MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI)"

Transcript

1 Matematica Finanziaria, a.a. 2011/2012 p. 1/315 UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) ANNAMARIA OLIVIERI a.a. 2011/2012

2 Matematica Finanziaria, a.a. 2011/2012 p. 276/315 RISCHI: RAPPRESENTAZIONE E GESTIONE Rischio: possibilità che un risultato sia diverso dalle aspettative Definizione matematica Rischio: variabile aleatoria X, la cui determinazione non è nota a priori Esempi è necessario individuare tutte le possibili determinazioni e assegnare le relative probabilità cioè: assegnare la distribuzione di probabilità di X X: risultato nel lancio di una moneta possibili determinazioni: testa, croce probabilità: 1 2 per ogni determinazione X: risultato nel lancio di un dado possibili determinazioni: 1, 2,...,6 probabilità: 1 6 per ogni determinazione

3 Matematica Finanziaria, a.a. 2011/2012 p. 277/315 X: prezzo di un azione tra un anno possibili determinazioni: [0, + ) probabilità:? X: tasso a pronti a un anno, tra un anno possibili determinazioni: [0, + ) probabilità:? In entrambi i casi: numero infinito e non numerabile di determinazioni modelli continui in alternativa, rappresentazione semplificata con modelli discreti Ad esempio: il prezzo dell azione oggi è 100. Tra un anno può essere 110 oppure 90 determinazioni del prezzo tra un anno: 90, 110 probabilità: stimate (calibrate) osservando andamento dei prezzi sul mercato

4 Matematica Finanziaria, a.a. 2011/2012 p. 278/315 In generale: variabile aleatoria discreta X determinazioni probabilità x 1 p 1 x 2 p x n p n n i=1 p i = 1 Nell esempio del lancio di un dado determinazioni probabilità = 1

5 Matematica Finanziaria, a.a. 2011/2012 p. 279/315 Valore atteso (o media) E[X] = x = µ = n x i p i i=1 informazione: ordine di grandezza della quantità aleatoria Nell esempio del lancio del dado: E[X] = = 3.5 NB: non necessariamente il valore atteso corrisponde ad una determinazione

6 Matematica Finanziaria, a.a. 2011/2012 p. 280/315 Esercizio 74 : calcolare il valore atteso delle seguenti variabili aleatorie variabile aleatoria X determinazioni probabilità variabile aleatoria Y determinazioni probabilità 1 1/3 2 1/3 3 1/3 E[X] = = 1.5 E[Y ] = = 2 NB: E[X] non corrisponde a una determinazione di X, mentre E[Y ] corrisponde ad una possibile determinazione di Y. Tuttavia, il valore effettivo di Y può essere diverso da E[Y ] (con probabilità 2/3)

7 Matematica Finanziaria, a.a. 2011/2012 p. 281/315 Quanto si può discostare il risultato effettivo da quello atteso? Nell esempio del lancio del dado determinazioni di X scarti dal valore atteso probabilità / / /6 In media, quale scostamento (o scarto o deviazione)? = 0 Il valore atteso degli scarti (o deviazioni o scostamenti) dal valore atteso è sempre 0

8 Matematica Finanziaria, a.a. 2011/2012 p. 282/315 In generale scarti dal valore atteso: X E[X] scarti dal valore atteso probabilità Valore atteso degli scarti: x 1 E[X] p 1 x 2 E[X] p x n E[X] p n n E[X E[X]] = (x i E[X]) p i = i=1 = E[X] E[X] = 0 n x i p i E[X] i=1 n i=1 p i

9 Matematica Finanziaria, a.a. 2011/2012 p. 283/315 Consideriamo gli scarti al quadrato Nell esempio del lancio del dado scarti al quadrato probabilità ( 2.5) 2 = /6 ( 1.5) 2 = / (2.5) 2 = /6 Valore atteso degli scarti al quadrato ( 2.5) ( 1.5) (2.5)2 1 6 = Il valore atteso degli scarti (dal valore atteso) al quadrato è detto varianza Informazione: dispersione delle determinazioni (attorno al valore atteso) misura di rischiosità

10 Matematica Finanziaria, a.a. 2011/2012 p. 284/315 In generale: varianza Var[X] = σ 2 = E[(X E[X]) 2 ] = n n (x i E[X]) 2 p i = ((x i ) 2 2 x i E[X] + (E[X]) 2 ) p i = i=1 n (x i ) 2 p i 2E[X] i=1 n x i p i + (E[X]) 2 n p i i=1 i=1 i=1 = E[X 2 ] 2 (E[X]) 2 + (E[X]) 2 = E[X 2 ] (E[X]) 2 Risulta: Var[X] 0 In particolare: Var[X] = 0 se tutti gli scarti sono nulli, cioè se x 1 = x 2 = = x n = E[X] (situazione non aleatoria) In tutti gli altri casi: Var[X] > 0

11 Matematica Finanziaria, a.a. 2011/2012 p. 285/315 Esercizio 75: Si considerino le seguenti variabili aleatorie: Calcolare: X 1 : risultato del lancio di un dado X 2 : risultato del lancio di un secondo dado Y : doppio del risultato del lancio del primo dado Z: somma del lancio dei due dadi 1. valore atteso e varianza delle quattro variabili aleatorie; 2. confrontare i valori ottenuti e dire se Z ha una maggiore dispersione di Y, e se Y ha una maggiore dispersione di X 1.

12 Matematica Finanziaria, a.a. 2011/2012 p. 286/315 Distribuzione di probabilità di X 1 determinazioni probabilità 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6 Valore atteso: E[X 1 ] = = 3.5 Varianza: Var[X 1 ] = = X 2 : stessa distribuzione di probabilità di X 1 Quindi: E[X 2 ] = E[X 1 ] = 3.5, Var[X 2 ] = Var[X 1 ] Attenzione: stessa distribuzione di probabilità non significa che X 1 e X 2 siano uguali. X 1 potrebbe assumere valore 1 e al contempo X 2 assumere valore 5

13 Distribuzione di probabilità di Y : Y = 2X 1 determinazioni probabilità 2 1/6 4 1/6 6 1/6 8 1/6 10 1/6 12 1/6 Valore atteso: E[Y ] = = 7 = 2 ( = 2 E[X 1] Varianza: Var[Y ] = = Matematica Finanziaria, a.a. 2011/2012 p. 287/315

