Q Marco Perugini Milano-Bicocca 1 Regressione Multipla: utilizzo avanzato A seconda dello status delle variabili indipendenti,
Metodologie Quantitative
Metodologie Quantitative Regressione Lineare Multipla Mediazione e Path analysis I M Q Marco Perugini Milano-Bicocca 1 Regressione Multipla: utilizzo avanzato A seconda dello status delle variabili indipendenti,
Analisi Multivariata dei Dati. Regressione Multipla
Analisi Multivariata dei Dati Regressione Multipla A M D Marcello Gallucci Milano-Bicocca Lezione: III Effetti multipli Consideriamo ora il caso in cui la variabile dipendente possa essere spiegata da
Il modello di regressione
Il modello di regressione Capitolo e 3 A M D Marcello Gallucci Milano-Bicocca Lezione: II Concentti fondamentali Consideriamo ora questa ipotetica ricerca: siamo andati in un pub ed abbiamo contato quanti
Introduzione all Analisi della Varianza (ANOVA)
Introduzione all Analisi della Varianza (ANOVA) AMD Marcello Gallucci [email protected] Variabili nella Regressione Nella regressione, la viariabile dipendente è sempre quantitativa e, per quello
Il modello lineare misto
Il modello lineare misto (capitolo 9) A M D Marcello Gallucci Univerisità Milano-Bicocca Lezione: 15 GLM Modello Lineare Generale vantaggi Consente di stimare le relazioni fra due o più variabili Si applica
Assunzioni (Parte I)
Assunzioni (Parte I) A M D Marcello Gallucci [email protected] Lezione 10 Modello Lineare Generale La regressione semplice e multipla e l'anova sono sottocasi del modello lineare generale (GLM)
Statistica multivariata
Parte 3 : Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Analisi multivariata Cercare di capire
Corso di Psicometria Progredito
Corso di Psicometria Progredito 5. La correlazione lineare Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014 Sommario 1 Tipi di relazione
LEZIONE N. 11 ( a cura di MADDALENA BEI)
LEZIONE N. 11 ( a cura di MADDALENA BEI) F- test Assumiamo l ipotesi nulla H 0 :β 1,...,Β k =0 E diverso dal verificare che H 0 :B J =0 In realtà F - test è più generale H 0 :Aβ=0 H 1 :Aβ 0 A è una matrice
Regressione Lineare Semplice e Correlazione
Regressione Lineare Semplice e Correlazione 1 Introduzione La Regressione è una tecnica di analisi della relazione tra due variabili quantitative Questa tecnica è utilizzata per calcolare il valore (y)
lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1
lezione n. 6 (a cura di Gaia Montanucci) METODO MASSIMA VEROSIMIGLIANZA PER STIMARE β 0 E β 1 Distribuzione sui termini di errore ε i ε i ~ N (0, σ 2 ) ne consegue : ogni y i ha ancora distribuzione normale,
SCOPO DELL ANALISI DI CORRELAZIONE
CORRELAZIONE 1 SCOPO DELL ANALISI DI CORRELAZIONE STUDIARE LA RELAZIONE TRA DUE VARIABILI X E Y 2 diagrammi di dispersione un diagramma di dispersione (o grafico di dispersione) èuna rappresentazione grafica
Analisi della regressione multipla
Analisi della regressione multipla y = β 0 + β 1 x 1 + β 2 x 2 +... β k x k + u 2. Inferenza Assunzione del Modello Classico di Regressione Lineare (CLM) Sappiamo che, date le assunzioni Gauss- Markov,
Tecniche statistiche di analisi del cambiamento
Tecniche statistiche di analisi del cambiamento 07-Anova con covariata (vers. 1.2, 20 marzo 2017) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2016-17
Metodologie Quantitative
Metodologie Quantitative Regressione Lineare Multipla Path Analysis II e Moderazione M Q Marco Perugini Milano-Bicocca 1 Dalla mediazione alla path analysis Notiamo che il modello considerato per la mediazione,
Statistica. Capitolo 12. Regressione Lineare Semplice. Cap. 12-1
Statistica Capitolo 1 Regressione Lineare Semplice Cap. 1-1 Obiettivi del Capitolo Dopo aver completato il capitolo, sarete in grado di: Spiegare il significato del coefficiente di correlazione lineare
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è
