Statistica. Matematica con Elementi di Statistica a.a. 2015/16
|
|
|
- Emma Valentini
- 9 anni fa
- Visualizzazioni
Transcript
1 Statistica La statistica è la scienza che organizza e analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva: dalla mole di dati numerici a disposizione trae degli indicatori sintetici che possano riassumere le proprietà salienti dell intera distribuzione. Statistica inferenziale: utilizza dati statistici per previsioni di tipo probabilistico su situazioni future (incerte), su popolazioni più ampie... Popolazione: serie di dati, che rappresenta l insieme che si vuole indagare (reali, sperimentali, matematici) Campione: serie di dati, che rappresenta una porzione della popolazione (campione rappresentativo) Variabili: qualitative, quantitative (continue, discrete)
2 Distribuzione di Frequenza: Esempio Supponiamo di avere un campione di n = 200 famiglie, di cui rileviamo il seguente carattere: titolo di studio del capofamiglia. Questo carattere può presentare m = 5 differenti realizzazioni (categorie). Costruiamo la tabella della distribuzione di frequenza: f i f i /n F i F i /n Nessun titolo Licenza elementare Diploma scuola media inferiore Diploma scuola media superiore Laurea
3 Distribuzione di Frequenza: Esempio Rappresentiamo i dati riportati nella tabella della distribuzione delle frequenze con un istogramma delle frequenze titolo di studio fi fi / n nessuno 18 0,09 elementare 52 0,260 media inferiore 74 0,370 media superiore 49 0,245 università 7 0, , nessuno elementare media inferiore 49 media superiore 7 università ogni rettangolo rappresenta un carattere l area del rettangolo è proporzionale alla frequenza di quel carattere
4 Distribuzione di Frequenza Dati raggruppati in classi o categorie: (x i,f i ),...,m Frequenza assoluta f i : è il numero di osservazioni che ricadono in ciascuna classe. Il numero totale di osservazioni è n = Frequenza relativa f i /n: è il rapporto tra la frequenza assoluta e il numero totale n di osservazioni. Rappresenta la percentuale di osservazioni in ogni classe o categoria. m Frequenza assoluta cumulata F i : F i = Frequenza relativa cumulata F i /n: 1 n f i. i f k k=1 i f k k=1
5 Statistica Descrittiva Misure, indici (numerici) che descrivono le caratteristiche della distribuzione di una o più variabili in modo sintetico. indici di posizione o centralità: valore centrale, medie algebriche, mediana, moda (detti anche misure di intensità, centri...) indici di dispersione o variabilità: intervallo di variazione, varianza, varianza stimata, deviazione standard, deviazione standard stimata indici di simmetria o asimmetria:...
6 Valore Centrale Dato l insieme di valori {x 1,x 2,...,x n }, il valore centrale considera solo i due valori estremi (non tiene conto di tutti i valori): x max +x min 2 dove x max = max{x 1,x 2,...,x n } e x min = min{x 1,x 2,...,x n }. Esempio: {3, 20, 27, 25, 30, 310} x max +x min 2 = = 156.5
7 Media Aritmetica Media semplice: dato l insieme di valori {x 1,x 2,...,x n } x = 1 n x i = x 1 + x x n n Media ponderata (dati raggruppati): dato l insieme di valori {x 1,x 2,...,x m } con le rispettive frequenze assolute {f 1,f 2,...,f m } m x = m f i x i f i = 1 n m f i x i = f 1x 1 + f 2 x f m x m n
8 Media Aritmetica Esercizi Esercizio 1. Dato l insieme di valori {12, 25, 37, 41, 0, 53}, calcolare la media aritmetica. [media aritmetica = 28] Esercizio 2. Dato l insieme di valori {28, 28, 28, 28, 28, 28}, calcolare la media aritmetica. Esercizio 3. (dati raggruppati) In un campione di 200 persone si sa che 20 pesano 50kg, 30 pesano 55kg, 50 pesano 60kg, 70 pesano 65kg, 20 pesano 75Kg e 10 pesano 80kg. Calcolare il peso medio. [peso medio = 62.5Kg]
9 Media Aritmetica Osservazioni Alcune osservazioni: la media può non appartenere all insieme dei dati insiemi di dati diversi possono avere la stessa media utilizza tutti i dati centro di gravità dei dati riduce l effetto dei dati estremi (outlier)
10 Media Aritmetica Proprietà 1) Se applico una trasformazione lineare ai dati: y i = ax i + b ȳ = a x + b 2) La somma degli scarti dalla media è nulla: (x i x) = 0 3) La somma dei quadrati degli scarti dalla media è minima: (x i x) 2 assume il valore minimo per x = x
11 Media Aritmetica Proprietà La somma degli scarti dalla media è nulla: (x i x) = x i x = x i n x = x i n 1 n x i = 0 La somma dei quadrati degli scarti dalla media è minima: poniamo g(x) = (x i x) 2. Abbiamo che g(x) = (x i ) 2 2 x i x+ x 2 = (x i ) 2 2n xx+nx 2 Quindi, g è un polinomio di secondo grado in x. Pertanto, assume il suo valore minimo in x = 2n x 2n = x.
