STATISTICA ESERCITAZIONE 13
|
|
|
- Marina Micheli
- 8 anni fa
- Visualizzazioni
Transcript
1 STATISTICA ESERCITAZIONE 13 Dott. Giuseppe Pandolfo 9 Marzo 2015 Errore di I tipo: si commette se l'ipotesi nulla H 0 viene rifiutata quando essa è vera Errore di II tipo: si commette se l'ipotesi nulla H 0 viene accettata quando essa è falsa Esercizio 1 Supponiamo che la spesa mensile per l'affitto di un locale commerciale ( ) si distribuisce come una Normale con con. Selezionando n = 40 locali si osserva che euro. Verifichiamo che euro. Accettiamo H 0 con? Soluzione Il sistema di ipotesi é: Calcoliamo Siccome rifiutiamo l'ipotesi nulla In maniera equivalente: 1
2 Visto che rifiutiamo H 0. Utilizziamo anche l'approccio basato sul p-value. Ora l'ipotesi nulla H o viene rifiutata se Vediamo che e dunque rifiutiamo H o. Esercizio 2 (Cicchitelli) Per la generica voce di un inventario di un impresa mercantile sia X la variabile casuale valore inventariato - valore certificato. Un certificatore contabile estrae a sorte un campione di 120 voci ottenendo = 25,3 e = Sia µ la media di X nella popolazione. a) Si sottoponga a verifica l ipotesi che µ = 0 contro l alternativa µ > 0, cioè che l inventario è gonfiato, con α = 0.01; b) Si calcoli la probabilità dell errore di I tipo; c) Si calcoli la probabilità di errore di II tipo nel caso di ipotesi alternativa H 1 : µ = 27 d) Si calcoli la potenza del test; e) Senza fare i calcoli, e considerando i risultati del punto d) spiegare come cambierebbe la potenza del test se l ipotesi alternativa è H 1 : µ = 27. 2
3 Soluzione a) 1. Definizione del sistema di ipotesi: 2. Livello di significatività α = 0,01 3. Costruzione della statistica test Trattandosi di un campione di dimensione elevata, per il Teorema del Limite Centrale si può ricorrere all approssimazione normale e considerare S 2 una buona stima della varianza della popolazione. 4. Definizione della regola di decisione (regione di rifiuto) Il livello di significatività è α = 0.01, il test è a una coda, quindi Se rifiutiamo l ipotesi nulla o equivalentemente (1) 5. A partire dal campione calcolo il valore della statistica sotto l ipotesi nulla 6. Decisione Siccome rifiuto l ipotesi nulla. b) la probabilità dell errore di I tipo è α = 0.01 c) Si definisce errore di II tipo la probabilità di non rifiutare l ipotesi nulla quando è vera l ipotesi alternativa, ossia nel nostro caso: 3
4 A partire dall ipotese alternativa proposta µ 1 = 27 (che da quindi luogo ad una distribuzione alternativa), la probabilità dell errore di II tipo è data da: d) La potenza del test è la probabilità di rifiutare correttamente, in pratica la probabilità di prendere la decisione giusta e può essere espressa, in termini standardizzati, come: dove β è la probabilità di non rifiutare anche se è vera. Potenza del test Nota: un test ha potenza maggiore se la dimensione campionaria è grande, se la discrepanza vera dall ipotesi nulla è grande e se la variabilità nella popolazione è bassa. e) Specificando = 28 la probabilità dell errore di II tipo si riduce e aumenta la potenza del test. Esercizio 3 (ANOVA confronto tra medie) Applicare l'analisi della varianza ai dati in tabella e effettuare il test per il confronto tra medie. X Y A 17,4 10,4 20,0 B 57,1 25,7 19,9 C 20,5 12,8 22,3 4
5 Soluzione Medie parziali Scarti quadratici medi parziali Media generale Devianza tra gruppi Devianza entro gruppi Devianza totale 5
6 Definizione del sistema di ipotesi: Fonte di variazione Dev(SQ) gdl VAR(MQ) F Tra i gruppi (Dev EST ) 588,15 2 Entro i gruppi (Dev INT ) 30,01 6 Totale 618,16 8 Siccome rifiutiamo H 0. Esercizio 4 (ANOVA per regressione) Y X 2, ,3 10, ) Stimare i coefficienti di regressione; 2) Calcolare l'indice di bontà di adattamento del modello di regressione; 6
7 3) Costruire la tabella ANOVA della regressione; 4) Verificare la significatività del modello usando il test sul coefficiente di regressione e il test F a partire dalla tabella ANOVA. Soluzione Fonte Variabilità Dev(ss) gdl Var(MS) Statistica F Regressione Dev(R) 1 Dev(R) Errore Dev(E) n - 2 Totale Dev(Y) n - 1 1) 2) 7
8 3) Ora sapendo che Per cui: Quindi da cui: A questo punto calcoliamo T n : La statistica F si ottiene: Fonte Variabilità Dev(ss) gdl Var(MS) Statistica F Regressione 0,89 1 0,89 3,83 Errore 2,99 2 1,49 Totale 3,88 3 8
9 4) Sistema di ipotesi: con Sappiamo che Siccome allora accettiamo H 0. Esercizio 5 Il valore dell'indice di connessione del chi-quadrato per i dati in tabella è 8,95. Condizione Vaccino Sani Malati Totale Si No Totale Effettuare un test del chi-quadrato per l'indipendenza con un livello di significatività del 10%. Soluzione Sappiamo che 9
10 Il sistema di ipotesi è: Il valore dell'indice di connessione va confrontato con, considerando anche il livello di significatività, nel nostro caso Utilizzando le tavole Rifiutiamo H 0 se Siccome Rifiutiamo H 0, e possiamo affermare che vi è relazione significativa con probabilità del 90%. 10
Esercizi di statistica
Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
Contenuti: Capitolo 14 del libro di testo
Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4
Esercitazione 5 - Statistica (parte II) Davide Passaretti 9/3/2017
Esercitazione 5 - Statistica (parte II) Davide Passaretti 9/3/2017 Contents 1 Inferenza sulla regressione semplice 1 1.1 Test sulla pendenza della retta................................... 1 1.2 Test sull
Esercitazione 8 del corso di Statistica 2
Esercitazione 8 del corso di Statistica Prof. Domenico Vistocco Dott.ssa Paola Costantini 6 Giugno 8 Decisione vera falsa è respinta Errore di I tipo Decisione corretta non è respinta Probabilità α Decisione
Gli errori nella verifica delle ipotesi
Gli errori nella verifica delle ipotesi Nella statistica inferenziale si cerca di dire qualcosa di valido in generale, per la popolazione o le popolazioni, attraverso l analisi di uno o più campioni E
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Approssimazione normale della Poisson (TLC) In un determinato tratto di strada il numero di incidenti
Corso di Statistica Esercitazione 1.8
Corso di Statistica Esercitazione.8 Test su medie e proporzioni Prof.ssa T. Laureti a.a. 202-203 Esercizio Un produttore vuole monitorare i valori dei livelli di impurità contenute nella merce che gli
Lezione 16. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 16. A. Iodice. Ipotesi statistiche
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 23 Outline 1 2 3 4 5 6 () Statistica 2 / 23 La verifica delle ipotesi Definizione Un ipotesi statistica
Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill
Statistica - metodologie per le scienze economiche e sociali /e S. Borra, A. Di Ciaccio - McGraw Hill Es.. Soluzione degli esercizi del capitolo 4 4. Il sistema d ipotesi è: μ 7, H : μ 7, Essendo 0 : t,
ESAME. 9 Gennaio 2017 COMPITO B
ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 10-Significatività statistica per la correlazione vers. 1.0 (5 novembre 2014) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università
Statistica inferenziale. La statistica inferenziale consente di verificare le ipotesi sulla popolazione a partire dai dati osservati sul campione.
Statistica inferenziale La statistica inferenziale consente di verificare le ipotesi sulla popolazione a partire dai dati osservati sul campione. Verifica delle ipotesi sulla medie Quando si conduce una
Test d Ipotesi Introduzione
Test d Ipotesi Introduzione Uno degli scopi più importanti di un analisi statistica è quello di utilizzare i dati provenienti da un campione per fare inferenza sulla popolazione da cui è stato estratto
Capitolo 9 Verifica di ipotesi: test basati su un campione
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 9 Verifica di ipotesi: test basati su un campione Insegnamento: Statistica Corsi di Laurea Triennale in Economia Facoltà di Economia, Università
Prova Scritta di METODI STATISTICI PER L AMMINISTRAZIONE DELLE IMPRESE (Milano, )
Università degli Studi di Milano Bicocca Scuola di Economia e Statistica Corso di Laurea in Economia e Amministrazione delle Imprese (ECOAMM) Prova Scritta di METODI STATISTICI PER L AMMINISTRAZIONE DELLE
IL CONFRONTO TRA LE VARIANZE DI DUE POPOLAZIONI
IL CONFRONTO TRA LE VARIANZE DI DUE POPOLAZIONI Perchè confrontare le varianze stimate in due campioni? Torniamo all'esempio dei frinosomi Per poter applicare il test t avevamo detto che le varianze, e
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. La v.c. Uniforme Continua Secondo alcuni sondaggi sul sito della Apple (technical support site,
Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni
La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con
STATISTICA A K (60 ore)
STATISTICA A K (60 ore) Marco Riani [email protected] http://www.riani.it Richiami sulla regressione Marco Riani, Univ. di Parma 1 MODELLO DI REGRESSIONE y i = a + bx i + e i dove: i = 1,, n a + bx i rappresenta
Capitolo 10. Test basati su due campioni e ANOVA a una via. Statistica II ed. Levine, Krehbiel, Berenson Apogeo
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 10 Test basati su due campioni e ANOVA a una via Insegnamento: Statistica Applicata Corsi di Laurea in "Scienze e tecnologie Alimentari"
Capitolo 10. Test basati su due campioni e ANOVA a una via. Statistica II ed. Levine, Krehbiel, Berenson. Casa editrice: Pearson
Levine, Krehbiel, Berenson Statistica II ed. Casa editrice: Pearson Capitolo 10 Test basati su due campioni e ANOVA a una via Insegnamento: Statistica Corsi di Laurea Triennale in Economia Dipartimento
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento.
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle abelle riportate alla fine del documento. Esercizio 1 La concentrazione media di sostanze inquinanti osservata nelle acque di un fiume
R - Esercitazione 6. Andrea Fasulo Venerdì 22 Dicembre Università Roma Tre
R - Esercitazione 6 Andrea Fasulo [email protected] Università Roma Tre Venerdì 22 Dicembre 2017 Il modello di regressione lineare semplice (I) Esempi tratti da: Stock, Watson Introduzione all econometria
SOLUZIONE. a) Calcoliamo il valore medio delle 10 misure effettuate (media campionaria):
ESERCIZIO SU TEST STATISTICO (Z, T e χ ) Da una ditta di assemblaggio di PC ci viene chiesto di controllare la potenza media dissipata da un nuovo processore, che causa a volte problemi di sovraccarico
lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1
lezione n. 6 (a cura di Gaia Montanucci) METODO MASSIMA VEROSIMIGLIANZA PER STIMARE β 0 E β 1 Distribuzione sui termini di errore ε i ε i ~ N (0, σ 2 ) ne consegue : ogni y i ha ancora distribuzione normale,
Esercizi di Probabilità e Statistica
Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 giugno 26 Statistica Esercizio Sia {X n } n una famiglia di v.a. di media µ e varianza σ 2. Verificare che X = n n X i σ 2 = n (X i µ) 2 S 2 = n
Approssimazione normale alla distribuzione binomiale
Approssimazione normale alla distribuzione binomiale P b (X r) costoso P b (X r) P(X r) per N grande Teorema: Se la variabile casuale X ha una distribuzione binomiale con parametri N e p, allora, per N
Analisi della varianza
Analisi della varianza Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona ANALISI DELLA VARIANZA - 1 Abbiamo k gruppi, con un numero variabile di unità statistiche.
Argomenti della lezione:
Lezione 13 L analisi della Varianza (ANOVA): il modello lineare Argomenti della lezione: Modello lineare Disegni a una via L Analisi della Varianza (ANOVA): Esamina differenze tra le medie di due o più
x ;x Soluzione Gli intervalli di confidenza possono essere ottenuti a partire dalla seguente identità: da cui si ricava: IC x ;x = +
ESERCIZIO 6.1 Si considerino i 0 campioni di ampiezza n = estratti da una popolazione X di N = 5 elementi distribuiti normalmente, con media µ = 13,6 e σ = 8,33. A partire dalle 0 determinazioni della
ESERCITAZIONE IV - Soluzioni
umero di omicidi ESERCITAZIOE IV - Soluzioni Esercizio I. a),00 12,00 10,00 8,00 6,00 4,00 2,00 0,00 0 5 10 15 20 25 Popolazione povera (%) b) Poiché i due caratteri in analisi sono quantitativi per calcolare
Quanti soggetti devono essere selezionati?
Quanti soggetti devono essere selezionati? Determinare una appropriata numerosità campionaria già in fase di disegno dello studio molto importante è molto Studi basati su campioni troppo piccoli non hanno
Analisi della regressione multipla
Analisi della regressione multipla y = β 0 + β 1 x 1 + β 2 x 2 +... β k x k + u 2. Inferenza Assunzione del Modello Classico di Regressione Lineare (CLM) Sappiamo che, date le assunzioni Gauss- Markov,
Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016
Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione
Il modello di regressione lineare multipla. Il modello di regressione lineare multipla
Introduzione E la generalizzazione del modello di regressione lineare semplice: per spiegare il fenomeno d interesse Y vengono introdotte p, con p > 1, variabili esplicative. Tale generalizzazione diventa
Esercitazione 8 maggio 2014
Esercitazione 8 maggio 2014 Esercizio 2 dal tema d esame del 13.01.2014 (parte II). L età media di n gruppo di 10 studenti che hanno appena conseguito la laurea triennale è di 22 anni. a) Costruire un
Capitolo 11 Test chi-quadro
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corsi di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.
Matematica II: Calcolo delle Probabilità e Statistica Matematica
Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # 6 1 Test ed intervalli di confidenza per una popolazione Esercizio n. 1 Il calore (in calorie
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
Giorno n. clienti di attesa
Esercizio 1 Un aspetto cruciale per la qualità del servizio ai clienti in un supermercato è il cosiddetto checkout (ovvero il tempo che il cliente impiega dal momento in cui si mette in fila alla cassa
05. Errore campionario e numerosità campionaria
Statistica per le ricerche di mercato A.A. 01/13 05. Errore campionario e numerosità campionaria Gli schemi di campionamento condividono lo stesso principio di fondo: rappresentare il più fedelmente possibile,
L Analisi della Varianza ANOVA (ANalysis Of VAriance)
L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 Concetti generali: Confronto simultaneo tra più di due popolazioni, esempi... La analisi della varianza estende il confronto a p gruppi con p>2.
Esercizi riassuntivi di Inferenza
Esercizi riassuntivi di Inferenza Esercizio 1 Un economista vuole stimare il reddito medio degli abitanti di una cittadina mediante un intervallo al livello di confidenza del 95%. La distribuzione del
Esame di Statistica del 19 settembre 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova).
Esame di Statistica del 19 settembre 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si
3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17
C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica
Lezione 17. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 17. A. Iodice
con Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 29 Outline con 1 2 3 con 4 5 campioni appaiati 6 Indipendenza tra variabili () Statistica 2 /
CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi)
CHEMIOMETRIA Applicazione di metodi matematici e statistici per estrarre (massima) informazione chimica (affidabile) da dati chimici INCERTEZZA DI MISURA (intervallo di confidenza/fiducia) CONFRONTO CON
Test F per la significatività del modello
Test F per la significatività del modello Per verificare la significatività dell intero modello si utilizza il test F Si vuole verificare l ipotesi H 0 : β 1 = 0,, β k = 0 contro l alternativa che almeno
Test per una media - varianza nota
Situazione Test per una media - varianza nota Popolazione N(µ,σ 2 ); varianza σ 2 nota. µ 0 numero reale fissato. Test di livello α per µ Statistica: Z n = X n µ 0 σ/ n. H 0 H 1 Rifiutiamo H 0 se p-value
Il confronto fra medie
L. Boni Obiettivo Verificare l'ipotesi che regimi alimentari differenti non producano mediamente lo stesso effetto sulla gittata cardiaca Ipotesi nulla IPOTESI NULLA La dieta non dovrebbe modificare in
PROBABILITÀ ELEMENTARE
Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti
Distribuzione Normale
Distribuzione Normale istogramma delle frequenze di un insieme di misure relative a una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata
Analisi della varianza
Università degli Studi di Padova Facoltà di Medicina e Chirurgia Facoltà di Medicina e Chirurgia - A.A. 2009-10 Scuole di specializzazione Lezioni comuni Disciplina: Statistica Docente: dott.ssa Egle PERISSINOTTO
Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione
Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione Alessandra Mattei Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) Università degli Studi di Firenze
Cognome e Nome:... Corso di laurea:...
Statistica - corso base Prof. B. Liseo Prova di esame dell 8 gennaio 201 Cognome e Nome:................................................................... Corso di laurea:.......................................................................
Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezioni del 7/1/2003 e del 14/1/2003
Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezioni del 7/1/003 e del 14/1/003 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore
Statistica Applicata all edilizia: il modello di regressione
Statistica Applicata all edilizia: il modello di regressione E-mail: [email protected] 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione
Analisi della varianza: I contrasti e il metodo di Bonferroni
Analisi della varianza: I contrasti e il metodo di Bonferroni 1 Contrasti In molti problemi risulta importante stabilire, nel caso venga rifiutata l ipotesi nulla, di uguaglianza delle medie µ j delle
Caratterizzazione dei consumi energetici (parte 3)
ESERCITAZIONE 4 Caratterizzazione dei consumi energetici (parte 3) 4.1 CuSum: elementi di analisi statistica Il diagramma delle somme cumulate dei residui in funzione del tempo (CuSum) può essere in generale
Variabili indipendenti qualitative. In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli.
Variabili indipendenti qualitative Di solito le variabili nella regressione sono variabili continue In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli Ad esempio:
SOLUZIONI ESERCITAZIONE NR. 8 Test statistici
SOLUZIONI ESERCITAZIONE NR. 8 Test statistici ESERCIZIO nr. 1 Un campione casuale di dieci pazienti di sesso maschile in cura per comportamenti aggressivi nell ambito del contesto familiare è stato classificato
Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII
Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII Un breve richiamo sul test t-student Siano A exp (a 1, a 2.a n ) e B exp (b 1, b 2.b m ) due set di dati i cui
Esame di Istituzioni di Matematica II del 18 gennaio 2001 (Corso di Laurea in Biotecnologie, Universitá degli Studi di Padova). Cognome Nome Matricola
Esame di Istituzioni di Matematica II del 8 gennaio 00 (Corso di Laurea in Biotecnologie, Universitá degli Studi di Padova). Cognome Nome Matricola Es. Es. Es. 3 Es. 4 Somma Voto finale Attenzione: si
Test d ipotesi: confronto fra medie
Test d ipotesi: confronto fra medie Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona CONFRONTO FRA MEDIE 1) confronto fra una media campionaria e una media di popolazione
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Stimatore media campionaria Il tempo in minuti necessario a un certo impiegato dell anagrafe
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA PROCEDURA/TECNICA DI ANALISI DEI DATI SPECIFICAMENTE DESTINATA A STUDIARE LA RELAZIONE TRA UNA VARIABILE NOMINALE (ASSUNTA
i dati escludono vi sia una relazione tra variabile indipendente e variabile dipendente (rispettivamente
TEST DI AUTOVALUTAZIONE - SETTIMANA 6 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia Parte A. La retta di regressione.2
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi
Statistica. Esercitazione 14. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice. Verifica di ipotesi
Esercitazione 14 Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () 1 / 14 Ex.1: Verifica Ipotesi sulla media (varianza nota) Le funi prodotte da un certo macchinario hanno una
Un esempio. Ipotesi statistica: supposizione riguardante: un parametro della popolazione. la forma della distribuzione della popolazione
La verifica delle ipotesi In molte circostanze il ricercatore si trova a dover decidere quale, tra le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze
Capitolo 10 Test delle ipotesi
Capitolo 10 Test delle ipotesi 1 Stima e verifica di ipotesi Modello di popolazione e campionamento: La popolazione viene descritta da una variabile aleatoria dipendente da un parametro incognito. Si ipotizza
LE DISTRIBUZIONI CAMPIONARIE
LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria
TRACCIA DI STUDIO. Test di confronto per misure qualitative. Verifica di ipotesi
TRACCIA DI STUDIO Verifica di ipotesi Nelle analisi statistiche di dati sperimentali riguardanti più gruppi di studio (talvolta più variabili) si pone come ipotesi da verificare la cosiddetta ipotesi zero:
Capitolo 8. Probabilità: concetti di base
1 Capitolo 8 Probabilità: concetti di base Statistica - Metodologie per le scienze economiche e sociali 2/ed S. Borra, A. Di Ciaccio Copyright 2008 The McGraw-Hill Companies srl 2 Concetti primitivi di
Statistica Inferenziale
Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Esercizio 1 (stima puntuale) In un processo di controllo di qualità, siamo interessati al numero mensile di guasti
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative
Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 23/5/2017
Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 3/5/017 Contents 1 Intervalli di confidenza 1 Intervalli su un campione 1.1 Intervallo di confidenza per la media................................
Dispensa di Statistica
Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza
STATISTICA (2) ESERCITAZIONE 2. Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 2 5.02.2014 Dott.ssa Antonella Costanzo Esercizio 1. La v.c. Normale: uso delle tavole E noto che un certo tipo di dati si distribuiscono secondo una gaussiana di media 10
Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota)
STATISTICA (2) ESERCITAZIONE 5 26.02.2014 Dott.ssa Antonella Costanzo Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota) Il responsabile del controllo qualità di un azienda che
Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica
Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 8 Intervalli di confidenza Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università
