Esercitazione del
|
|
|
- Guido Tortora
- 9 anni fa
- Visualizzazioni
Transcript
1 Esercizi sulla regressione lineare. Esercitazione del Esercizio dal tema d esame del Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: Y Rappresentare la distribuzione congiunta dei due caratteri mediante un diagramma a dispersione. Sulla base del grafico il modello di regressione lineare Y i = β 0 +β 1 x i +ǫ i, i = 1,...,n appare adeguato? Motivare la risposta. 2. Stimare i parametri β 0, β 1 col metodo dei minimi quadrati. 3. Costruire un intervallo di confidenza di livello 99% per β 1 4. Calcolare una misura della bontà di adattamento del modello. 5. Supponiamo di definire il carattere Y = 40 Y. Si consideri il modello Y i = β 0 +β 1 x i +ǫ i, i = 1,...,n. ˆβ 1, la nuova stima di minimi quadrati di β 1 i) rimane uguale a quella calcolata al punto 2: ii) cambia di segno ma il valore assoluto resta lo stesso. iii) cambiano sia il segno che il valore calcolato. La stessa risposta vale anche per ˆβ 0? Soluzione. 1. Il grafico di dispersione è rappresentato in Figura 1. Il grafico suggerisce una piena adeguatezza, confermata dal valore del coefficiente di correlazione lineare. Infatti, si ha: x = 14.89, ȳ = 6.56 (x i = x)(y i ȳ) = , (x i = x) 2 = , i i i da cui: ρ = = (y i ȳ) 2 = e, pertanto, si può concludere che esiste una forte correlazione lineare negativa. 2. i ˆβ 1 = (x i x)(y i ȳ) i (x = = 1.73 i x) ˆβ 0 = ȳ ˆβ 1 x = =
2 Figura 1: Diagramma di dispersione per l Esercizio dal tema d esame L intervallo di confidenza al livello del 99% per β 1 è dato da ê2 ˆβ 1 ±t (7) i/(n 2) i (x i x) 2 ove ê i = y i ŷ i = y i (ˆβ 0 + ˆβ 1 x i ) sono i residui. Nel nostro caso: t (7) = 3.50 e ê2 i /(n 2) = e quindi IC 99% (β 1 ) : 1.73± : ( 2.80, 0.66). Siccome non contiene lo zero, possiamo rifiutare all 1% l ipotesi nulla di β 1 = La misura è R 2 = ρ 2 = 0.82, che dice che l 82% della variabilità della variabile risposta (dipendente) è spiegata dal modello lineare. Il grafico dei residui della regressione è rappresentato in Figura 2: lo si confronti con l analogo dell esercizio successivo, in Figura Sicuramente cambia di segno (da Y a Y). Siccome i termini (y i ȳ) diventano 2
3 RESIDUI Figura 2: Residui per il modello di regressione lineare dell Esercizio dal tema d esame (40 y i ) (40 ȳ) = (y i ȳ), la risposta esatta è la ii). Per la nuova intercetta si ha: ˆβ 0 = 40 ȳ ( ˆβ 1 ) x = = 7.68, e cambia di valore ed il fatto che non cambi segno dipende solo dal valore 40 (intendo dire: se Y = 25 Y cambia sia il segno che il valore, mentre la risposta per β 1 resta la medesima). La retta di regressione stimata è mostrata assieme ai dati nella Figura 3. Esercizio dal tema d esame del Il diametro massimo di un tronco d albero (Y, misurato in pollici) è influenzato, tra le altre cose, dalla piovosità della regione (, misurata in pollici). I seguenti dati sono relativi ad un campione di 15 eucalipti. Y Per facilitare i conti si consideri che: 15 i=1 15 x 2 i = yi 2 = x i y i = i=1 1. Rappresentare la distribuzione dei due caratteri tramite un diagramma di dispersione. 3 i=1
4 Figura 3: Diagramma di dispersione e retta di regressione stimata per l Esercizio dal tema d esame Calcolare il coefficiente di correlazione lineare tra i due caratteri. 3. È noto che 1 pollice = 2.54 cm. La covarianza tra Y e entrambi espressi in cm rimane la stessa? Perchè? Altrimenti è possibile ottenerne il valore senza trasformare i valori di tutte le osservazioni? Come? 4. (aggiunto) Stimare i parametri del modello di regressione lineare Y i = β 0 +β 1 x i + ǫ i, i = 1,...,n e indicare una misura di buon adattamento del modello. 5. Costruire l intervallo di confidenza al livello del 95% per β Discutere il grafico dei residui della regressione. Soluzione. 1. Il diagramma di dispersione è rappresentato in Figura Medie campionarie 1 : x = , ȳ = Quindi: 4
5 Figura 4: Diagramma di dispersione per l Esercizio dal tema d esame ρ = i (x i x)(y i ȳ) (xi x) 2 i (y i ȳ) 2 = i x iy i n xȳ ( i x2 i n x2 )( i y2 i nȳ2 ) = ( )( ) = = L indice ρ è un indice adimensionale (il cui valore è indipendente dalla scala) e dunque non varia passando da pollici a cm. La covarianza, invece, risulta riscalata del fattore = , come si verifica facilmente sostituendo 2.54x i e 2.54y i nel numeratore della formula di ρ. 4. i ˆβ 1 = (x i x)(y i ȳ) i (x = i x) = , ˆβ 0 = ȳ ˆβ 1 x = = La retta di regressione stimata è rappresentata assieme ai dati in Figura 5. Nota per la studentessa che mi ha fatto una domanda sul valore Come si può vedere dai passaggi riportati, è il valore che si ottiene applicando la formula 1 Uso più decimali di quanto fatto in aula. I conti, quindi, saranno un po diversi come già anticipato durante l esercitazione. 5
6 Figura 5: Diagramma di dispersione e retta di regressione stimata per l Esercizio dal tema d esame i (x i x) 2 = i x2 i n x col valore x = Usando x = si ottiene da cui il valore per la varianza campionaria (distorta) s 2 x = indicato in aula. Spero di aver risposto adeguatamente. Una misura di buon adattamento è data da R 2 = ρ 2 = = 0.52 che indica che solo il 50% circa della varianza totale delle y è spiegata dal modello lineare (Nota. Alezione la percentuale ottenuta era piùalta per via dei conti un po diversi ottenuti usando meno decimali.). 5. L intervallo di confidenza al livello del 95% per β 1 è dato da ê2 ˆβ 1 ±t (13) i/(n 2) i (x i x) 2 ove ê i = y i ŷ i = y i (ˆβ 0 + ˆβ 1 x i ) sono i residui. Nel nostro caso: t (13) = 2.16 e ê2 i /(n 2) = e quindi IC 95% (β 1 ) : ± : ( , ). Siccome non contiene lo zero, possiamo rifiutare al 5% l ipotesi nulla di β 1 = Il grafico dei residui è rappresentato in Figura 6 e mostra come questi si dispon- 6
7 gano con un andamento che appare crescente da sinistra verso destra, facendo così dubitare che siano soddisfatte le ipotesi di errori gaussiani indipendenti con media 0 e medesima varianza σ 2 (incognita). RESIDUI Figura 6: Residui per il modello di regressione lineare dell Esercizio dal tema d esame
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è
SCOPO DELL ANALISI DI CORRELAZIONE
CORRELAZIONE 1 SCOPO DELL ANALISI DI CORRELAZIONE STUDIARE LA RELAZIONE TRA DUE VARIABILI X E Y 2 diagrammi di dispersione un diagramma di dispersione (o grafico di dispersione) èuna rappresentazione grafica
REGRESSIONE E CORRELAZIONE
REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative
Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill
Statistica - metodologie per le scienze economiche e sociali /e S Borra, A Di Ciaccio - McGraw Hill Es 6 Soluzione degli esercizi del capitolo 6 In base agli arrotondamenti effettuati nei calcoli, si possono
Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione
Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2010/2011 Statistica Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza
Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione
Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2011/2012 Statistica Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate.