12 Media Geometrica Media semplice: dato l insieme di valori {x 1,x 2,...,x n } con la condizione che siano tutti positivi x g = n n x i = n x 1 x 2 x n logx g = 1 n logx i Media ponderata: dato l insieme di valori {x 1,x 2,...,x m }, tutti positivi, con le rispettive frequenza assolute {f 1,f 2,...,f m } x g = n m (x i ) f i logx g = 1 n m f i logx i
13 Mediana Dato l insieme di valori ordinati x 1 x 2 x n 1 x n, si chiama mediana (o valore mediano) il valore M e che occupa la posizione centrale: se n è dispari, c è un unico termine mediano di posto n+1 2 M e = x n+1 2 se n è pari ci sono due termini mediani di posti n 2 e n 2 +1 M e = 1 2( xn 2 +xn 2 +1 ) Utilizza tutti i valori ma si basa soltanto sull ordinamento degli stessi. Esempio 1. {503,25,0,81,13} M e = 25 Esempio 2. {327,2,93,1,503,81} M e = 87
14 Moda Moda: valore (o classe) al quale è associata la frequenza più alta titolo di studio fi fi / n nessuno 18 0,09 elementare 52 0,260 media inferiore 74 0,370 media superiore 49 0,245 università 7 0, , nessuno elementare media inferiore 49 media superiore 7 università Si può applicare anche a dati qualitativi espressi su scala nominale.
15 Esempio: Media, Mediana, Moda classe ri fi fi / n , , , , , , Media: x = 9.2 si calcola come media ponderata Mediana: M e = 7 è la media del decimo e dell undicesimo termine che hanno entrambi valore 7 Moda: è la classe 5 9 o il suo rappresentante r 2 = 7, corrispondenti a f 2 = 6 moda < mediana < media distribuzione obliqua a destra
16 Esercizi Esercizio 1. Vengono intervistati 50 capofamiglia, ponendo la seguente domanda: Quanti figli ci sono nella sua famiglia? numero figli f assoluta Calcolare: frequenze relative, frequenze cumulate, valore centrale, media, mediana.
17 Esercizi Soluzione: numero figli f assoluta f relativa F cumulata valore centrale = = 3.00 mediana = x 25 +x 26 2 = 2.00 media = 1 50 ( ) = 2.08
18 Esercizi Esercizio 2. Vengono intervistati i figli delle stesse 50 famiglie, ponendo la seguente domanda: Quanti figli siete in famiglia? Costruire la tabella delle frequenze e calcolare mediana, media e valore centrale.
19 Esercizi Soluzione: numero figli f assoluta F cumulata valore centrale = 3.50 mediana = x 52 +x 53 2 = 3.00 media= 3.06 è cambiata la popolazione le famiglie più numerose pesano di più si perde l informazione sulle famiglie senza figli
20 Statistica Un Esempio Un indagine sul peso, su un campione di n = 100 studenti, ha prodotto il seguente risultato. I pesi p sono espressi in Kg e sono stati raggruppati in cinque classi di peso. classe (peso in Kg) f i f i /n 60 p p p p p Sono riportate le frequenze assolute f i (numero di individui appartenenti alla classe di peso i-sima) e le frequenze relative f i /n. Le classi sono di uguale ampiezza, ma non sono contigue
21 Statistica Un Esempio Estendiamo i confini di ciascuna classe in modo simmetrico di 0.5 Kg. La popolazione non è cambiata e possiamo rappresentare i dati, in classi contigue, come segue: classe (peso in Kg) r i f i f i /n 59.5 p < p < p < p < p < Supponendo che gli individui di una classe siano distribuiti uniformemente al suo interno, è naturale associare a ciascuna classe, come rappresentante, il valore centrale r i della classe stessa.