Strumenti di indagine per la valutazione psicologica
Strumenti di indagine per la valutazione psicologica 1.5 Correlazione e causazione Davide Massidda [email protected] Metodi simmetrici vs asimmetrici Relazioni tra variabili Nei metodi di studio
ANALISI MULTIVARIATA
ANALISI MULTIVARIATA Marcella Montico Servizio di epidemiologia e biostatistica... ancora sulla relazione tra due variabili: la regressione lineare semplice VD: quantitativa VI: quantitativa Misura la
Esercitazione 5 - Statistica (parte II) Davide Passaretti 9/3/2017
Esercitazione 5 - Statistica (parte II) Davide Passaretti 9/3/2017 Contents 1 Inferenza sulla regressione semplice 1 1.1 Test sulla pendenza della retta................................... 1 1.2 Test sull
Misure Ripetute. Analisi dei dati in disegni di ricerca con misure ripetute. Marcello Gallucci
Misure Ripetute Analisi dei dati in disegni di ricerca con misure ripetute Marcello Gallucci Introduzione Consideriamo una ricerca in cui un gruppo di pazienti è sottoposto ad un trattamento terapeutico
La multicollinearità sorge quando c è un elevata correlazione tra due o più variabili esplicative.
Lezione 14 (a cura di Ludovica Peccia) MULTICOLLINEARITA La multicollinearità sorge quando c è un elevata correlazione tra due o più variabili esplicative. In un modello di regressione Y= X 1, X 2, X 3
Statistica multivariata Donata Rodi 17/10/2016
Statistica multivariata Donata Rodi 17/10/2016 Quale analisi? Variabile Dipendente Categoriale Continua Variabile Indipendente Categoriale Chi Quadro ANOVA Continua Regressione Logistica Regressione Lineare
Regressioni Non Lineari
Regressioni Non Lineari Fino ad ora abbiamo solo considerato realazioni lineari Ma le relazioni lineari non costituiscono sempre le migliori approssimazioni La regressione multipla può anche essere formulata
0 altimenti 1 soggetto trova lavoroentro 6 mesi}
Lezione n. 16 (a cura di Peluso Filomena Francesca) Oltre alle normali variabili risposta che presentano una continuità almeno all'interno di un certo intervallo di valori, esistono variabili risposta
Tecniche statistiche di analisi del cambiamento
Tecniche statistiche di analisi del cambiamento 07-Anova con covariata (vers. 1.0, 3 dicembre 2015) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2015-16
Statistica multivariata 27/09/2016. D.Rodi, 2016
Statistica multivariata 27/09/2016 Metodi Statistici Statistica Descrittiva Studio di uno o più fenomeni osservati sull INTERA popolazione di interesse (rilevazione esaustiva) Descrizione delle caratteristiche
SMID a.a. 2004/2005 Corso di Metodi Statistici in Biomedicina Regressione di Cox 7/3/2005
SMID a.a. 2004/2005 Corso di Metodi Statistici in Biomedicina Regressione di Cox 7/3/2005 Procedura di Mantel-Haenszel Dati relativi a pazienti maschi nel primo anno di follow-up stratificati per età e
Metodologie Quantitative
Metodologie Quantitative Regressione Logistica II M Q Marco Perugini Milano-Bicocca 1 La regressione logistica La regressione logistica si propone di studiare e quantificare le relazioni tra una o più
R - Esercitazione 6. Andrea Fasulo Venerdì 22 Dicembre Università Roma Tre
R - Esercitazione 6 Andrea Fasulo [email protected] Università Roma Tre Venerdì 22 Dicembre 2017 Il modello di regressione lineare semplice (I) Esempi tratti da: Stock, Watson Introduzione all econometria
Principi di analisi causale Lezione 4
Anno accademico 2007/08 Principi di analisi causale Lezione 4 Docente: prof. Maurizio Pisati Stima di effetti causali Supponiamo di volere stimare l effetto esercitato dalla variabile causale di interesse
Analisi Fattoriale Concetti introduttivi Marcello Gallucci Milano-Bicocca
Analisi Fattoriale Concetti introduttivi A M D Marcello Gallucci Milano-Bicocca Scopi generali L Analisi Fattoriale (e varianti) si propone di estrarre un numero limitato di fattori (variabili latenti
