Indici di variabilità ed eterogeneità
|
|
|
- Cristiano Grassi
- 8 anni fa
- Visualizzazioni
Transcript
1 Indici di variabilità ed eterogeneità Corso di STATISTICA Prof. Roberta Siciliano Ordinario di Statistica, Università di apoli Federico II Professore supplente, Università della Basilicata a.a. 011/01 Prof. Roberta Siciliano Statistica 1 Obiettivi dell unità didattica Definire i concetti di base sulla variabilità ed eterogeneità Richiamare l attenzione su alcune proprietà della varianza Contenuti Indici di variabilità Campo di variazione Varianza, Scarto quadratico medio, Devianza Coefficiente di variazione Differenza interquartile Indici di eterogeneità Indice del Gini Indice di entropia Prof. Roberta Siciliano Statistica 1
2 Generalità sulla variabilità La variabilità è espressione dell attitudine di un carattere quantitativo ad assumere diverse modalità L uso congiunto di indici di posizione ed indici di variabilità permette di comprendere la dispersione dei dati rispetto alla centralità della distribuzione Variabilità assoluta e relativa Prof. Roberta Siciliano Statistica 3 Variabilità e Dispersione Consideriamo il seguente esempio di tre studenti che hanno superato ciascuno tre esami: È facile vedere che se calcoliamo il voto medio e quello mediano per ciascun studente esso è pari a 4 Prof. Roberta Siciliano Statistica 4
3 Variabilità e Dispersione (cont.) Possiamo dire che i tre studenti hanno uno stesso comportamento agli esami? Dall esempio risulta evidente che da soli gli indici di posizione non riescono a svelare esaustivamente il segreto delle distribuzioni!! Prof. Roberta Siciliano Statistica 5 Caratteristiche di un indice di variabilità Assume valori maggiori o uguali a zero E pari a zero quando il carattere si presenta con una sola modalità distinta (assenza di variabilità) E invariante (ossia non modifica il suo valore) quando si aggiunge una costante a ciascun valore della distribuzione Assume valori crescenti all aumentare della variabilità Prof. Roberta Siciliano Statistica 6 3
4 Campo di variazione V = max(x) min(x) = x ( ) x ( 1) E un indice di variabilità assoluta Prof. Roberta Siciliano Statistica 7 Varianza σ = 1 σ = 1 K i=1 ( x l µ ) ( x i µ ) n i E un indice di variabilità assoluta Prof. Roberta Siciliano Statistica 8 4
5 Caratteristiche principali È una media Vale sempre che: 0 σ Prof. Roberta Siciliano Statistica 9 Consideriamo la distribuzione massimizzante la variabilità Ipotizziamo (come caso limite) che nella nostra distribuzione abbiamo -1 unità distinte con modalità pari a 0 ed una sola unità con modalità pari all intero ammontare del carattere, ossia µ perché µ = 1 Prof. Roberta Siciliano Statistica 10 Tale assunzione presuppone che il carattere quantitativo sia additivo e trasferibile, ossia è ipotizzabile distribuire in maniera diversa l ammontare complessivo del carattere (i.e., il reddito, il numero di addetti, etc.) x l 5
6 Determiniamo il massimo della varianza Allora abbiamo: σ = 1 [ (0 µ) ( 1) + (µ µ) ] = = 1 [ µ ( 1) + µ ( 1) ] = = 1 [ µ ( 1)(1+ 1) ] = = 1 µ ( 1) = µ ( 1) MAX Prof. Roberta Siciliano Statistica 11 La varianza può essere anche scritta come. σ = 1 ( x l µ ) = 1 x l µ σ = 1 = 1 = 1 ( x l µ ) = 1 ( x l x l µ + µ ) = Prof. Roberta Siciliano Statistica 1 x l µ 1 x l + 1 µ = 1 x l µ + µ = x l µ 6
7 Scarto Quadratico Medio σ = σ = 1 1 K i=1 ( x l µ ) ( x i µ ) n i E un indice di variabilità assoluta Prof. Roberta Siciliano Statistica 13 Perché è utile lo s.q.m. Il problema principale della varianza è che è espressa nell unità di misura del fenomeno al quadrato!!!! Lo scarto quadratico medio risolve questo problema!!!! Prof. Roberta Siciliano Statistica 14 7
8 Coefficiente di Variazione CV = σ µ E un indice di variabilità relativa Prof. Roberta Siciliano Statistica 15 Determiniamo il massimo del coefficiente di variazione nell ipotesi di distribuzione massimizzante la variabilità Sappiamo che: 0 σ µ ( 1) 0 σ µ 1 0 σ µ 1 Prof. Roberta Siciliano Statistica 16 8
9 Coefficiente di Variazione normalizzato CV norm = CV 1 con 0 CV 1 E un indice normalizzato Prof. Roberta Siciliano Statistica 17 Proprietà della varianza Consideriamo una variabile X e consideriamo la seguente trasformazione lineare: abbiamo che: σ Y = β σ X Prof. Roberta Siciliano Statistica 18 9
10 Proprietà della varianza Consideriamo una variabile X e consideriamo la seguente trasformazione lineare: Y = βx + α abbiamo che: σ Y = β σ X ossia, aggiungendo o sottraendo una costante fissa a ciascun termine della distribuzione non modifica la variabilità della distribuzione stessa Prof. Roberta Siciliano Statistica 19 Altri indici di variabilità Median Absolute Deviation (MAD) MAD =1.846[ median( x l Me,...,) ] Differenza Interquartile D = Q 3 Q 1 Prof. Roberta Siciliano Statistica 0 10
11 Eterogeneità e omogeneità Indici di eterogeneità o di omogeneità possono essere calcolati per dati qualitativi e quantitativi quantitativi operando unicamente sulle frequenze. Eterogeneità per dati qualitativi: mutabilità Omogeneità per dati quantitativi: concentrazione Prof. Roberta Siciliano Statistica 1 Omogeneità vs. eterogeneità Massima omogeneità: tutte le unità presentano la stessa modalità di X f i* =1 f i = 0 i i * Massima eterogeneità: f i = 1 K i =1,,K le unità si distribuiscono uniformemente tra le K modalità distinte di X Prof. Roberta Siciliano Statistica 11
12 L indice di eterogeneità di Gini K i=1 H =1 f i In presenza di massima omogeneità In presenza di massima eterogeneità 1 H max =1 f i =1 =1 K 1 = K 1 K K K Prof. Roberta Siciliano Statistica 3 L indice normalizzato di Gini H norm = H = 1 f i H max K 1 K con 0 H norm 1 Prof. Roberta Siciliano Statistica 4 1
13 Indice di Entropia di Shannon H S = Indice normalizzato di Entropia di Shannon H S norm = f i log( f i ) f i log f i ( ) log K ( ) Prof. Roberta Siciliano Statistica 5 13
Stesso valore medio per distribuzioni diverse
Fonti e strumenti statistici per la comunicazione Prof.ssa Isabella Mingo A.A. 014-015 Stesso valore medio per distribuzioni diverse u i X 11 X 1 X 13 A 1 1 B 8 1 C 0 1 D 3 3 1 E 19 34 1 F 0 41 1 Un uguale
1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl
1/4 Capitolo 4 La variabilità di una distribuzione Intervalli di variabilità Box-plot Indici basati sullo scostamento dalla media Confronti di variabilità Standardizzazione Statistica - Metodologie per
La Variabilità statistica
La Variabilità statistica Una peculiarità dei caratteri rilevati nelle unità statistiche di un collettivo, è quella di presentare valori o attributi in tutto o in parte diversi. Si chiama variabilità (nel
STATISTICA 1 ESERCITAZIONE 2
Frequenze STATISTICA 1 ESERCITAZIONE 2 Dott. Giuseppe Pandolfo 7 Ottobre 2013 RAPPRESENTAZIONE GRAFICA DEI DATI Le rappresentazioni grafiche dei dati consentono di cogliere la struttura e gli aspetti caratterizzanti
Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva
Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di
1) Calcolare l indice di eterogeneità di Gini per i caratteri Qualifica Funzionale e Regime di Impiego.
Università di Cassino Esercitazione di Statistica del 9 novembre 2007 Dott.ssa Paola Costantini Considerando il DATASET DIPENDENTI: ID Stipendio N. di anni di Qualifica Età percepito servizio funzionale
Statistica. Matematica con Elementi di Statistica a.a. 2015/16
Statistica La statistica è la scienza che organizza e analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva: dalla mole di dati
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Sintesi a cinque e misure di variabilità rispetto ad un centro Una catena di fast-food ha selezionato
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative
Gli indici di variabilità
Le misure della variabilità 4/5 ottobre 2011 Statistica sociale 1 Gli indici di variabilità In tutti gli esempi visti nell ultima lezione, abbiamo visto che le grandezze considerate - pur nelle diverse
STATISTICHE DESCRITTIVE Parte II
STATISTICHE DESCRITTIVE Parte II INDICI DI DISPERSIONE Introduzione agli Indici di Dispersione Gamma Differenza Interquartilica Varianza Deviazione Standard Coefficiente di Variazione introduzione Una
Lezione 4 a - Misure di dispersione o di variabilità
Lezione 4 a - Misure di dispersione o di variabilità Abbiamo visto che la media è una misura della localizzazione centrale della distribuzione (il centro di gravità). Popolazioni con la stessa media possono
ESERCITAZIONE IV - Soluzioni
umero di omicidi ESERCITAZIOE IV - Soluzioni Esercizio I. a),00 12,00 10,00 8,00 6,00 4,00 2,00 0,00 0 5 10 15 20 25 Popolazione povera (%) b) Poiché i due caratteri in analisi sono quantitativi per calcolare
Statistica descrittiva II
Probabilità e Statistica Esercitazioni a.a. 009/010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Statistica descrittiva II Ines Campa Probabilità e Statistica - Esercitazioni
Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa
Esercizi Svolti Esercizio 1 Per una certa linea urbana di autobus sono state effettuate una serie di rilevazioni sui tempi di attesa ad una determinata fermata; la corrispondente distribuzione di frequenza
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Differenze semplici medie, confronti in termini di mutua variabilità La distribuzione del prezzo
Facoltà di Scienze Politiche Corso di laurea in Servizio sociale. Compito di Statistica del 7/1/2003
Compito di Statistica del 7/1/2003 I giovani addetti all agricoltura in due diverse regioni sono stati classificati per età; la distribuzione di frequenze congiunta è data dalla tabella seguente Età in
Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale)
Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale) Esercizio 1: Un indagine su 10.000 famiglie ha dato luogo, fra le altre, alle osservazioni riportate nella
Teoria e tecniche dei test. Concetti di base
Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 41 Outline 1 2 3 4 5 () Statistica 2 / 41 Misura del legame Data una variabile doppia (X, Y ), la
Statistica. Esplicazione integrato con Appunti. Marco D Epifano
Esplicazione integrato con Appunti Marco D Epifano Liberamente tratto da Introduzione alla statistica, Monti. L acquisto del lavoro è subordinato a quello del libro dal quale è tratto. Leggi gli altri
La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci
La statistica Elaborazione e rappresentazione dei dati Gli indicatori statistici Introduzione La statistica raccoglie ed analizza gruppi di dati (su cose o persone) per trarne conclusioni e fare previsioni
Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici)
Statistica La statistica può essere vista come la scienza che organizza ed analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva:
Elementi di statistica
Scuola media G. Ungaretti Elementi di statistica Prof. Enrico Castello Ti insegnerò a conoscere i criteri organizzatori di una tabella di dati distinguere frequenze assolute e frequenze percentuali determinare
Statistica 1 A.A. 2015/2016
Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 81 La variabilità: esiste la
Esercizio 1 Questa tabella esprime i tempi di durata di 200 apparecchiature elettriche:
Istituzioni di Statistica 1 Esercizi su indici di posizione e di variabilità Esercizio 1 Questa tabella esprime i tempi di durata di 200 apparecchiature elettriche: Durata (ore) Frequenza 0 100? 100 200
Questionario 1. Sono assegnati i seguenti dati
Questionario 1. Sono assegnati i seguenti dati 30 30 10 30 50 30 60 60 30 20 20 20 30 20 30 30 20 10 10 40 20 30 10 10 10 30 40 30 20 20 40 40 40 dire se i dati illustrati sono unità statistiche valori
Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione
Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2010/2011 Statistica Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza
lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1
lezione n. 6 (a cura di Gaia Montanucci) METODO MASSIMA VEROSIMIGLIANZA PER STIMARE β 0 E β 1 Distribuzione sui termini di errore ε i ε i ~ N (0, σ 2 ) ne consegue : ogni y i ha ancora distribuzione normale,
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
Esercitazioni di Statistica
Esercitazioni di Statistica Indici di posizione e di variabilità Prof. Livia De Giovanni [email protected] Esercizio 1 Data la seguente distribuzione unitaria del carattere X: X : 4 2 4 2 6 4
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 2 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1.1
ANOVA: ANALISI DELLA VARIANZA Prof. Antonio Lanzotti
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 007/008 ANOVA: ANALISI DELLA VARIANZA Prof. Antonio Lanzotti A cura di: Ing.
Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione
Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2011/2012 Statistica Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate.
Università del Piemonte Orientale. Corso di Laurea in Medicina e Chirurgia. Corso di Statistica Medica. Statistica Descrittiva Variabili numeriche
Università del Piemonte Orientale Corso di Laurea in Medicina e Chirurgia Corso di Statistica Medica Statistica Descrittiva Variabili numeriche Misure di tendenza centrale Media (aritmetica) Mediana Media
Esempio sulla media geometrica
Media geometrica La media geometrica di un insieme di n valori positivi x, x 2,, x n di un carattere quantitativo X è pari alla radice n-esima del prodotto dei singoli valori: x g n x x2 K x n Esempio
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente
STATISTICA I - CORSO DI LAUREA IN STATISTICA a.a. 2004/2005 Prova intermedia del 01 aprile 2005
STATISTICA I - CORSO DI LAUREA IN STATISTICA a.a. 2004/2005 Prova intermedia del 01 aprile 2005 Esercizio 1 La Tabella 1 contiene alcuni dati relativi a 14 aziende. Tabella 1 Dati (fittizi) su alcune aziende
STATISTICA DESCRITTIVA (variabili quantitative)
STATISTICA DESCRITTIVA (variabili quantitative) PRIMO ESEMPIO: Concentrazione di un elemento chimico in una roccia. File di lavoro di STATVIEW Cliccando sul tasto del pane control si ottiene il cosiddetto
Esercitazioni di statistica
Esercitazioni di statistica Misure di associazione: Indipendenza assoluta e in media Stefania Spina Universitá di Napoli Federico II [email protected] 22 ottobre 2014 Stefania Spina Esercitazioni
Università del Piemonte Orientale. Corso di Laurea in Biotecnologie. Corso di Statistica Medica. Statistica Descrittiva: Variabili numeriche
Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica Statistica Descrittiva: Variabili numeriche Corso triennale biotecnologie - Statistica Medica Statistica descrittiva
Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti
Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti [email protected]) MEDIA aritmetica semplice
Statistica (Prof. Capitanio) Slide n. 1. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Statistica (Prof. Capitanio) Slide n. 1 Materiale di supporto per le lezioni. Non sostituisce il libro di testo MEDIA GEOMETRICA M g = x g = n n x i i=1 1 PROPRIETA 1) Identità di prodotto ( ) n n M =
Valori Medi. Docente Dott.ssa Domenica Matranga
Valori Medi Docente Dott.ssa Domenica Matranga Valori medi Medie analitiche - Media aritmetica - Media armonica - Media geometrica - Media quadratica Medie di posizione - Moda -Mediana - Quantili La media
Distribuzioni secondo due caratteri. Rappresentazioni e prime sintesi
Distribuzioni secondo due caratteri Rappresentazioni e prime sintesi Rappresentazioni delle distribuzioni doppie Quando per ogni unità del collettivo rileviamo due caratteri otteniamo una Esempio. Ad alcuni
3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17
C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri
PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD.
PROVA SCRITTA DI STATISTICA cod. 4038 CLEA-CLAPI-CLEFIN-CLELI cod. 5047 CLEA-CLAPI-CLEFIN-CLEMIT 5 Novembre 003 SOLUZIONI MOD. A In 8 facoltà di un ateneo italiano vengono rilevati i seguenti dati campionari
Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza.
Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza. Misure ripetute forniscono dati numerici distribuiti attorno ad un valore centrale indicabile con un indice (indice
le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi:
DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano [email protected] si basano su tre elementi: le scale di misura sistema empirico: un insieme di entità non numeriche (es. insieme di persone; insieme
Esercitazione di Statistica Indici di associazione
Esercitazione di Statistica Indici di associazione 28/10/2015 La relazione tra caratteri Indipendenza logica Quando si suppone che tra due caratteri non ci sia alcuna relazione di causa-effetto. Indipendenza
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è
Premessa: la dipendenza in media
Premessa: la dipendenza in media Supponiamo di avere K diversi livelli di un fattore che potrebbero influire su una determinata variabile. Per esempio supponiamo di domandarci se la diversificazione (intesa
Statistica. Alfonso Iodice D Enza [email protected]
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 16 Outline 1 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16
Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016
Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione
Elementi di Statistica
Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Informatica ed Elementi di Statistica 3 c.f.u. Anno Accademico 2010/2011 Docente: ing. Salvatore Sorce Elementi di Statistica Statistica
Lezione 1.3 Corso di Statistica. Francesco Lagona
Lezione 1.3 Corso di Statistica Francesco Lagona Università Roma Tre F. Lagona ([email protected]) 1 / 17 Outline 1 Funzione di ripartizione 2 Quantili 3 Il caso delle variabili continue Funzione
Esercitazione 8 del corso di Statistica 2
Esercitazione 8 del corso di Statistica Prof. Domenico Vistocco Dott.ssa Paola Costantini 6 Giugno 8 Decisione vera falsa è respinta Errore di I tipo Decisione corretta non è respinta Probabilità α Decisione
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria [email protected] Il concetto di interpolazione In matematica, e in particolare in
STATISTICHE DESCRITTIVE
STATISTICHE DESCRITTIVE ARGOMENTI DELLA LEZIONE concetti introduttivi indici di tendenza centrale indici di dispersione indici di posizione 2 concetti introduttivi Unità statistiche elementi che costituiscono
Statistica Inferenziale
Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione
ESEMPI DI DOMANDE PER TUTTE E DUE LE TIPOLOGIE DI PARTECIPANTI
ESEMPI DI DOMANDE PER TUTTE E DUE LE TIPOLOGIE DI PARTECIPANTI Esercizio 1 L elevata densità di popolazione di un paese (rapporto tra numero di abitanti e superficie) indica che: a. l'ammontare della popolazione
STATISTICA: esercizi svolti sulla DIPENDENZA IN MEDIA
STATISTICA: esercizi svolti sulla DIPEDEZA I MEDIA 1 1 LA DIPEDEZA I MEDIA 2 1 LA DIPEDEZA I MEDIA 1. La popolazione in migliaia di unità occupata in Piemonte nel 1985 per reddito annuo Y (migliaia di
Andrea Bonanomi Università Cattolica del Sacro Cuore. Principi di Statistica Descrittiva. Milano, 9 gennaio 2015 Camera di Commercio
Andrea Bonanomi Università Cattolica del Sacro Cuore Principi di Milano, 9 gennaio 2015 Camera di Commercio RIPETIBILITA ATTUALE RILEVAZIONE TOTALE RIPETIBILITA VIRTUALE RILEVAZIONE PARZIALE UNIVERSO CAMPIONE
Scheda Corso di STATISTICA (D.M. 270 per 9 CFU) Anno Accademico 2014/2015 (versione in Italiano)
Scheda Corso di STATISTICA (D.M. 270 per 9 CFU) Anno Accademico 2014/2015 (versione in Italiano) FACOLTA :ECONOMIA CORSI DI LAUREA: Economia e Commercio, Psicoeconomia e Scienze Bancarie ed Assicurative
ESERCIZI DI RIEPILOGO 1
ESERCIZI DI RIEPILOGO 1 ESERCIZIO 1 La tabella seguente contiene la distribuzione di frequenza della variabile X = età (misurata in anni) per un campione casuale di bambini: x i 4.6 8 3.2 3 5.4 6 2.6 2
Il Corso di Fisica per Scienze Biologiche
Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: [email protected] Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/
Esercitazione II Statistica e Calcolo delle Probabilità (con soluzioni)
Esercitazione II Statistica e Calcolo delle Probabilità (con soluzioni) Esercizio 1: Alla fine di una giornata di lavoro un intervistatore si accorge di aver perso i dati raccolti su un certo numero di
Esercitazioni. Es 1. Dato il seguente dataset
Esercitazioni Es 1 Dato il seguente dataset N SESSO ETA' PESO ALTEZZA DIPLOMA COMPONENTI OCCHIALI FUMO 1 0 20,6 65 180 Ist.Tecnico 6 0 1 2 0 20,2 75 180 Liceo 4 0 0 3 0 20,3 60 173 Ist.Tecnico 4 1 0 4
Capitolo 6. La distribuzione normale
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università
MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI)
Matematica Finanziaria, a.a. 2011/2012 p. 1/315 UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) ANNAMARIA OLIVIERI a.a. 2011/2012
LEZIONE N. 11 ( a cura di MADDALENA BEI)
LEZIONE N. 11 ( a cura di MADDALENA BEI) F- test Assumiamo l ipotesi nulla H 0 :β 1,...,Β k =0 E diverso dal verificare che H 0 :B J =0 In realtà F - test è più generale H 0 :Aβ=0 H 1 :Aβ 0 A è una matrice
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni
Capitolo 3 Sintesi e descrizione dei dati quantitativi
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 3 Sintesi e descrizione dei dati quantitativi Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e tecnologie Alimentari" Unità
ANALISI DELLA VARIANZA A DUE VIE CON INTERAZIONE Prof. Antonio Lanzotti
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 ANALISI DELLA VARIANZA A DUE VIE CON INTERAZIONE Prof. Antonio
Esercitazioni di statistica
Esercitazioni di statistica Boxplot e numeri indici Stefania Spina Universitá di Napoli Federico II [email protected] 14 Ottobre 014 Stefania Spina Esercitazioni di statistica 1/37 Definizioni La
Istituzioni di Statistica 1 Esercizi su tabelle di contingenza
Istituzioni di Statistica 1 Esercizi su tabelle di contingenza Esercizio 1 Per stimare la percentuale di fumatori nella popolazione italiana adulta viene intervistato un campione di 60 donne e uno di 40
REGRESSIONE lineare e CORRELAZIONE. Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori
REGRESSIONE lineare e CORRELAZIONE Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori Y X La NATURA e la FORZA della relazione tra variabili si studiano con la REGRESSIONE
0 altimenti 1 soggetto trova lavoroentro 6 mesi}
Lezione n. 16 (a cura di Peluso Filomena Francesca) Oltre alle normali variabili risposta che presentano una continuità almeno all'interno di un certo intervallo di valori, esistono variabili risposta
Esercitazione: La distribuzione NORMALE
Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle
A1. La curva normale (o di Gauss)
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 202/203 lezione n. 8 dell aprile 203 - di Massimo Cristallo - A. La curva normale (o di Gauss) La curva
DISTRIBUZIONI DI PROBABILITA
DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate
Corso di Psicometria Progredito
Corso di Psicometria Progredito 5. La correlazione lineare Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014 Sommario 1 Tipi di relazione