22 Calcolo della Media Come si può calcolare la media dei dati conoscendo solo un informazione parziale (per classi) sulle frequenze? Occorre formulare un ipotesi su come i dati si distribuiscono all interno di ogni classe. In assenza di ulteriori informazioni, è ragionevole congetturare che gli elementi appartenenti ad una classe si distribuiscano uniformemente al suo interno. È naturale associare ad ogni classe un rappresentante: il valore centrale della classe. r i f i Ai fini del calcolo della media si utilizzano solo i rappresentanti r i : p = = 67.45Kg
23 Distribuzione delle frequenze Poligono di Frequenza classe r i f i 59.5 p < p < p < p < p < f possiamo rappresentare in modo efficace le frequenze delle classi del campione mediante un istogramma (dove le aree dei rettangoli sono proporzionali alle frequenze della classe) unendo i punti medi dei lati superiori dei rettangoli, si ottiene il cosiddetto poligono di frequenza p (kg) Ipotesi: classi equispaziate distribuzione uniforme all interno della classe
24 Ogiva di Frequenza Distribuzione delle frequenze classe r i f i F i p < p < p < p < p < p < F calcoliamo le frequenze cumulate F i (F i rappresenta il numero dei dati, che sono minori del secondo estremo della i-sima classe) costruiamo il diagramma cumulativo delle frequenze unendo i punti, si ottiene la cosiddetta ogiva di frequenza p (kg)
25 Calcolo della Mediana: Primo Metodo Calcolo della mediana M e Trovare il punto M e tale che l area in giallo sia il 50% dell area totale sottesa dall istogramma delle frequenze area totale istogramma = (M e 65.5) 42 = f M e = Kg 8 5 NOTA: ricordiamo che le aree sono proporzionali alle frequenze M e p (kg)
26 Calcolo della Mediana: Secondo Metodo Calcolo della mediana M e F B Trovare il punto di intersezione della retta F = 50 con l ogiva di frequenza. Significa trovare l intersezione con la retta passante per i punti: A = (65.5, 23) e B = (68.5, 65) F = A F = (p 65.5) M e p (kg) p =
27 Indici di Dispersione Si cercano indici di dispersione che: utilizzino tutti i dati {x 1, x 2,..., x n } siano basati sulla nozione di scarto (distanza) dei dati rispetto a un centro d i = x i C ad esempio, rispetto alla media aritmetica d i = x i x rispetto a un dato d i = x i x j con alcune proprietà generali: l indice di dispersione non deve mai essere negativo assume il valore 0 se i dati sono tutti uguali non cambia se si aggiunge una costante ai dati
28 Varianza Varianza: è la media aritmetica (semplice o ponderata) dei quadrati degli scarti. Dato l insieme di valori {x 1, x 2,..., x n } Var = s 2 = 1 n (x i x) 2 Dato l insieme di valori {x 1, x 2,..., x m } con le rispettive frequenze assolute {f 1, f 2,..., f m } Var = s 2 = 1 n m f i (x i x) 2 dove n = m f i
29 Deviazione Standard Deviazione standard (o scarto quadratico medio): è la radice quadrata della varianza. s = 1 n (x i x) 2 oppure s = 1 n m f i (x i x) 2 Consente di avere un indice di dispersione espresso nella stessa unità di misura dei dati. Nota: applicando una trasformazione lineare ai dati y i = ax i +b s 2 y = a2 s 2 x, s y = a s x
30 Statistiche Campionarie Spesso gli indici statistici vengono applicati non all intera popolazione, ma a un suo campione. Si cerca di stimare (inferenza) nel miglior modo possibile le caratteristiche dell intera popolazione a partire dalle informazioni desunte da un campione rappresentativo. In questo caso si utilizzano le seguenti formule modificate: Varianza campionaria (stimata): s 2 = 1 n 1 (x i x) 2 Deviazione standard campionaria (stimata): s = 1 n 1 (x i x) 2
31 Esempio Riassuntivo Caso A x i f i f i /n Caso B x i f i f i /n
32 Esempio Riassuntivo Caso A x i f i f i /n media 5.00 mediana 5.00 varianza 4.00 varianza stimata 4.44 deviazione standard 2.00 deviazione standard stimata 2.11 Caso B x i f i f i /n media 5.00 mediana 5.00 varianza 8.00 varianza stimata 8.89 deviazione standard 2.83 deviazione standard stimata 2.98
33 Esercizi Esercizio 1. Si consideri la seguente tabella relativa alle frequenze dei pesi in Kg di 100 individui adulti. Peso p in Kg 50 p < p < p < p < p < p < 80 7 f ass le classi sono di uguale ampiezza supponiamo che i dati siano uniformemente distribuiti all interno di ogni classe possiamo definire per ogni classe un rappresentante r i (class mark) Calcolare il peso medio e lo scarto quadratico medio.
34 Esercizi Soluzione: calcoliamo la media e lo scarto quadratico medio utilizzando i valori dei rappresentanti. Calcoliamo il peso medio: p = Peso p in Kg f i F i r i 50 p < p < p < p < p < p < ( ) = 63.7Kg
35 Esercizi Calcoliamo la varianza e lo scarto quadratico medio: r i r i p (r i p) 2 f i s 2 = 1 ( ) 61.56Kg 2 s 7.85Kg
36 Media Varianza Deviazione Standard x media 1 n x i 1 n m f i x i s 2 varianza s dev. standard s 2 campionaria s campionaria 1 n 1 n 1 n 1 (x i x) 2 1 n (x i x) 2 1 n 1 m 1 n (x i x) 2 1 n 1 (x i x) 2 f i (x i x) 2 m m 1 n 1 f i (x i x) 2 f i (x i x) 2 m f i (x i x) 2
37 Varianza Deviazione Standard Le espressioni della varianza (e della deviazione standard) possono essere riscritte come segue: s 2 = 1 n ( n x 2 i n x2 ) o s 2 = 1 n ( m f i x 2 i n x2 ) Infatti, (x i x) 2 = (x 2 i 2x i x+ x 2 ) = x 2 i 2 x n x i + x 2 = = x 2 i 2 x(n x)+n x2 = x 2 i n x2
38 Esercizi Esercizio 1. Nel rilevare l altezza in cm di un gruppo di reclute si è ottenuta la seguente tabella delle frequenze. Calcolare media, mediana e quartili. Soluzione: cm f ass f cum n = 44 dimensione del campione x media M e = x 22 +x 23 2 q 1 = x 11 +x 12 2 = 171 mediana = 170 primo quartile q 3 = x 33 +x 34 = 172 terzo quartile 2 q 3 q 1 = 2 distanza interquartile La distanza interquartile è un altro indice di dispersione, legato alla nozione di mediana. La mediana suddivide l insieme dei dati ordinati {x i } in due parti ugualmente numerose. I quartili si ottengono suddividendo i dati ordinati in quattro parti ugualmente numerose.
39 Esercizi Esercizio 2. Trovare media, mediana, moda, varianza e deviazione standard dei seguenti dati non ordinati e non raggruppati. Tracciare l istogramma delle frequenze
40 Esercizi Soluzione: si costruisce la tabella della distribuzione di frequenza x f ass x = 1 ( ) = s 2 = 1 20 ( s ) moda = 10.0 mediana = 8.5
41 Esercizi Esercizio 3. Un indagine su un campione di n = 100 studenti, che hanno sostenuto la prova scritta di matematica, ha prodotto il seguente risultato. Le votazioni in centesimi sono state raggruppate in quattro classi. classe (voto in centesimi) f i f i /n Calcolare media e varianza. Usando l istogramma delle frequenze o l ogiva di frequenza, calcolare la mediana. Calcolare i quartili dall ogiva di frequenza. Qual è il voto minimo che bisogna aver preso per non far parte del 10% degli studenti peggiori?
42 Esercizi Soluzione: le classi sono di uguale ampiezza e contigue. Nell ipotesi di distribuzione uniforme, è naturale associare a ciascuna classe, come rappresentante, il valore centrale r i della classe stessa. media = classe r i f i F i ( ) = 66 varianza = ( ) = 304
43 Esercizi Poligono delle frequenze Ogiva di frequenza
44 Esercizi Calcolo della mediana: con l istogramma delle frequenze area totale= 20 ( ) = 2000 Cerchiamo il valore x = M e tale che (x 60) 50 = 1000 x = 68 M e = 68
45 Esercizi Calcolo della mediana: con l ogiva di frequenza Si considera l interpolazione lineare sui punti A = (60,30) e B = (80,80) y = 50 y 30 = 5 2 (x 60) (50 30) = 5 2 (x 60) x = 68 M e = 68
46 Esercizi Calcolare i quartili dall ogiva di frequenza. q 1 = 55, q 3 =
47 Esercizi Qual è il voto minimo che bisogna aver preso per non far parte del 10% degli studenti peggiori? risposta:
Statistica Un Esempio
Statistica Un Esempio Un indagine sul peso, su un campione di n = 100 studenti, ha prodotto il seguente risultato. I pesi p sono espressi in Kg e sono stati raggruppati in cinque classi di peso. classe
Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici)
Statistica La statistica può essere vista come la scienza che organizza ed analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva:
Esempio: Media, Mediana, Moda
Esempio: Media, Mediana, Moda 7 6 5 4 3 2 1 0 classe ri fi fi / n 1-5 3 5 0,25 5-9 7 6 0,300 9-13 11 4 0,200 13-17 15 3 0,150 17-21 19 2 0,100 5 6 4 20 1,000 3 7 11 15 19 3 2 MEDIA: x = 9.2 si calcola
Teoria e tecniche dei test. Concetti di base
Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi
Questionario 1. Sono assegnati i seguenti dati
Questionario 1. Sono assegnati i seguenti dati 30 30 10 30 50 30 60 60 30 20 20 20 30 20 30 30 20 10 10 40 20 30 10 10 10 30 40 30 20 20 40 40 40 dire se i dati illustrati sono unità statistiche valori
Istituzioni di Statistica e Statistica Economica
Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 1 A. I dati riportati nella seguente tabella si riferiscono
Statistica descrittiva II
Probabilità e Statistica Esercitazioni a.a. 009/010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Statistica descrittiva II Ines Campa Probabilità e Statistica - Esercitazioni
Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva
Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di
La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci
La statistica Elaborazione e rappresentazione dei dati Gli indicatori statistici Introduzione La statistica raccoglie ed analizza gruppi di dati (su cose o persone) per trarne conclusioni e fare previsioni
Distribuzione Normale
Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di
Elementi di Statistica
Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Informatica ed Elementi di Statistica 3 c.f.u. Anno Accademico 2010/2011 Docente: ing. Salvatore Sorce Elementi di Statistica Statistica
STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA
STATISTICA DESCRITTIVA Elementi di statistica medica STATISTICA DESCRITTIVA È quella branca della statistica che ha il fine di descrivere un fenomeno. Deve quindi sintetizzare tramite pochi valori(indici
1/55. Statistica descrittiva
1/55 Statistica descrittiva Organizzare e rappresentare i dati I dati vanno raccolti, analizzati ed elaborati con le tecniche appropriate (organizzazione dei dati). I dati vanno poi interpretati e valutati
Statistica descrittiva
Statistica descrittiva Caso di 1 variabile: i dati si presentano in una tabella: Nome soggetto Alabama Dato 11.6.. Per riassumere i dati si costruisce una distribuzione delle frequenze. 1 Si determina
INDICATORI DI TENDENZA CENTRALE
INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo indice che riassume o descrive i dati e dipende dalla
STATISTICA 1 ESERCITAZIONE 2
Frequenze STATISTICA 1 ESERCITAZIONE 2 Dott. Giuseppe Pandolfo 7 Ottobre 2013 RAPPRESENTAZIONE GRAFICA DEI DATI Le rappresentazioni grafiche dei dati consentono di cogliere la struttura e gli aspetti caratterizzanti
Statistica di base per l analisi socio-economica
Laurea Magistrale in Management e comunicazione d impresa Statistica di base per l analisi socio-economica Giovanni Di Bartolomeo [email protected] Definizioni di base Una popolazione è l insieme
Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione
Consentono di descrivere la variabilità all interno della distribuzione di requenza tramite un unico valore che ne sintetizza le caratteristiche CAMPO DI VARIAZIONE DIFFERENZA INTERQUARTILE SCOSTAMENTO
STATISTICA. La Statistica è la scienza che studia i fenomeni collettivi utilizzando metodi matematici.
STATISTICA La Statistica è la scienza che studia i fenomeni collettivi utilizzando metodi matematici. Essa si occupa della tecnica per raccogliere ed elaborare Dati (studenti, abitanti, oggetti, ecc.)
Esercitazioni di Statistica
Esercitazioni di Statistica Indici di posizione e di variabilità Prof. Livia De Giovanni [email protected] Esercizio 1 Data la seguente distribuzione unitaria del carattere X: X : 4 2 4 2 6 4
Rappresentazioni grafiche
Rappresentazioni grafiche Su una popolazione di n = 20 unità sono stati rilevati i seguenti fenomeni: stato civile (X) livello di scolarità (Y ) numero di figli a carico (Z) reddito in migliaia di (W )
Esercitazioni di statistica
Esercitazioni di statistica Gli indici statistici di sintesi: Gli indici di centralità Stefania Spina Universitá di Napoli Federico II [email protected] 7 Ottobre 2014 Stefania Spina Esercitazioni
INDICATORI DI TENDENZA CENTRALE
INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo è indice che riassume o descrive i dati e dipende
Capitolo 3 Sintesi e descrizione dei dati quantitativi
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 3 Sintesi e descrizione dei dati quantitativi Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e tecnologie Alimentari" Unità
Lo scarto quadratico medio è s = s 2 2,15. c) Le confezioni con peso inferiore a 500g sono 18, quindi in percentuale sono 18 = 0,72 = 72%.
Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc 2013/2014 docente: Giulia Giantesio, gntgli@unifeit Esercizi sulla Statistica Descrittiva
LEZIONI DI STATISTICA MEDICA
LEZIONI DI STATISTICA MEDICA A.A. 2010/2011 Lezione n.3 - Indici di posizione 1 Per i caratteri qualitativi, la tabella e le rappresentazioni grafiche esauriscono quasi completamente gli aspetti descrittivi.
Una statistica è una quantità numerica il cui valore è determinato dai dati.
STATISTICHE CAMPIONARIE Quando i dati sono molti e illeggibili nella forma grezza, si rende necessario introdurre quantità numeriche che possano essere usate per sintetizzarli. Queste misure riassuntive
LA RAPPRESENTAZIONE E LA SINTESI DEI DATI
Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LA RAPPRESENTAZIONE E LA SINTESI
1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl
1/4 Capitolo 4 La variabilità di una distribuzione Intervalli di variabilità Box-plot Indici basati sullo scostamento dalla media Confronti di variabilità Standardizzazione Statistica - Metodologie per
Sintesi dei dati in una tabella. Misure di variabilità (cap. 4) Misure di forma (cap. 5) Statistica descrittiva (cap. 6)
Sintesi dei dati in una tabella Misure di variabilità (cap. 4) Misure di forma (cap. 5) Statistica descrittiva (cap. 6) Sintesi dei dati Spesso si vuole effettuare una sintesi dei dati per ottenere indici
Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa
Esercizi Svolti Esercizio 1 Per una certa linea urbana di autobus sono state effettuate una serie di rilevazioni sui tempi di attesa ad una determinata fermata; la corrispondente distribuzione di frequenza
Misure di dispersione (o di variabilità)
14/1/01 Misure di dispersione (o di variabilità) Range Distanza interquartile Deviazione standard Coefficiente di variazione Misure di dispersione 7 8 9 30 31 9 18 3 45 50 x = 9 range=31-7=4 x = 9 range=50-9=41
Statistica. Campione
1 STATISTICA DESCRITTIVA Temi considerati 1) 2) Distribuzioni statistiche 3) Rappresentazioni grafiche 4) Misure di tendenza centrale 5) Medie ferme o basali 6) Medie lasche o di posizione 7) Dispersione
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo [email protected] TIPI DI MEDIA: GEOMETRICA, QUADRATICA, ARMONICA Esercizio 1. Uno scommettitore puntando una somma iniziale
Lezione n. 1 _Complementi di matematica
Lezione n. 1 _Complementi di matematica INTRODUZIONE ALLA STATISTICA La statistica è una disciplina che si occupa di fenomeni collettivi ( cioè fenomeni in cui sono coinvolti più individui o elementi )
Esercizio 1 Questa tabella esprime i tempi di durata di 200 apparecchiature elettriche:
Istituzioni di Statistica 1 Esercizi su indici di posizione e di variabilità Esercizio 1 Questa tabella esprime i tempi di durata di 200 apparecchiature elettriche: Durata (ore) Frequenza 0 100? 100 200
Lezione 4 a - Misure di dispersione o di variabilità
Lezione 4 a - Misure di dispersione o di variabilità Abbiamo visto che la media è una misura della localizzazione centrale della distribuzione (il centro di gravità). Popolazioni con la stessa media possono
Indicatori di Posizione e di Variabilità. Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica
Indicatori di Posizione e di Variabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica Indici Sintetici Consentono il passaggio da una pluralità
Obiettivi Strumenti Cosa ci faremo? Probabilità, distribuzioni campionarie. Stimatori. Indici: media, varianza,
Obiettivi Strumenti Cosa ci faremo? inferenza Probabilità, distribuzioni campionarie uso stima Stimatori significato teorico descrizione Indici: media, varianza, calcolo Misure di posizione e di tendenza
STATISTICHE DESCRITTIVE Parte II
STATISTICHE DESCRITTIVE Parte II INDICI DI DISPERSIONE Introduzione agli Indici di Dispersione Gamma Differenza Interquartilica Varianza Deviazione Standard Coefficiente di Variazione introduzione Una
Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2010/2011 STATISTICA. Docente: Paolo Mazzocchi
Università degli Studi di Napoli Parthenope Facoltà di Scienze Motorie a.a. 2010/2011 STATISTICA [email protected] Programma 1) Tabelle: distribuzioni di frequenze; classi di valori; tabelle
Le rappresentazioni grafiche
Le rappresentazioni grafiche Rappresentazione grafica La rappresentazione grafica è un disegno ottenuto facendo corrispondere ai numeri delle tabelle: - enti geometrici elementari (punti, linee, superfici.)
STATISTICHE DESCRITTIVE
STATISTICHE DESCRITTIVE ARGOMENTI DELLA LEZIONE concetti introduttivi indici di tendenza centrale indici di dispersione indici di posizione 2 concetti introduttivi Unità statistiche elementi che costituiscono
Valori Medi. Docente Dott.ssa Domenica Matranga
Valori Medi Docente Dott.ssa Domenica Matranga Valori medi Medie analitiche - Media aritmetica - Media armonica - Media geometrica - Media quadratica Medie di posizione - Moda -Mediana - Quantili La media
Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25
Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità
esercitazione1 12/10/2015
esercitazione1 12/10/2015 VARIABILE CLASSIFICAZIONE TIPOLOGIA Peso vivo del cavallo Ora della deposizione dell uovo Colore mantello Presenza corna Latte prodotto N. uova prodotte Presenza speroni alle
a.a Esercitazioni di Statistica Medica e Biometria Corsi di Laurea triennali Ostetricia / Infermieristica Pediatrica I anno
a.a. 2007-2008 Esercitazioni di Statistica Medica e Biometria Corsi di Laurea triennali Ostetricia / Infermieristica Pediatrica I anno Dott.ssa Daniela Alessi [email protected] 1 Argomenti:
Esercitazioni di Metodi Statistici per la Biologia
Esercitazioni di Metodi Statistici per la Biologia Francesco Caravenna E-mail: [email protected] Web: http://www.math.unipd.it/ fcaraven/didattica Indirizzo: Dipartimento di Matematica,
Esercitazioni. Es 1. Dato il seguente dataset
Esercitazioni Es 1 Dato il seguente dataset N SESSO ETA' PESO ALTEZZA DIPLOMA COMPONENTI OCCHIALI FUMO 1 0 20,6 65 180 Ist.Tecnico 6 0 1 2 0 20,2 75 180 Liceo 4 0 0 3 0 20,3 60 173 Ist.Tecnico 4 1 0 4
Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE PRIMA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE
LICEO LAURA BASSI - BOLOGNA Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE PRIMA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE MATEMATICA ARGOMENTI: GLI INSIEMI
Esercitazioni di statistica
Esercitazioni di statistica Boxplot e numeri indici Stefania Spina Universitá di Napoli Federico II [email protected] 14 Ottobre 014 Stefania Spina Esercitazioni di statistica 1/37 Definizioni La
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo [email protected] Indici di posizione variabilità e forma per caratteri qualitativi Il seguente data set riporta la rilevazione
Esercitazioni di Statistica
Esercitazioni di Statistica Rappresentazioni grafiche Prof. Livia De Giovanni [email protected] Esercizio 1 Si consideri la seguente distribuzione delle industrie tessili secondo il fatturato
Indici di variabilità ed eterogeneità
Indici di variabilità ed eterogeneità Corso di STATISTICA Prof. Roberta Siciliano Ordinario di Statistica, Università di apoli Federico II Professore supplente, Università della Basilicata a.a. 011/01
Università del Piemonte Orientale. Corso di Laurea in Medicina e Chirurgia. Corso di Statistica Medica. Statistica Descrittiva Variabili numeriche
Università del Piemonte Orientale Corso di Laurea in Medicina e Chirurgia Corso di Statistica Medica Statistica Descrittiva Variabili numeriche Misure di tendenza centrale Media (aritmetica) Mediana Media
3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17
C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica
Fonte: Esempio a fini didattici
I principali tipi di grafici Esiste una grande varietà di rappresentazioni grafiche. I grafici più semplici e nello stesso tempo più efficaci e comunemente utilizzati sono: i grafici a barre i grafici
MISURE DI SINTESI 54
MISURE DI SINTESI 54 MISURE DESCRITTIVE DI SINTESI 1. MISURE DI TENDENZA CENTRALE 2. MISURE DI VARIABILITÀ 30 0 µ Le due distribuzioni hanno uguale tendenza centrale, ma diversa variabilità. 30 0 Le due
Rilevazione (Raccolta) Dati: Raccolta Campionaria e Raccolta Globale
Statistica Descrittiva Indagine Statistica: Terminologia Def. Popolazione (o Collettivo Statistico) : Insieme di elementi oggetto dell indagine statistica aventi caratteristiche comuni. Tali elementi vengono
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Sintesi a cinque e misure di variabilità rispetto ad un centro Una catena di fast-food ha selezionato
Elementi di statistica
Scuola media G. Ungaretti Elementi di statistica Prof. Enrico Castello Ti insegnerò a conoscere i criteri organizzatori di una tabella di dati distinguere frequenze assolute e frequenze percentuali determinare
Statistica Esercitazione. alessandro polli facoltà di scienze politiche, sociologia, comunicazione
Statistica Esercitazione alessandro polli facoltà di scienze politiche, sociologia, comunicazione Obiettivo Esercizio 1. Questo e alcuni degli esercizi che proporremo nei prossimi giorni si basano sul
Andrea Bonanomi Università Cattolica del Sacro Cuore. Principi di Statistica Descrittiva. Milano, 9 gennaio 2015 Camera di Commercio
Andrea Bonanomi Università Cattolica del Sacro Cuore Principi di Milano, 9 gennaio 2015 Camera di Commercio RIPETIBILITA ATTUALE RILEVAZIONE TOTALE RIPETIBILITA VIRTUALE RILEVAZIONE PARZIALE UNIVERSO CAMPIONE
REGRESSIONE E CORRELAZIONE
REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.