Analisi della Varianza Fattoriale
Analisi della Varianza Fattoriale AMD Marcello Gallucci [email protected] Ripasso dell ANOVA Lo studio degli effetti di una serie di variabili indipendenti nominale (gruppi) su un variabile dipendente
Statistica - metodologie per le scienze economiche e sociali S. Borra, A. Di Ciaccio - McGraw Hill
- metodologie per le scienze economiche e sociali S. Borra, A. Di Ciaccio - McGraw Hill Es. Soluzione degli esercizi del capitolo 8 home - indice In base agli arrotondamenti effettuati nei calcoli, si
Tema d esame del 15/02/12
Tema d esame del 15/0/1 Volendo aprire un nuovo locale, una catena di ristoranti chiede ad un consulente di valutare la posizione geografica ideale all interno di un centro abitato. A questo scopo, avvalendosi
LIMITI E DERIVATE DI UNA FUNZIONE
LIMITI E DERIVATE DI UNA FUNZIONE INTRODUZIONE In generale, abbiamo un idea chiara del significato di pendenza quando viene utilizzata in contesti concernenti l esperienza quotidiana, ad esempio quando
Il metodo della regressione
Il metodo della regressione Consideriamo il coefficiente beta di una semplice regressione lineare, cosa significa? È una differenza tra valori attesi Anche nel caso classico di variabile esplicativa continua
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 25-Dimensione degli effetti e 26-Metanalisi vers. 1.0 (2 dicembre 2014) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università
24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2
Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6
Regressione lineare semplice
Regressione lineare semplice Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Statistica con due variabili var. nominale, var. nominale: gruppo sanguigno - cancro
STATISTICA ESERCITAZIONE 13
STATISTICA ESERCITAZIONE 13 Dott. Giuseppe Pandolfo 9 Marzo 2015 Errore di I tipo: si commette se l'ipotesi nulla H 0 viene rifiutata quando essa è vera Errore di II tipo: si commette se l'ipotesi nulla
Misure Ripetute. Partizione della Varianza. Marcello Gallucci
Misure Ripetute Partizione della Varianza Marcello Gallucci GLM l ANOVA a misure ripetute rappresenta un caso del modello lineare generale in cui la variabilità non è valutata tra gruppi ma tra misure
qwertyuiopasdfghjklzxcvbnmqwerty AppuntiBicoccaAppuntiBicoccaAppu ntibicoccaappuntibicoccaappuntibic occaappuntibicoccaappuntibicoccaa
qwertyuiopasdfghjklzxcvbnmqwerty AppuntiBicoccaAppuntiBicoccaAppu ntibicoccaappuntibicoccaappuntibic occaappuntibicoccaappuntibicoccaa Analisi multivariata dei dati Teoria e procedimento con SPSS ppuntibicoccaappuntibicoccaappunt
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
Analisi della Varianza - II
Analisi della Varianza - II M Q ANOVA entro i soggetti, modelli misti, ANCOVA Marco Perugini Milano-Bicocca 1 Lez: XXIX ANOVA a una via la VARIANZA Possiamo stimare la varianza (MQ = media dei quadrati)
Minimi quadrati vincolati e test F
Minimi quadrati vincolati e test F Impostazione del problema Spesso, i modelli econometrici che stimiamo hanno dei parametri che sono passibili di interpretazione diretta nella teoria economica. Consideriamo
La regressione lineare multipla
13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività
Facoltà di Scienze Politiche Corso di laurea in Servizio sociale. Compito di Statistica del 7/1/2003
Compito di Statistica del 7/1/2003 I giovani addetti all agricoltura in due diverse regioni sono stati classificati per età; la distribuzione di frequenze congiunta è data dalla tabella seguente Età in
Principi di analisi causale Lezione 3
Anno accademico 2007/08 Principi di analisi causale Lezione 3 Docente: prof. Maurizio Pisati Approccio causale Nella maggior parte dei casi i ricercatori sociali utilizzano la regressione per stimare l
LeLing12: Ancora sui determinanti.
LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling
Analisi della Varianza - II
Analisi della Varianza - II ANOVA tra i soggetti M Q Cristina Zogmaister Milano-Bicocca 1 Lez: XXIX Analisi della Varianza (ANOVA, Analysis of Variance) Obiettivo - Confrontare due o più gruppi per stabilire
Esame di Statistica del 19 settembre 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova).
Esame di Statistica del 19 settembre 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si
C.I. di Metodologia clinica
C.I. di Metodologia clinica Modulo 5. I metodi per la sintesi e la comunicazione delle informazioni sulla salute Quali errori influenzano le stime? L errore casuale I metodi per la produzione delle informazioni
Introduzione al corso di Econometria
Università di Pavia Introduzione al corso di Econometria Eduardo Rossi Che cos è l econometria? Gli economisti sono interessati alle relazioni fra diverse variabili, per esempio la relazione tra salari
Esercitazione 9 del corso di Statistica (parte seconda)
Esercitazione 9 del corso di Statistica (parte seconda) Dott.ssa Paola Costantini 17 Marzo 9 Esercizio 1 Esercizio Un economista del Ministero degli Esteri desidera verificare se gli accordi di negoziazione
Metodologia Sperimentale Agronomica / Metodi Statistici per la Ricerca Ambientale
DIPARTIMENTO DI SCIENZE AGRARIE E AMBIENTALI PRODUZIONE, TERRITORIO, AGROENERGIA Marco Acutis [email protected] www.acutis.it CdS Scienze della Produzione e Protezione delle Piante (g59) CdS Biotecnologie
I TEST STATISTICI. dott.ssa Gabriella Agrusti
I TEST STATISTICI dott.ssa Gabriella Agrusti Dulcis in fundo.. come scegliere un test statistico in base all ipotesi come stabilire se due variabili sono associate (correlazione di Pearson) come stabilire
Psicologia del Lavoro e dell Organizzazione. Antonio Cerasa, PhD IBFM-CNR, Germaneto (CZ)
e dell Organizzazione Antonio Cerasa, PhD IBFM-CNR, Germaneto (CZ) [email protected] Visto che la sua nascita coincide con lo sviluppo di una corrente particolare della Psicologia, definita come PSic.
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 2 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1.1
Modelli a effetti misti
Probabilità e Statistica per l analisi di dati sperimentali Modelli a effetti misti Sviluppo e gestione di Data Center per il calcolo scientifico ad alte prestazioni Master Progetto PRISMA, UniBA/INFN
Esercizio 1 Questa tabella esprime i tempi di durata di 200 apparecchiature elettriche:
Istituzioni di Statistica 1 Esercizi su indici di posizione e di variabilità Esercizio 1 Questa tabella esprime i tempi di durata di 200 apparecchiature elettriche: Durata (ore) Frequenza 0 100? 100 200
Analisi della varianza a una via
Analisi della varianza a una via Statistica descrittiva e Analisi multivariata Prof. Giulio Vidotto PSY-NET: Corso di laurea online in Discipline della ricerca psicologico-sociale SOMMARIO Modelli statistici
Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x
Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio 2015 - Soluzioni degli esercizi Risolvere le seguenti equazioni. Dove è necessario, scrivere le condizioni di accettabilità e usarle
CAPITOLO 11 ANALISI DI REGRESSIONE
VERO FALSO CAPITOLO 11 ANALISI DI REGRESSIONE 1. V F Se c è una relazione deterministica tra due variabili,x e y, ogni valore dato di x,determinerà un unico valore di y. 2. V F Quando si cerca di scoprire
Economia Politica e Istituzioni Economiche. Barbara Pancino Lezione 4
Economia Politica e Istituzioni Economiche Barbara Pancino Lezione 4 La domanda di moneta Come allocare la ricchezza finanziaria risparmiata? La moneta può essere usata per transazioni, ma non paga interessi.