14 Matematica Finanziaria, a.a. 2011/2012 p. 288/315 Distribuzione di probabilità di Z: Z = X 1 + X 2 X X 1 determinazioni probabilità 2 1/36 3 2/36 4 3/36 5 4/36 6 5/36 7 6/36 8 5/36 9 4/ / / /36

15 Matematica Finanziaria, a.a. 2011/2012 p. 289/315 E[Z] = = 7 = E[X 1 ] + E[X 2 ] Var[Z] = = = Var[X 1 ] + Var[X 2 ] Confronti Siccome E[Z] = E[Y ] e Var[Z] < Var[Y ], si può affermare che Z ha minore dispersione rispetto ad Y Le varianze di Y e X 1 non sono immediatamente confrontabili, visto che E[Y ] E[X 1 ]. Si può fare un confronto relativo. V. in seguito

16 Matematica Finanziaria, a.a. 2011/2012 p. 290/315 Alcune proprietà di valore atteso e varianza Data X, si definisca Y = ax + b (a, b numeri reali) Y è una trasformazione lineare di X Risulta E[Y ] = a E[X] + b Var[Y ] = a 2 Var[Y ] Nell esercizio 75: Y = 2 X 1 (a = 2, b = 0) Date X 1, X 2, si definisca Z = X 1 + X 2 Risulta E[Z] = E[X 1 ] + E[X 2 ] se X 1 e X 2 sono stocasticamente indipendenti (cioè: il risultato di una non dipende da quello dell altra), allora Var[Z] = Var[X 1 ] + Var[X 2 ] V. esercizio 75

17 Matematica Finanziaria, a.a. 2011/2012 p. 291/315 Esercizio 76 : Il valore di un azione tra un anno è descritto dalla variabile aleatoria X, la cui distribuzione di probabilità è Calcolare 1. valore atteso e varianza di X; determinazioni probabilità 95 1/ /3 2. valore atteso e varianza di Y = X E[X] = = Var[X] = = E[Y ] = E[X] = 3.17 Var[Y ] = Var[X] = NB: se 100 è il prezzo corrente dell azione, Y ne rappresenta il VAN calcolato al tasso annuo del 5%

18 Matematica Finanziaria, a.a. 2011/2012 p. 292/315 Osservazione: se X è un importo, E[X] è un importo, mentre Var[X] è un importo al quadrato Scarto quadratico medio (o deviazione standard) σ = Var[X] stesse informazioni della varianza, ma espresse in termini di importo Detta anche volatilità (soprattutto se X rappresenta il prezzo di un titolo azionario) Coefficiente di variazione CV[X] = Var[X] E[X] misura relativa di dispersione: volatilità per euro di importo atteso (è un numero puro)

19 Matematica Finanziaria, a.a. 2011/2012 p. 293/315 Esercizio 75 (cont.) : Confrontare la dispersione delle variabili aleatorie X 1, X 2, Y, Z. X 1 X 2 Y = 2 X 1 Z = X 1 + X 2 E Var CV In termini relativi, la variabile Z ha il minor livello di dispersione, mentre le altre tre variabili hanno lo stesso livello di dispersione

20 Matematica Finanziaria, a.a. 2011/2012 p. 294/315 Esercizio 77 : La variabile aleatoria X ha valore atteso pari a 2 e varianza pari a 1. Calcolare valore atteso e varianza delle variabili aleatorie Y = X 2, Z = 2X, W = 2Y. E[Y ] = E[X] 2 = 0; Var[Y ] = Var[X] = 1 E[Z] = 2 E[X] = 4; Var[Z] = 4 Var[X] = 4 E[W] = 2 E[Y ] = 0; Var[W] = 4 Var[Y ] = 4

21 Matematica Finanziaria, a.a. 2011/2012 p. 295/315 Esercizio 78 : Una roulette ha 38 numeri; ciascun numero esce con la stessa probabilità (la roulette è cioè equilibrata). Si punta 1 euro su un numero; se esce il numero, si vincono 36 euro, altrimenti non si vince nulla. Qual è il guadagno atteso del giocatore? Il gioco è equo o è favorevole al banco? (NB: il gioco è equo quando il guadagno atteso è 0.) Qual è l importo della vincita che rende equo il gioco? Vincita aleatoria: X = { 0 prob. 37/38 36 prob. 1/38 Guadagno netto aleatorio: Y = X 1 Guadagno atteso: E[Y ] = E[X] 1 = = 0.05 Gioco non equo, ma favorevole al banco Importo x della vincita che rende equo il gioco: E[Y ] = x = 0 x = 38 Osservazione: in caso di vincita, il guadagno netto che rende equo il gioco è x 1 = 37 = 1 p (p = 1, cioè probabilità di vincere), che è il cosiddetto odd della p 38 puntata

22 Matematica Finanziaria, a.a. 2011/2012 p. 296/315 Esercizio 79 : In una data copertura assicurativa, l assicuratore pagherà euro se si verifica un dato evento (ad esempio, un incidente). L assicuratore ritiene che l evento possa verificarsi con probabilità Il premio del contratto (cioè il prezzo corrisposto dall assicurato) è il valore atteso del pagamento dell assicuratore. Qual è il guadagno atteso dell assicuratore? Se l assicuratore volesse ottenere un guadagno atteso pari al 10% del premio incassato, a quanto dovrebbe ammontare il premio? Pagamento dell assicuratore: X = { 0 prob prob Premio pagato dall assicurato: P = E[X] = = 10 Guadagno dell assicuratore: G = P X guadagno atteso: E[G] = P E[X] = 0 In alternativa, obiettivo: E[G] = 0.10 P P 10 = 0.10 P P = 11

23 Matematica Finanziaria, a.a. 2011/2012 p. 297/315 ALBERI BINOMIALI Riferimento: prezzo di un titolo azionario Esempio: indice S&P500

24 Andamento aleatorio titolo rischioso Albero binomiale: modello (semplice) per rappresentare (in modo semplificato) la dinamica aleatoria dei prezzi dei titoli azionari Esempio: prezzo corrente di una data azione: S 0 = 100 tra tre mesi (t = 1 trimestre) il prezzo S 1 con probabilità p sarà 110, con probabilità 1 p sarà 90 t = 0 t = 1 p p S 1 = { 90 prob. 1 p 110 prob. p Matematica Finanziaria, a.a. 2011/2012 p. 298/315

25 Matematica Finanziaria, a.a. 2011/2012 p. 299/315 Qual è il valore atteso del prezzo (in breve: prezzo atteso) al tempo t = 1? E[S 1 ] = 90 (1 p) p Ad esempio se p = 1 2 : E[S 1] = 100 (rendimento atteso: = 0%) se p = 1 3 : E[S 1] = (rendimento atteso: = 3.33%) se p = 2 3 : E[S 1] = (rendimento atteso: = 3.33%)

26 Matematica Finanziaria, a.a. 2011/2012 p. 300/315 Rappresentazione generale t = 0 t = 1 p S 0 1 p S 0 u S 0 d Ipotesi: nell intervallo di tempo, il prezzo può aumentare (up) o diminuire (down) secondo parametri specificati u: fattore di incremento del prezzo (nell esempio: u = 1.1) d: fattore di riduzione del prezzo (nell esempio: d = 0.9) Valore atteso del prezzo a fine periodo: E[S 1 ] = S 0 (u p + d (1 p)) Rendimento atteso nell intervallo di tempo: E[S 1 ] S 0 1 = (u p + d (1 p)) 1

27 Matematica Finanziaria, a.a. 2011/2012 p. 301/315 Orizzonte temporale pluriennale Ipotesi: qualunque sia il prezzo dell azione al tempo t, nell intervallo successivo il prezzo con probabilità p può aumentare secondo il fattore u, e con probabilità 1 p diminuire secondo il fattore d t = 0 t = 1 t = 2 t = 3 S 0 u 3 p p S 0 1 p p S 0 u 1 p p S 0 d 1 p S 0 u 2 1 p p S 0 u d 1 p p S 0 d 2 S 0 u 2 d S 0 u d 2 1 p S 0 d 3

28 Matematica Finanziaria, a.a. 2011/2012 p. 302/315 Esercizio 80 : Il prezzo di un titolo azionario all epoca 0 è 100. Nel corso di ogni trimestre, e qualunque sia il prezzo raggiunto all inizio del trimestre, il prezzo del titolo può aumentare del 10% o diminuire del 10%, con uguale probabilità. Costruire la distribuzione di probabilità del prezzo del titolo rispettivamente dopo 1, 2, 3 trimestri. Calcolare il valore atteso del prezzo alla fine di ciascuno dei prossimi tre trimestri. Parametri: u = 1.1, d = 0.9, p = 1/2, 1 p = 1/2 t = 0 t = 1 t = 2 t =

29 Matematica Finanziaria, a.a. 2011/2012 p. 303/315 Primo trimestre { S 1 = E[S 1 ] = = 100 Secondo trimestre = 0.25 S 2 = = = 0.25 E[S 2 ] = = 100 Terzo trimestre S 3 = = = = = E[S 3 ] = = 100

30 Matematica Finanziaria, a.a. 2011/2012 p. 304/315 Esercizio 81 : Il prezzo di un titolo azionario all epoca 0 è 100. Nel corso di ogni mese, e qualunque sia il prezzo raggiunto all inizio del mese, il prezzo del titolo può aumentare del 5% o diminuire del 2%, rispettivamente con probabilità 0.6 e 0.4. Costruire la distribuzione di probabilità del prezzo del titolo rispettivamente dopo 1 e 2 mesi. Calcolare il valore atteso del prezzo alla fine di ciascuno dei prossimi due mesi. Parametri: u = 1.05, d = 0.98, p = 0.6, 1 p = 0.4 t = 0 t = 1 t =

31 Matematica Finanziaria, a.a. 2011/2012 p. 305/315 Primo mese { S 1 = E[S 1 ] = = Secondo mese = 0.16 S 2 = = = 0.36 E[S 2 ] = =

32 Matematica Finanziaria, a.a. 2011/2012 p. 306/315 Quanto è realistico il modello? Scegliendo in modo opportuno l intervallo di tempo (1 trimestre, 1 mese, 1 settimana, ecc.) e i parametri, il modello può fornire una rappresentazione soddisfacente della dinamica dei prezzi di titoli rischiosi I parametri, d, u, p, sono calibrati sui dati di mercato In particolare, devono essere scelti in modo coerente con il valore atteso e la volatilità dei prezzi di mercato

33 Matematica Finanziaria, a.a. 2011/2012 p. 307/315 GESTIONE DEL RISCHIO: HEDGING Rischio per chi detiene un titolo azionario: all epoca t, il prezzo può essere basso (rispetto ad un target) Rischio per chi vuole acquistare un titolo azionario in futuro: il prezzo all epoca t può essere alto (rispetto ad un target) Possibile copertura con strumenti derivati: titoli finanziari il cui valore (pay-off ) dipende da quello di un altro titolo (sottostante) Un titolo derivato è, ad esempio, un opzione call europea il sottoscrittore ha diritto ad acquistare alla scadenza un titolo azionario (specificato) ad un prezzo prefissato (strike o prezzo di esercizio)

34 Matematica Finanziaria, a.a. 2011/2012 p. 308/315 Esempio Si desidera acquistare un titolo azionario tra tre mesi, spendendo non più di 105 euro Il titolo azionario ha prezzo corrente (all epoca t = 0) 100. Tra tre mesi (epoca t = 1) il prezzo sarà 110 (con probabilità p = 1 2 ) oppure 90 (con probabilità 1 p = 1 2 ) Si sottoscrive un opzione call, con scadenza tra tre mesi e prezzo di esercizio 105 Pay-off dell opzione Se S 1 = 90, conviene acquistare il titolo azionario sul mercato, al prezzo 90 l opzione non viene esercitata; ha valore nullo Se S 1 = 110, conviene acquistare il titolo azionario esercitando l opzione, pagando 105 valore opzione = 5

35 Matematica Finanziaria, a.a. 2011/2012 p. 309/315 In sintesi: pay-off a scadenza di un opzione call europea c 1 = max{s 1 E, 0} (E: prezzo di esercizio) o più in generale se la scadenza è T c T = max{s T E, 0} NB: il pay-off a scadenza dell opzione è aleatorio Qual è il prezzo (di equilibrio) c 0 dell opzione all epoca 0? Si sfrutta il principio di non arbitraggio

36 Matematica Finanziaria, a.a. 2011/2012 p. 310/315 Consideriamo la seguente strategia (delta hedging) All epoca 0 si acquistano unità di titolo azionario si vende 1 unità di opzione call europea, scadenza tra tre mesi, prezzo di esercizio 105 Il numero è fissato in modo che il valore del portafoglio tra tre mesi sia certo S 0 =100 c 0 =? t = 0 t = 1 S 1 =110 c 1 =5 S 1 =90 c 1 =0

37 Matematica Finanziaria, a.a. 2011/2012 p. 311/315 Valore del portafoglio all epoca t = 1, V 1 se S 1 = 110: V 1 = se S 1 = 90: V 1 = 90 V 1 è certo = 90 = = 0.25 Valore del portafoglio tra tre mesi: V 1 = = = 22.5 Valore (costo) del portafoglio all epoca 0: V 0 = c 0 Visto che il valore del portafoglio tra tre mesi è certo, il suo rendimento deve essere pari al rendimento risk-free (per evitare arbitraggi) V 1 = V 0 (1 + r) 3/12 (r: rendimento annuo risk-free)

38 Matematica Finanziaria, a.a. 2011/2012 p. 312/315 Se r = 0.03, deve risultare 22.5 = ( c 0 ) /4 c 0 = /4 = 2.67 Osservazioni Risulta: = max{s 1 E,0} S 0 u S 0 d e c 0 = S 0 V 1 (1 + r) t Lo schema è generalizzabile ad una scadenza T qualunque (orizzonte temporale pluriennale) La strategia di non arbitraggio comporta la "replica" di un titolo certo Nel determinare il prezzo dell opzione, non si impiegano le probabilità {p, 1 p}, nonostante l opzione abbia un pay-off aleatorio Il prezzo dell opzione all epoca 0 è esprimibile anche come segue: c 0 = /4 (p 5 + (1 p ) 0) = 2.67 con p = / =

39 Matematica Finanziaria, a.a. 2011/2012 p. 313/315 Risulta cioè c 0 = /4 }{{} fattore di sconto risk-free (p 5 + (1 p ) 0) }{{} valore atteso con probabilità {p,1 p } del pay-off dell opzione Le quantità p sono dette probabilità neutrali al rischio (perché consentono di esprimere il prezzo dell opzione come valore attuale a tasso risk-free del pay-off atteso) non dipendono dalle probabilità p (che sono dette naturali o fisiche) sono calibrate sui prezzi di mercato (visto che dipendono da r, che è il tasso risk-free osservato, e da d, u, che sono scelti sulla base di prezzo e volatilità dei titoli azionari)

40 Matematica Finanziaria, a.a. 2011/2012 p. 314/315 Esercizio 82 : Un titolo azionario ha prezzo 100 all epoca 0. Tra 1 mese, avrà prezzo 105 o 98. Il tasso annuo risk-free è pari al 3%. Calcolare il prezzo di un opzione call europea, che ha strike 103 e scadenza tra 1 mese. Pay-off a scadenza dell opzione: c 1 = max{s 1 103, 0} S 0 =100 c 0 =? t = 0 t = 1 S 1 =105 c 1 =max{ ,0}=2 S 1 =98 c 1 =max{98 103,0}=0 Valore del portafoglio tra un mese: V 1 = = 98 = = 2 7 V 1 = = 28 Valore del portafoglio all epoca corrente: V 0 = 100 c 0 = c 0

41 Matematica Finanziaria, a.a. 2011/2012 p. 315/315 Condizione di non arbitraggio: V 0 = V / c 0 = /12 Prezzo di non arbitraggio dell opzione: c 0 = /12 = 0.64

UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA

UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA DICEMBRE 2016 aa 2016-2017-6 GIUGNO 2017 NUMERO DI CFU

Dettagli

STATISTICA A D (72 ore)

STATISTICA A D (72 ore) STATISTICA A D (72 ore) Marco Riani mriani@unipr.it http://www.riani.it Tipologia di v.a. v.a. discreta numero finito di valori (infinità numerabile) x 1 x 2,, x k con probabilità p 1 p 2, p k Esempio:

Dettagli

Metodi Matematici per la Gestione del Rischio - Esercizi

Metodi Matematici per la Gestione del Rischio - Esercizi Metodi Matematici per la Gestione del Rischio - Esercizi. Considerare la seguente funzione di due variabili kxe y+x, per (x, y) [0, ] [0, + ), f(x, y) = 0, altrimenti. Determinare il valore della costante

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. La variabile casuale normale Da un analisi di bilancio è emerso che, durante i giorni feriali

Dettagli

DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19

DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19 DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19 Variabili casuali (o aleatorie) 2 / 19 Disponendo di metodi corretti per raccogliere i dati e costruire i campioni data una popolazione, i valori numerici

Dettagli

01 Test (settima giornata)

01 Test (settima giornata) 01 Test (settima giornata) 1) Due titoli A e B presentano rispettivamente deviazioni standard di 0,6 e di 0,5; se la covarianza tra essi è pari a 0,15: a) la correlazione sarà pari a 0,5 b) la correlazione

Dettagli

! X (92) X n. P ( X n X ) =0 (94)

! X (92) X n. P ( X n X ) =0 (94) Convergenza in robabilità Definizione 2 Data una successione X 1,X 2,...,X n,... di numeri aleatori e un numero aleatorio X diremo che X n tende in probabilità a X escriveremo X n! X (92) se fissati comunque

Dettagli

POPOLAZIONE E CAMPIONI

POPOLAZIONE E CAMPIONI p. 1/2 POPOLAZIONE E CAMPIONI POPOLAZIONE insieme di tutti quegli elementi che hanno almeno una caratteristica comune (persone, oggetti,misure, osservazioni). Consideriamo il caso di caratteristiche associate

Dettagli

INFORMAZIONI. p. 1/23

INFORMAZIONI. p. 1/23 p. 1/23 INFORMAZIONI Prossime lezioni Giorno Ora Dove Giovedi 11/02 14:30 Laboratorio (via Loredan) Martedi 16/02 14:30 P50 Lunedi 22/02 09:30 P50 Martedi 23/02 14:30 P50 Giovedi 25/02 14:30 Aula informatica

Dettagli

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia Variabili aleatorie discrete Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia 2015-16 1 / 45 Variabili aleatorie Una variabile aleatoria è simile a una variabile statistica Una variabile

Dettagli

Corso di Statistica. Variabilità ed eterogeneità. Prof.ssa T. Laureti a.a

Corso di Statistica. Variabilità ed eterogeneità. Prof.ssa T. Laureti a.a Corso di Statistica Variabilità ed eterogeneità Prof.ssa T. Laureti a.a. 03-04 Variabilità Il calcolo di una media non esaurisce la descrizione sintetica di un fenomeno osservato in un collettivo Due insiemi

Dettagli

Risultati X P(X) TTT 0 1/8 TTC 1 1/8 TCT 1 1/8 CTT 1 1/8 TCC 2 1/8 CTC 2 1/8 CCT 2 1/8 CCC 3 1/8 X P(X) F(X) 0 1/8 1/8 1 3/8 4/8 2 3/8 7/8 3 1/8 1

Risultati X P(X) TTT 0 1/8 TTC 1 1/8 TCT 1 1/8 CTT 1 1/8 TCC 2 1/8 CTC 2 1/8 CCT 2 1/8 CCC 3 1/8 X P(X) F(X) 0 1/8 1/8 1 3/8 4/8 2 3/8 7/8 3 1/8 1 Esercizio 1 Determinare la distribuzione di probabilità e la funzione di ripartizione della v.c. discreta X = numero di croci in 3 lanci di una moneta. Calcolare F(-1), F(1.5), F(300). Risultati X P(X)

Dettagli

Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico).

Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico). VARIABILI CASUALI 1 definizione Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico). Esempi l esito di una estrazione del Lotto; il risultato di una

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

Corso di Istituzioni di Matematiche con Elementi di Statistica. anno accademico 2015/2016 corso A-L (G. Gaeta & N. Bressan)

Corso di Istituzioni di Matematiche con Elementi di Statistica. anno accademico 2015/2016 corso A-L (G. Gaeta & N. Bressan) Corso di Istituzioni di Matematiche con Elementi di Statistica anno accademico 215/216 corso A-L (G. Gaeta & N. Bressan) Esercizi Foglio 9 (Funzioni aleatorie; distribuzioni di probabilita ) Esercizio

Dettagli

e 30. Nel primo caso la probabilità che le successive due carte siano dello stesso seme della prima è 6 * 5

e 30. Nel primo caso la probabilità che le successive due carte siano dello stesso seme della prima è 6 * 5 Da un mazzo di 40 carte ne vengono estratte tre tutte insieme. a) Qual è la probabilità che le tre carte siano tutte dello stesso seme? b) Supponendo che sia sia verificato l'evento descritto in (a), senza

Dettagli

Corso di probabilità e statistica

Corso di probabilità e statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof. L.Morato) Esercizi Parte III: variabili aleatorie dipendenti e indipendenti,

Dettagli

Variabili aleatorie. Variabili aleatorie e variabili statistiche

Variabili aleatorie. Variabili aleatorie e variabili statistiche Variabili aleatorie Variabili aleatorie e variabili statistiche Nelle prime lezioni, abbiamo visto il concetto di variabile statistica : Un oggetto o evento del mondo reale veniva associato a una certa

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016

Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016 Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016 Esercizi possibili di probabilità e statistica Notazioni: U(a, b) è la distribuzione di probabilità uniforma nell intervallo (a,

Dettagli

Nome e cognome:... Matricola...

Nome e cognome:... Matricola... Nome e cognome:................................................... Matricola................. CALCOLO DELLE PROBABILITA - 0/07/008 CdS in Economia e Finanza - Cds in Informatica - Cds SIGAD Motivare dettagliatamente

Dettagli

Estrazioni senza restituzione da un urna di composizione incognita. P(E i)=

Estrazioni senza restituzione da un urna di composizione incognita. P(E i)= Estrazioni senza restituzione da un urna di composizione incognita. Consideriamo n estrazioni senza restituzione da un urna contenente N palline, di cui r sono bianche, con r incognito. Introdotta la partizione

Dettagli

1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl

1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl 1/4 Capitolo 4 La variabilità di una distribuzione Intervalli di variabilità Box-plot Indici basati sullo scostamento dalla media Confronti di variabilità Standardizzazione Statistica - Metodologie per

Dettagli

Il modello di Bernoulli

Il modello di Bernoulli Il modello di in funzione DEFINIZIONE DI V.A. B(p) Una v.a. di arametro p è una v.a. che può assumere solo i valori 0 e 1, e per cui la probabilità di assumere il valore 1 è pari a p, e quella di assumere

Dettagli

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci X\Y 0 1 2 0 1/8 1/8 0 1/4 1 1/8 1/4 1/8 1/2 2 0 1/8 1/8 1/4 1/4 1/2 1/4 1 X e Y non sono indip. Se

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica 30 maggio 2016

Tutorato di Complementi di Analisi Matematica e Statistica 30 maggio 2016 Tutorato di Complementi di Analisi Matematica e Statistica 30 maggio 2016 Esercizi possibili di probabilità e statistica Notazioni: U(a, b) è la distribuzione di probabilità uniforma nell intervallo (a,

Dettagli

Argomenti. Misura e valutazione del rischio. Teoria della Finanza Aziendale

Argomenti. Misura e valutazione del rischio. Teoria della Finanza Aziendale Teoria della Finanza Aziendale Misura e valutazione del rischio 7 - Argomenti Il rischio Il rischio negli investimenti finanziari La misurazione del rischio Varianza e scarto quadratico medio Il rischio

Dettagli

FENOMENI CASUALI. fenomeni casuali

FENOMENI CASUALI. fenomeni casuali PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI

Dettagli

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari"

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in Scienze e Tecnologie Alimentari Levine, Krehbiel, Berenson Statistica Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari" Unità Integrata Organizzativa

Dettagli

DISTRIBUZIONI DI PROBABILITA (parte 2) 1 / 27

DISTRIBUZIONI DI PROBABILITA (parte 2) 1 / 27 DISTRIBUZIONI DI PROBABILITA (parte 2) 1 / 27 Funzione di ripartizione per variabili casuali discrete 2 / 27 Data una variabile casuale discreta possiamo calcolare, analogamente al caso continuo, la probabilità

Dettagli

2. Introduzione alla probabilità

2. Introduzione alla probabilità . Introduzione alla probabilità Carla Seatzu, 8 Marzo 008 Definizioni preliminari: Prova: è un esperimento il cui esito è aleatorio Spazio degli eventi elementari: è l insieme Ω di tutti i possibili esiti

Dettagli

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente: CAPITOLO TERZO VARIABILI CASUALI. Le variabili casuali e la loro distribuzione di probabilità In molte situazioni, dato uno spazio di probabilità S, si è interessati non tanto agli eventi elementari (o

Dettagli

Metodi Matematici Probabilità e Statistica. Correzione Compitino del

Metodi Matematici Probabilità e Statistica. Correzione Compitino del Metodi Matematici Probabilità e Statistica Correzione Compitino del.4.04 nota: Una sola risposta è esatta. 4 punti per una risposta esatta, -2 per una sbagliata, 0 per una non data. Gli esercizi sono divisi

Dettagli

Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha

Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha 0) limitazioni prezzo call Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha γ(t)x + c(t) = A(t) + p(t) con A(t) prezzo dell azione,

Dettagli

Statistica descrittiva I. La frequenza

Statistica descrittiva I. La frequenza Statistica descrittiva I. La frequenza Supponiamo di ripetere n volte un esperimento che può dare esito 0 o 1, il numero di uni su n ripetizioni è detto frequenza di 1: f 1,n = #{esperimenti con esito

Dettagli

CP110 Probabilità: Esame 4 luglio Testo e soluzione

CP110 Probabilità: Esame 4 luglio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 4 luglio, 2012 CP110 Probabilità: Esame 4 luglio 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline numerate da 1

Dettagli

Elementi di Teoria del Portafoglio

Elementi di Teoria del Portafoglio Elementi di Teoria del Portafoglio Francesco Rania Department of Law, Economics and Sociology Magna Graecia University of Catanzaro November 21st 2018 Francesco Rania (DLES) Elementi di Teoria del Portafoglio

Dettagli

CP110 Probabilità: Esame 30 gennaio Testo e soluzione

CP110 Probabilità: Esame 30 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2010-11, II semestre 30 gennaio, 2012 CP110 Probabilità: Esame 30 gennaio 2012 Testo e soluzione 1. (5 pts) Un gioco consiste in n prove ripetute, tali

Dettagli

TECNICHE DI MISURAZIONE DEI RISCHI DI MERCATO. VALUE AT RISK VaR. Piatti --- Corso Rischi Bancari: VaR 1

TECNICHE DI MISURAZIONE DEI RISCHI DI MERCATO. VALUE AT RISK VaR. Piatti --- Corso Rischi Bancari: VaR 1 TECNICHE DI MISURAZIONE DEI RISCHI DI MERCATO VALUE AT RISK VaR Piatti --- Corso Rischi Bancari: VaR 1 Limiti delle misure di sensitivity Dipendono dalla fase in cui si trova il mercato non consentono

Dettagli

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice. discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3

Dettagli

Tecniche di sondaggio

Tecniche di sondaggio SMID a.a. 2005/2006 Corso di Statistica per la Ricerca Sperimentale Tecniche di sondaggio 24/1/2006 Nomenclatura Indicheremo con P una popolazione, con N la sua numerosità, con k la sua etichetta e con

Dettagli

Misura e Valutazione del

Misura e Valutazione del - Finanza Aziendale Prof. Arturo Capasso 8 Misura e Valutazione del A. Rischio - Argomenti Il rischio Il rischio negli investimenti finanziari La misurazione del rischio Varianza e scarto quadratico medio

Dettagli

f(1, C) = 1; f(2, C) = 1; f(3, C) = 3; f(4, C) = 2; f(5, C) = 5; f(6, C) = V ar(x) = E[X 2 ] (E[X]) 2 =

f(1, C) = 1; f(2, C) = 1; f(3, C) = 3; f(4, C) = 2; f(5, C) = 5; f(6, C) = V ar(x) = E[X 2 ] (E[X]) 2 = SOLUZIONI DEGLI ESERCIZI SULLE VARIABILI ALEATORIE DISCRETE Esercizio. Si lanciano un dado equilibrato a sei facce e una moneta equilibrata. Se esce testa e il valore del dado è pari oppure croce e il

Dettagli

Distribuzioni di due variabili aleatorie

Distribuzioni di due variabili aleatorie Statistica e analisi dei dati Data: 6 Maggio 206 Distribuzioni di due variabili aleatorie Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori Distribuzioni congiunte e marginali Consideriamo due variabili

Dettagli

1 Richiami di algebra lineare

1 Richiami di algebra lineare 1 Richiami di algebra lineare Definizione 11 (matrici e vettori) Una matrice A e un insieme di numeri A hk, h = 1,, m, k = 1,, n, ordinati in base alla coppia di indici h e k nel modo seguente A 1 A n

Dettagli

Modelli probabilistici variabili casuali

Modelli probabilistici variabili casuali Modelli probabilistici variabili casuali Le variabili casuali costituiscono il legame tra il calcolo della probabilità e gli strumenti di statistica descrittiva visti fino ad ora. Idea: pensiamo al ripetersi

Dettagli

RICHIAMI DI STATISTISTICA E CALCOLO DELLE PROBABILITA

RICHIAMI DI STATISTISTICA E CALCOLO DELLE PROBABILITA RICHIAMI DI STATISTISTICA E CALCOLO DELLE PROBABILITA La Statistica è la disciplina che studia gli eventi non deterministici (o incerti) riguardo ai quali non si ha una completa conoscenza. Tali eventi

Dettagli

Matematica Lezione 22

Matematica Lezione 22 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 22 Sonia Cannas 14/12/2018 Indici di posizione Indici di posizione Gli indici di posizione, detti anche misure di tendenza centrale,

Dettagli

Statistica Corso di laurea in Biotecnologie I esonero - 23 aprile 2009

Statistica Corso di laurea in Biotecnologie I esonero - 23 aprile 2009 Statistica Corso di laurea in Biotecnologie I esonero - aprile 00 Esercizio Con riferimento a due fenomeni X e Y sono state annotate le seguenti osservazioni: X 5 Y 7 8 a) determinare il grado di correlazione

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA

UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA DICEMBRE 2016 Esonero di Matematica Finanziaria aa 2017-2018

Dettagli

02 Test (Settima giornata)

02 Test (Settima giornata) 02 Test (Settima giornata) 1) Si considerino due titoli azionari, A e B, caratterizzati da standard deviation rispettivamente del 3% e del 5%. Il valore massimo della covarianza tra i due titoli può essere

Dettagli

PROBABILITA. Distribuzione di probabilità

PROBABILITA. Distribuzione di probabilità DISTRIBUZIONI di PROBABILITA Distribuzione di probabilità Si definisce distribuzione di probabilità il valore delle probabilità associate a tutti gli eventi possibili connessi ad un certo numero di prove

Dettagli

Distribuzioni di probabilità nel continuo

Distribuzioni di probabilità nel continuo Distribuzioni di probabilità nel continuo Prof.ssa Fabbri Francesca Classe 5C Variabili casuali continue Introduzione: Una Variabile Casuale o Aleatoria è una grandezza che, nel corso di un esperimento

Dettagli

M = C(1 + it) = 1000 (1 + 0, ) = 1070

M = C(1 + it) = 1000 (1 + 0, ) = 1070 1. Data l operazione finanziaria di investimento scadenze (mesi) 0 7 ------------------------------------------ importi -1000 M determinare il montante M utilizzando: (a) il tasso annuo d interesse i =

Dettagli

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti PREMIO EQUO E PREMIO NETTO Prof. Cerchiara Rocco Roberto Materiale e Riferimenti. Capitolo del testo Tecnica attuariale delle assicurazioni contro i Danni (Daboni 993). Lucidi distribuiti in aula La teoria

Dettagli

Indici di posizione e dispersione per distribuzioni di variabili aleatorie

Indici di posizione e dispersione per distribuzioni di variabili aleatorie Indici di posizione e dispersione per distribuzioni di variabili aleatorie 12 maggio 2017 Consideriamo i principali indici statistici che caratterizzano una distribuzione: indici di posizione, che forniscono

Dettagli

CALCOLO DELLE PROBABILITA - 24 Giugno 2015 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5,6.

CALCOLO DELLE PROBABILITA - 24 Giugno 2015 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5,6. Cognome e Nome: Matricola CdS CALCOLO DELLE PROBABILITA - 4 Giugno 5 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5, Motivare dettagliatamente le risposte su fogli allegati e

Dettagli

Indice della lezione. Incertezza e rischio: sinonimi? UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA

Indice della lezione. Incertezza e rischio: sinonimi? UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA UNIVERSIT DEGLI STUDI DI PRM FCOLT DI ECONOMI Corso di Corporate anking a.a. 2010 2011 (Professor Eugenio Pavarani) Introduzione al rischio CPITOLO 9 1 Indice della lezione Rischio e rendimento per titoli

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli

La variabilità. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali

La variabilità. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione [1/2] Gli indici di variabilità consentono di riassumere le principali caratteristiche di una distribuzione (assieme alle medie) Le

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità 1 A. A. 4/5 a prova in itinere 8/6/5docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento degli Esercizi

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

Esercizi: fascicolo 4

Esercizi: fascicolo 4 Esercizi: fascicolo 4 Esercizio 1 Dimostrare le seguenti proprietà (1), (2) e (3): (1) X 1 = 0 X 0; (2) X L 1 (Ω, P ), λ R λx 1 = λ X 1 ; (3) X, Y L 1 (Ω, P ) X + Y 1 X 1 + Y 1. Esercizio 2 Si estraggono

Dettagli

Dipartimento di Sociologia e Ricerca Sociale. Corso di Laurea in Sociologia. Insegnamento di Statistica (a.a ) dott.ssa Gaia Bertarelli

Dipartimento di Sociologia e Ricerca Sociale. Corso di Laurea in Sociologia. Insegnamento di Statistica (a.a ) dott.ssa Gaia Bertarelli Dipartimento di Sociologia e Ricerca Sociale Corso di Laurea in Sociologia Insegnamento di Statistica (a.a. 2018-2019) dott.ssa Gaia Bertarelli Esercitazione n. 7 1. Utilizzando le tavole della distribuzione

Dettagli

UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA

UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA DICEMBRE 2016 A 24 novembre 2017 aa 2016-2017-25 ottobre

Dettagli

Modelli di probabilità

Modelli di probabilità Modelli di probabilità Corso di STATISTICA Ordinario di, Università di Napoli Federico II Professore supplente, Università della Basilicata a.a. 0/0 Obiettivo dell unità didattica Definire i concetti di

Dettagli

PROBABILITÀ SCHEDA N. 3 VARIABILI ALEATORIE BINOMIALE E NORMALE. 1. La variabile aleatoria di Bernoulli e la variabile aleatoria binomiale

PROBABILITÀ SCHEDA N. 3 VARIABILI ALEATORIE BINOMIALE E NORMALE. 1. La variabile aleatoria di Bernoulli e la variabile aleatoria binomiale PROBABILITÀ SCHEDA N. 3 VARIABILI ALEATORIE BINOMIALE E NORMALE In questa scheda vedremo due famiglie di variabili aleatorie (una discreta e una continua), che ci serviranno per descrivere uno dei risultati

Dettagli

Premio al rischio e equivalente di certezza

Premio al rischio e equivalente di certezza Premio al rischio e equivalente di certezza In accordo con la teoria tradizionale assumiamo che gli individui siano avversi al rischio, quindi un rischio a media zero riduce il livello di appagamento di

Dettagli

Statistica. Lezione : 17. Variabili casuali

Statistica. Lezione : 17. Variabili casuali Corsi di Laurea: a.a. 2018-19 Diritto per le Imprese e le istituzioni Scienze Internazionali dello Sviluppo e della Cooperazione Statistica Variabili casuali Lezione : 17 Docente: Alessandra Durio 1 Contenuti

Dettagli

Basi matematiche per il Machine Learning

Basi matematiche per il Machine Learning Basi matematiche per il Machine Learning Corso di AA, anno 2017/18, Padova Fabio Aiolli 04 Ottobre 2017 Fabio Aiolli Basi matematiche per il Machine Learning 04 Ottobre 2017 1 / 14 Probabilità Un esperimento

Dettagli

Funzioni di probabilità per variabili casuali discrete e continue

Funzioni di probabilità per variabili casuali discrete e continue Funzioni di probabilità per variabili casuali discrete e continue Prof.ssa Antonella Bitetto Facoltà di Economia Aziendale, Dipartimento di Management Università degli Studi di Torino PER USO DIDATTICO

Dettagli

I appello di calcolo delle probabilità e statistica

I appello di calcolo delle probabilità e statistica I appello di calcolo delle probabilità e statistica A.Barchielli, L. Ladelli, G. Posta 8 Febbraio 13 Nome: Cognome: Matricola: Docente: I diritti d autore sono riservati. Ogni sfruttamento commerciale

Dettagli

Indirizzo Giuridico Economico Aziendale

Indirizzo Giuridico Economico Aziendale LE VARIABILI CASUALI In molti fenomeni aleatori il risultato di un esperimento è una grandezza che assume valori in modo casuale. Pensa ad esempio al numero di auto che si presentano ad un casello autostradale

Dettagli

assuma valori in un determinato intervallo è data dall integrale della sua densità ( = )=

assuma valori in un determinato intervallo è data dall integrale della sua densità ( = )= VARIABILI ALEATORIE CONTINUE Esistono parecchi fenomeni reali per la cui descrizione le variabili aleatorie discrete non sono adatte. Per esempio è necessaria una variabile aleatoria continua ovvero una

Dettagli

Indice della lezione. Incertezza e rischio: sinonimi? Le Ipotesi della Capital Market Theory UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA

Indice della lezione. Incertezza e rischio: sinonimi? Le Ipotesi della Capital Market Theory UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA UNIVERSIT DEGLI STUDI DI PRM FCOLT DI ECONOMI Indice della lezione Corso di Pianificazione Finanziaria Introduzione al rischio Rischio e rendimento per titoli singoli La Teoria di Portafoglio di Markowitz

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità (docenti G. Nappo, F. Spizzichino prova scritta giugno 5 (tempo a disposizione: ore La prova scritta consiste nello svolgimento

Dettagli

ECONOMIA DEI MERCATI FINANZIARI

ECONOMIA DEI MERCATI FINANZIARI ECONOMIA DEI MERCATI FINANZIARI 6 febbraio 2012 PROVA SCRITTA Inserire i propri dati: Numero di Matricola Nome Cognome CORSO DI LAUREA: Sezione 1. Indicare se le seguenti affermazioni sono vere o false,

Dettagli

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14 Esercitazione del 0/06/05 Probabilità e Statistica Foglio David Barbato Esercizio. Ci sono 0 monetine di cui 5 con due teste, con due croci e regolari una moneta regolare ha una faccia testa e una faccia

Dettagli

ECONOMETRIA: Laboratorio I

ECONOMETRIA: Laboratorio I ECONOMETRIA: Laboratorio I Luca De Angelis CLASS - Università di Bologna Programma Laboratorio I Valori attesi e varianze Test di ipotesi Stima di un modello lineare attraverso OLS Valore atteso Data una

Dettagli

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Variabilità o Dispersione Definizione Attitudine di un fenomeno ad assumere diverse modalità

Variabilità o Dispersione Definizione Attitudine di un fenomeno ad assumere diverse modalità Punti deboli della media aritmetica Robustezza: sensibilità ai valori estremi Non rappresentava nei confronti di distribuzioni asimmetriche. La media aritmetica è un valore rappresentativo nei confronti

Dettagli

ESAME. 9 Gennaio 2017 COMPITO B

ESAME. 9 Gennaio 2017 COMPITO B ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

ESAME. 9 Gennaio 2017 COMPITO A

ESAME. 9 Gennaio 2017 COMPITO A ESAME 9 Gennaio 2017 COMPITO A Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte Cap.1: Probabilità 1. Esperimento aleatorio (definizione informale): è un esperimento che a priori può avere diversi esiti possibili

Dettagli

Le variabili casuali o aleatorie

Le variabili casuali o aleatorie Le variabili casuali o aleatorie Intuitivamente un numero casuale o aleatorio è un numero sul cui valore non siamo certi per carenza di informazioni - ad esempio la durata di un macchinario, il valore

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Variabili aleatorie - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Gennaio 2013 Variabili aleatorie Un numero aleatorio è un esempio di variabile aleatoria.

Dettagli

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8 Calcolo delle Probabilità 07/8 Foglio di esercizi 8 Catene di Markov e convergenze Si consiglia di svolgere gli esercizi n 9,,,, 5 Catene di Markov Esercizio (Baldi, Esempio 5) Si consideri il grafo costituito

Dettagli

STATISTICHE DESCRITTIVE Parte II

STATISTICHE DESCRITTIVE Parte II STATISTICHE DESCRITTIVE Parte II INDICI DI DISPERSIONE Introduzione agli Indici di Dispersione Gamma Differenza Interquartilica Varianza Deviazione Standard Coefficiente di Variazione introduzione Una

Dettagli

Esercitazione del 21/10/2011 Calcolo delle probabilità

Esercitazione del 21/10/2011 Calcolo delle probabilità Esercitazione del /0/0 Calcolo delle probabilità Funzione di ripartizione Sia F X una funzione da R in R. consideriamo le seguenti condizioni: F X è non decrescente ( ) x F X (x) x F X (x) 0 F X è continua

Dettagli

COGNOME.NOME...MATR..

COGNOME.NOME...MATR.. STATISTICA 29.01.15 - PROVA GENERALE (CHALLENGE) Modalità A (A) ai fini della valutazione verranno considerate solo le risposte riportate dallo studente negli appositi riquadri bianchi: in caso di necessità

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 3: Variabili aleatorie discrete notevoli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 3: Variabili aleatorie discrete notevoli Costruzione di macchine Modulo di: Progettazione probabilistica e affidabilità Marco Beghini Lezione 3: Variabili aleatorie discrete notevoli Esperimenti binari ripetuti o esperimenti bernoulliani (Bernoulli

Dettagli

Qualche Esempio di Processo Markoviano

Qualche Esempio di Processo Markoviano Qualche Esempio di Processo Markoviano Giugno 2002 O.Caligaris Alcuni problemi con caratteristiche comuni La Rovina del Giocatore Un Giocatore gioca contro il banco Ad ogni puntata può vincere 1 gettone

Dettagli

RICHIAMI DI CALCOLO DELLE PROBABILITÀ

RICHIAMI DI CALCOLO DELLE PROBABILITÀ UNIVERSITA DEL SALENTO INGEGNERIA CIVILE RICHIAMI DI CALCOLO DELLE PROBABILITÀ ing. Marianovella LEONE INTRODUZIONE Per misurare la sicurezza di una struttura, ovvero la sua affidabilità, esistono due

Dettagli