I principali tipi di grafici
I principali tipi di grafici Esiste una grande varietà di rappresentazioni grafiche. I grafici più semplici e nello stesso tempo più efficaci e comunemente utilizzati sono: I GRAFICI A BARRE I GRAFICI
UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel:
UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Donatella Siepi [email protected] tel: 075 5853525 2 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazione dei dati Rappresentazione
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi
LE DISTRIBUZIONI CAMPIONARIE
LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria
Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura
INDICE GENERALE Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura XI XIV XV XVII XVIII 1 LA RILEVAZIONE DEI FENOMENI
le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi:
DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano [email protected] si basano su tre elementi: le scale di misura sistema empirico: un insieme di entità non numeriche (es. insieme di persone; insieme
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente
Esercizio 1 Nella seguente tabella sono riportate le lunghezze in millimetri di 40 foglie di platano:
4. STATISTICA DESCRITTIVA ESERCIZI Esercizio 1 Nella seguente tabella sono riportate le lunghezze in millimetri di 40 foglie di platano: 138 164 150 132 144 125 149 157 146 158 140 147 136 148 152 144
Statistica. Lezione 1
Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 1 a.a 2011-2012 Dott.ssa Daniela
Università del Piemonte Orientale. Corso di Laurea in Biotecnologie. Corso di Statistica Medica. Statistica Descrittiva: Variabili numeriche
Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica Statistica Descrittiva: Variabili numeriche Corso triennale biotecnologie - Statistica Medica Statistica descrittiva
STATISTICA I - CORSO DI LAUREA IN STATISTICA a.a. 2004/2005 Prova intermedia del 01 aprile 2005
STATISTICA I - CORSO DI LAUREA IN STATISTICA a.a. 2004/2005 Prova intermedia del 01 aprile 2005 Esercizio 1 La Tabella 1 contiene alcuni dati relativi a 14 aziende. Tabella 1 Dati (fittizi) su alcune aziende
RELAZIONE FINALE DEL DOCENTE. Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 4BPT A. S. 2015/2016
RELAZIONE FINALE DEL DOCENTE Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 4BPT A. S. 2015/2016 In relazione alla programmazione curricolare sono stati conseguiti, in termini di livello medio,
L indagine statistica
1 L indagine statistica DEFINIZIONE. La statistica è quella disciplina che si occupa della raccolta di dati quantitativi relativi a diversi fenomeni, della loro elaborazione e del loro utilizzo a fini
Istituzioni di Statistica 1 Esercizi su tabelle di contingenza
Istituzioni di Statistica 1 Esercizi su tabelle di contingenza Esercizio 1 Per stimare la percentuale di fumatori nella popolazione italiana adulta viene intervistato un campione di 60 donne e uno di 40
Gli indici di variabilità
Le misure della variabilità 4/5 ottobre 2011 Statistica sociale 1 Gli indici di variabilità In tutti gli esempi visti nell ultima lezione, abbiamo visto che le grandezze considerate - pur nelle diverse
Statistiche per riassumere i dati
Statistiche per riassumere i dati María Eugenia Castellanos Dep. Estadística e I.O. Universidad Rey Juan Carlos Visiting Professor Università di Cagliari. Cagliari, Marzo 2010 María Eugenia Castellanos
VENGONO DETTI QUANTILI
Per conoscere la posizione che un valore occupa all interno di una distribuzione di frequenza si utilizzano Ü Ü DECILI Ü CENTILI VENGONO DETTI QUANTILI 1 VENGONO DETTI QUANTILI Questi indicatori richiedono
LE MISURE DI TENDENZA CENTRALE. Dott. Giuseppe Di Martino Scuola di Specializzazione in Igiene e Medicina Preventiva
LE MISURE DI TENDENZA CENTRALE Dott. Giuseppe Di Martino Scuola di Specializzazione in Igiene e Medicina Preventiva Individuare un indice che rappresenti significativamente un insieme di dati statistici
Carta di credito standard. Carta di credito business. Esercitazione 12 maggio 2016
Esercitazione 12 maggio 2016 ESERCIZIO 1 Si supponga che in un sondaggio di opinione su un campione di clienti, che utilizzano una carta di credito di tipo standard (Std) o di tipo business (Bsn), si siano
La Variabilità statistica
La Variabilità statistica Una peculiarità dei caratteri rilevati nelle unità statistiche di un collettivo, è quella di presentare valori o attributi in tutto o in parte diversi. Si chiama variabilità (nel
La statistica descrittiva per le variabili quantitative
La statistica descrittiva per le variabili quantitative E la sintesi dei dati Gli indici di posizione/tendenza centrale OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di
Esercitazioni di Statistica per Biotecnologie. Francesca Pizzorni Ferrarese
Esercitazioni di Statistica per Biotecnologie Francesca Pizzorni Ferrarese Esercitazione I Statistica descrittiva Es.1 Rilevando con uno strumento di misurazione il numero di particelle cosmiche in 40
Statistica. Esplicazione integrato con Appunti. Marco D Epifano
Esplicazione integrato con Appunti Marco D Epifano Liberamente tratto da Introduzione alla statistica, Monti. L acquisto del lavoro è subordinato a quello del libro dal quale è tratto. Leggi gli altri
RELAZIONE FINALE DEL DOCENTE. Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 3PTVE A. S. 2015/2016
RELAZIONE FINALE DEL DOCENTE Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 3PTVE A. S. 2015/2016 In relazione alla programmazione curricolare sono stati conseguiti, in termini di livello medio,
LE MEDIE DI POSIZIONE
- Medie Algebriche o Potenziate se la determinazione della media avviene utilizzando tutti i valori della distribuzione; - Medie lasche (: Medie di Posizione e Moda) se la determinazione della media avviene
PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA NUCLEI FONDAMENTALI DI CONOSCENZE
Pag. 1 di 7 ANNO SCOLASTICO 2014/2015 DIPARTIMENTO DI MATEMATICA INDIRIZZO AFM, RIM, SIA CLASSE BIENNIO TRIENNIO DOCENTI: Alemagna, Bartalotta, Bergamaschi, Mangione NUCLEI FONDAMENTALI DI CONOSCENZE I