Analisi della varianza
Università degli Studi di Padova Facoltà di Medicina e Chirurgia Facoltà di Medicina e Chirurgia - A.A. 2009-10 Scuole di specializzazione Lezioni comuni Disciplina: Statistica Docente: dott.ssa Egle PERISSINOTTO
Concetti principale della lezione precedente
Corso di Statistica medica e applicata 9 a Lezione Dott.ssa Donatella Cocca Concetti principale della lezione precedente I concetti principali che sono stati presentati sono: Variabili su scala nominale
Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill
Statistica - metodologie per le scienze economiche e sociali /e S Borra, A Di Ciaccio - McGraw Hill Es 6 Soluzione degli esercizi del capitolo 6 In base agli arrotondamenti effettuati nei calcoli, si possono
Esame di Probabilità e Statistica del 23 agosto 2010 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).
Esame di Probabilità e Statistica del 3 agosto 00 Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. Es. 3 Es. 4 Somma Voto finale Attenzione: si
METODO DEI MINIMI QUADRATI
Vogliamo determinare una funzione lineare che meglio approssima i nostri dati sperimentali e poter decidere sulla bontà di questa approssimazione. Sia f(x) = mx + q, la coppia di dati (x i, y i ) appartiene
Statistica ARGOMENTI. Calcolo combinatorio
Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità
George BOOLE ( ) L algebra booleana. (logica proposizionale)
George BOOLE (1815-64) L algebra booleana. (logica proposizionale) La logica e George BOOLE George BOOLE nel 1847 pubblicò il libro Mathematical Analysis of Logic, nel quale presentava ciò che oggi si
GENETICA QUANTITATIVA
GENETICA QUANTITATIVA Caratteri quantitativi e qualitativi I caratteri discontinui o qualitativi esibiscono un numero ridotto di fenotipi e mostrano una relazione genotipo-fenotipo semplice I caratteri
Statistica inferenziale. La statistica inferenziale consente di verificare le ipotesi sulla popolazione a partire dai dati osservati sul campione.
Statistica inferenziale La statistica inferenziale consente di verificare le ipotesi sulla popolazione a partire dai dati osservati sul campione. Verifica delle ipotesi sulla medie Quando si conduce una
Teoria e tecniche dei test LA VALIDITA 10/12/2013. a) SIGNIFICATIVITA TEORICA E OSSERVATIVA DI UN COSTRUTTO. Lezione 6 seconda parte LA VALIDITA
Teoria e tecniche dei test Lezione 6 seconda parte LA VALIDITA LA VALIDITA Rappresenta il grado in cui uno strumento misura effettivamente ciò che dovrebbe misurare. La validità generale di un costrutto
Indagine statistica. Indagine Totale Indagine Campionaria Fasi dell indagine
10/1 Indagine statistica Indagine Totale Indagine Campionaria Fasi dell indagine definizione degli obiettivi definizione delle unità e delle variabili da rilevare scelta del periodo di riferimento individuazione
Il modello di regressione lineare multipla con regressori stocastici
Università di Pavia Il modello di regressione lineare multipla con regressori stocastici Eduardo Rossi Il valore atteso condizionale Modellare l esperimento casuale bivariato nel quale le variabili casuali
Alcune nozioni preliminari di teoria elementare di insiemi e funzioni
Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso Propedeutico - METS A.A. 2013/2014 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor,
8. ANALISI DELLA COVARIANZA (ANCOVA)
8. ANALISI DELLA COVARIANZA (ANCOVA) L analisi della covarianza è un metodo statistico che risulta dalla combinazione dell analisi di regressione con l analisi della varianza. È utile quando all analisi
Statistica Applicata all edilizia: il modello di regressione
Statistica Applicata all edilizia: il modello di regressione E-mail: [email protected] 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione