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri
Statistica multivariata Donata Rodi 17/10/2016
Statistica multivariata Donata Rodi 17/10/2016 Quale analisi? Variabile Dipendente Categoriale Continua Variabile Indipendente Categoriale Chi Quadro ANOVA Continua Regressione Logistica Regressione Lineare
Lezioni di Statistica del 15 e 18 aprile Docente: Massimo Cristallo
UIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECOOMIA Corso di laurea in Economia Aziendale anno accademico 2012/2013 Lezioni di Statistica del 15 e 18 aprile 2013 Docente: Massimo Cristallo LA RELAZIOE
Statistica di base per l analisi socio-economica
Laurea Magistrale in Management e comunicazione d impresa Statistica di base per l analisi socio-economica Giovanni Di Bartolomeo [email protected] Definizioni di base Una popolazione è l insieme
Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale)
Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale) Esercizio 1: Un indagine su 10.000 famiglie ha dato luogo, fra le altre, alle osservazioni riportate nella
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
Analisi descrittiva: calcolando medie campionarie, varianze campionarie e deviazioni standard campionarie otteniamo i dati:
Obiettivi: Esplicitare la correlazione esistente tra l altezza di un individuo adulto e la lunghezza del suo piede e del suo avambraccio. Idea del progetto: Il progetto nasce dall idea di acquistare scarpe
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Misura dell associazione tra due caratteri Uno store manager è interessato a studiare la relazione
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Regressione Lineare e Correlazione Argomenti della lezione Determinismo e variabilità Correlazione Regressione Lineare
3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17
C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 2 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1.1
Variabili indipendenti qualitative. In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli.
Variabili indipendenti qualitative Di solito le variabili nella regressione sono variabili continue In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli Ad esempio:
METODO DEI MINIMI QUADRATI
METODO DEI MINIMI QUADRATI Torniamo al problema della crescita della radice di mais in funzione del contenuto di saccarosio nel terreno di coltura. Ripetendo varie volte l esperimento con diverse quantità
Corso di Statistica Industriale
Corso di Statistica Industriale Corsi di Laurea Specialistica in Ingegneria Gestionale e Ingegneria Meccanica Docente: Ilia Negri Orario del corso: Martedì: dalle 14.00 alle 16.00 Venerdì: dalle 10.30
Associazione tra caratteri quantitativi: gli indici di correlazione
Associazione tra caratteri quantitativi: gli indici di correlazione Per correlazione si intende una relazione tra due variabili tale che a ciascun valore della prima variabile corrisponda con una certa
Test per la correlazione lineare
10 Test per la correlazione lineare Istituzioni di Matematica e Statistica 2015/16 E. Priola 1 Introduzione alla correlazione lineare Problema: In base ai dati che abbiamo possiamo dire che c è una qualche
Esercitazione 8 maggio 2014
Esercitazione 8 maggio 2014 Esercizio 2 dal tema d esame del 13.01.2014 (parte II). L età media di n gruppo di 10 studenti che hanno appena conseguito la laurea triennale è di 22 anni. a) Costruire un
Il modello di regressione lineare multipla. Il modello di regressione lineare multipla
Introduzione E la generalizzazione del modello di regressione lineare semplice: per spiegare il fenomeno d interesse Y vengono introdotte p, con p > 1, variabili esplicative. Tale generalizzazione diventa
Tema d esame del 15/02/12
Tema d esame del 15/0/1 Volendo aprire un nuovo locale, una catena di ristoranti chiede ad un consulente di valutare la posizione geografica ideale all interno di un centro abitato. A questo scopo, avvalendosi
lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1
lezione n. 6 (a cura di Gaia Montanucci) METODO MASSIMA VEROSIMIGLIANZA PER STIMARE β 0 E β 1 Distribuzione sui termini di errore ε i ε i ~ N (0, σ 2 ) ne consegue : ogni y i ha ancora distribuzione normale,
Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII
Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII Un breve richiamo sul test t-student Siano A exp (a 1, a 2.a n ) e B exp (b 1, b 2.b m ) due set di dati i cui
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2
Intervalli di confidenza
Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
CAPITOLO 11 ANALISI DI REGRESSIONE
VERO FALSO CAPITOLO 11 ANALISI DI REGRESSIONE 1. V F Se c è una relazione deterministica tra due variabili,x e y, ogni valore dato di x,determinerà un unico valore di y. 2. V F Quando si cerca di scoprire
ESERCITAZIONE IV - Soluzioni
umero di omicidi ESERCITAZIOE IV - Soluzioni Esercizio I. a),00 12,00 10,00 8,00 6,00 4,00 2,00 0,00 0 5 10 15 20 25 Popolazione povera (%) b) Poiché i due caratteri in analisi sono quantitativi per calcolare
Test F per la significatività del modello
Test F per la significatività del modello Per verificare la significatività dell intero modello si utilizza il test F Si vuole verificare l ipotesi H 0 : β 1 = 0,, β k = 0 contro l alternativa che almeno
i dati escludono vi sia una relazione tra variabile indipendente e variabile dipendente (rispettivamente
TEST DI AUTOVALUTAZIONE - SETTIMANA 6 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia Parte A. La retta di regressione.2
Metodologia Sperimentale Agronomica / Metodi Statistici per la Ricerca Ambientale
DIPARTIMENTO DI SCIENZE AGRARIE E AMBIENTALI PRODUZIONE, TERRITORIO, AGROENERGIA Marco Acutis [email protected] www.acutis.it CdS Scienze della Produzione e Protezione delle Piante (g59) CdS Biotecnologie
Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da:
Analisi chimica strumentale Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da: (31.4) dove s y è la varianza dei valori
Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni
La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con
Esercitazioni di statistica
Esercitazioni di statistica Intervalli di confidenza Stefania Spina Universitá di Napoli Federico II [email protected] 10 Dicembre 2014 Stefania Spina Esercitazioni di statistica 1/43 Stefania Spina
Statistica Applicata all edilizia: il modello di regressione
Statistica Applicata all edilizia: il modello di regressione E-mail: [email protected] 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione
b) Calcolare la devianza tra i gruppi (devianza esterna), la devianza entro i gruppi (devianza interna) e la devianza totale
ESERCIZIO 1 La tendenza recente del mercato dell auto vede i veicoli SUV ed i fuoristrada sempre di più soppiantare le macchine tradizionali. Il loro utilizzo, soprattutto nei centri cittadini, viene criticato
Statistica. Matematica con Elementi di Statistica a.a. 2015/16
Statistica La statistica è la scienza che organizza e analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva: dalla mole di dati
Statistica Inferenziale
Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione
Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica
13. Regressione lineare parametrica Esistono numerose occasioni nelle quali quello che interessa è ricostruire la relazione di funzione che lega due variabili, la variabile y (variabile dipendente, in
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA PROCEDURA/TECNICA DI ANALISI DEI DATI SPECIFICAMENTE DESTINATA A STUDIARE LA RELAZIONE TRA UNA VARIABILE NOMINALE (ASSUNTA
IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA
Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale
Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa
Esercizi Svolti Esercizio 1 Per una certa linea urbana di autobus sono state effettuate una serie di rilevazioni sui tempi di attesa ad una determinata fermata; la corrispondente distribuzione di frequenza
Statistica Un Esempio
Statistica Un Esempio Un indagine sul peso, su un campione di n = 100 studenti, ha prodotto il seguente risultato. I pesi p sono espressi in Kg e sono stati raggruppati in cinque classi di peso. classe
Corso di Psicometria Progredito
Corso di Psicometria Progredito 5. La correlazione lineare Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014 Sommario 1 Tipi di relazione
Università degli Studi di Padova Facoltà di Scienze Politiche
Università degli Studi di Padova Facoltà di Scienze Politiche STATISTICA Nuovo ordinamento Scienze Sociologiche Prof.ssa A. Dalla Valle Vecchio ordinamento Prova del 27/6/2007 (A) Cognome e nome: N. matricola:
Facoltà di Scienze Politiche Corso di laurea in Servizio sociale. Compito di Statistica del 7/1/2003
Compito di Statistica del 7/1/2003 I giovani addetti all agricoltura in due diverse regioni sono stati classificati per età; la distribuzione di frequenze congiunta è data dalla tabella seguente Età in
Capitolo 12. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 12.1: Suggerimento
Capitolo Suggerimenti agli esercizi a cura di Elena Siletti Esercizio.: Suggerimento Per verificare se due fenomeni sono dipendenti in media sarebbe necessario confrontare le medie condizionate, in questo
Teoria e tecniche dei test. Concetti di base
Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi
Esercitazione di Statistica Indici di associazione
Esercitazione di Statistica Indici di associazione 28/10/2015 La relazione tra caratteri Indipendenza logica Quando si suppone che tra due caratteri non ci sia alcuna relazione di causa-effetto. Indipendenza
11.2. Introduzione alla statistica 2/ed. Marilyn K. Pelosi, Theresa M. Sandifer, Paola Cerchiello, Paolo Giudici
CAPITOLO 11 L ANALISI DI REGRESSIONE SOLUZIONI 11.1 a) una relazione lineare potrebbe essere appropriata b)l equazione di regressione è y cappello=0,96+0,00006 x c)olanda: y cappello=0,96+0,00006 (53560)=4,57
Esercitazioni di Metodi Statistici per la Biologia
Esercitazioni di Metodi Statistici per la Biologia Francesco Caravenna E-mail: [email protected] Web: http://www.math.unipd.it/ fcaraven/didattica Indirizzo: Dipartimento di Matematica,
DISTRIBUZIONI DOPPIE (ANALISI DESCRITTIVE) Fulvio De Santis a.a Prerequisiti Popolazione, unità, carattere Come nascono i dati:
DISTRIBUZIONI DOPPIE (ANALISI DESCRITTIVE) Fulvio De Santis a.a. 2007-2008 Prerequisiti Popolazione, unità, carattere Come nascono i dati: osservazione e sperimentazione Popolazione: reale e virtuale Classificazione
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Sintesi a cinque e misure di variabilità rispetto ad un centro Una catena di fast-food ha selezionato
ESERCIZI DI RIEPILOGO 1
ESERCIZI DI RIEPILOGO 1 ESERCIZIO 1 La tabella seguente contiene la distribuzione di frequenza della variabile X = età (misurata in anni) per un campione casuale di bambini: x i 4.6 8 3.2 3 5.4 6 2.6 2
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 41 Outline 1 2 3 4 5 () Statistica 2 / 41 Misura del legame Data una variabile doppia (X, Y ), la
Test di ipotesi su due campioni
2/0/20 Test di ipotesi su due campioni Confronto tra due popolazioni Popolazioni effettive: unità statistiche realmente esistenti. Esempio: Confronto tra forze lavoro di due regioni. Popolazioni ipotetiche:
> Ciliegi <- read.table("i:/modelli/cherry.dat", + col.names=c( diametro, altezza, volume ))
Laboratorio 2 Modello lineare semplice 2.1 Analisi dei dati CHERRY.DAT Riprendiamo l insieme di dati Ciliegi della precedente lezione. Se non era stato salvato, bisogna rileggerlo da file: > Ciliegi
ESERCIZI SVOLTI Giuliano Bonollo - Michele Bonollo
ESERCIZI SVOLTI Giuliano Bonollo - Michele Bonollo 1 La seguente tabella riporta le frequenze relative riguardanti gli studenti di un università e gli esiti dell esame da essi sostenuto. Qual è la percentuale
le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi:
DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano [email protected] si basano su tre elementi: le scale di misura sistema empirico: un insieme di entità non numeriche (es. insieme di persone; insieme
CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi)
CHEMIOMETRIA Applicazione di metodi matematici e statistici per estrarre (massima) informazione chimica (affidabile) da dati chimici INCERTEZZA DI MISURA (intervallo di confidenza/fiducia) CONFRONTO CON
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria [email protected] Il concetto di interpolazione In matematica, e in particolare in
Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva
Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di
ESERCIZI CORRELAZIONE
ESERCIZI CORRELAZIONE Marco Riani Es: 6 famiglie, ammontare della spesa annua (in euro) per l acquisto di due generi di largo consumo: latte fresco e biscotti. Famiglia Spesa annua per l acquisto di latte
Una statistica è una quantità numerica il cui valore è determinato dai dati.
STATISTICHE CAMPIONARIE Quando i dati sono molti e illeggibili nella forma grezza, si rende necessario introdurre quantità numeriche che possano essere usate per sintetizzarli. Queste misure riassuntive
STATISTICA: esercizi svolti sulla DIPENDENZA IN MEDIA
STATISTICA: esercizi svolti sulla DIPEDEZA I MEDIA 1 1 LA DIPEDEZA I MEDIA 2 1 LA DIPEDEZA I MEDIA 1. La popolazione in migliaia di unità occupata in Piemonte nel 1985 per reddito annuo Y (migliaia di
Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25
Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità
Distribuzione Normale
Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di
Covarianza, correlazione e retta di regressione. Paola Lecca, CIBIO UNITN Corso di Matematica e Statistica 2
Covarianza, correlazione e retta di regressione Paola Lecca, CIBIO UNITN Corso di Matematica e Statistica 2 Questa presentazione è stata preparata attingendo dai seguenti testi S. M. Iacus, Statistica,
Caratterizzazione dei consumi energetici (parte 3)
ESERCITAZIONE 4 Caratterizzazione dei consumi energetici (parte 3) 4.1 CuSum: elementi di analisi statistica Il diagramma delle somme cumulate dei residui in funzione del tempo (CuSum) può essere in generale
Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota)
STATISTICA (2) ESERCITAZIONE 5 26.02.2014 Dott.ssa Antonella Costanzo Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota) Il responsabile del controllo qualità di un azienda che
FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 21/09/2011
FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 1/9/11 ESERCIZIO 1 (+3++3) La seguente tabella riporta la distribuzione di frequenza dei valori di emoglobina nel sangue (espressi
Carta di credito standard. Carta di credito business. Esercitazione 12 maggio 2016
Esercitazione 12 maggio 2016 ESERCIZIO 1 Si supponga che in un sondaggio di opinione su un campione di clienti, che utilizzano una carta di credito di tipo standard (Std) o di tipo business (Bsn), si siano
Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.
5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema
Distribuzioni campionarie
1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari
La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci
La statistica Elaborazione e rappresentazione dei dati Gli indicatori statistici Introduzione La statistica raccoglie ed analizza gruppi di dati (su cose o persone) per trarne conclusioni e fare previsioni
Il test (o i test) del Chi-quadrato ( 2 )
Il test (o i test) del Chi-quadrato ( ) I dati: numerosità di osservazioni che cadono all interno di determinate categorie Prima di tutto, è un test per confrontare proporzioni Esempio: confronto tra numero
Analisi della correlazione canonica
Analisi della correlazione canonica Su un collettivo di unità statistiche si osservano due gruppi di k ed m variabili L analisi della correlazione canonica ha per obiettivo lo studio delle relazioni di
Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici)
Statistica La statistica può essere vista come la scienza che organizza ed analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva:
La valutazione dei rischi. Corso di risk management Prof. Giuseppe D Onza
La valutazione dei rischi Corso di risk management Prof. Giuseppe D Onza LA VALUTAZIONE DEI RISCHI E un attività che caratterizza la gestione dei rischi finalizzata ad apprezzare la gravità dei fenomeni
ESERCIZI. Regressione lineare semplice CAPITOLO 12 Levine, Krehbiel, Berenson, Statistica II ed., 2006 Apogeo
Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova Docenti: Prof. L. Salmaso, Dott. L. Corain ESERCIZI Regressione lineare semplice
Capitolo 3 Sintesi e descrizione dei dati quantitativi
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 3 Sintesi e descrizione dei dati quantitativi Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e tecnologie Alimentari" Unità
