CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3
|
|
|
- Andrea Rubino
- 9 anni fa
- Visualizzazioni
Transcript
1 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Sintesi a cinque e misure di variabilità rispetto ad un centro Una catena di fast-food ha selezionato un campione di 9 ristoranti al fine di valutare la possibilità di aprire un nuovo ristorante. Sono state raccolte sul campione esaminato le seguenti informazioni: POSTI INCASSI numero di posti a sedere incassi giornalieri (Euro) LOC location non centrale? (SI =1 / NO = 0) POSTI INCASSI LOC Total a) Costruire il box plot per la variabile POSTI A SEDERE. b) Con riferimento alla variabile INCASSI GIORNALIERI organizzata in classi (1.26, 2], (2.1, 4.5], [4.5, 7] calcolare: lo scostamento semplice medio dalla media e lo scostamento semplice medio dalla mediana, lo scostamento quadratico medio dalla media (scarto quadratico medio), la devianza e la varianza.
2 Sol. a)il grafico a scatola (box-plot) è una particolare rappresentazione di una distribuzione. E ottenuto a partire da 5 numeri di sintesi: minimo, 1 quartile (Q1), mediana, 3 quartile (Q3), massimo. Il box plot o diagramma a scatola e baffi si ottiene riportando su un asse verticale (oppure orizzontale) i 5 numeri di sintesi. La scatola del box plot ha come estremi inferiore e superiore rispettivamente Q1 e Q3. La differenza tra Q3 e Q1 costituisce il campo di variazione interquartile, indicato con CVI=Q3-Q1. La mediana divide la scatola in due parti. I baffi si ottengono congiungendo Q1 al minimo e Q3 al massimo. BOX-WHISKER PLOT Massimo 3 Quartile Mediana 1 Quartile Minimo Variable X Index Values Minimum (minimo) 55 1 Quartile 62.5 Median (mediana) 75 3 Quartile Variabile X Maximum (massimo) 150 Soglie e valori anomali: I valori anomali (distanti rispetto a tutti gli altri valori che caratterizzano la distribuzione) vengono determinati dal confronto con il campo di variazione interquartile. In particolare vengono considerate due soglie: il valore al di sotto del quale una modalità viene considerata outlier: 1.5 = = = 1.25 il valore al di sopra del quale una modalità viene considerata outlier: +1.5 = = Nel nostro caso, non si riscontra la presenza di outliers.
3 Ulteriori considerazioni: Confrontando tra loro le lunghezze dei due baffi (che rappresentano le distanze tra Q1 e il minimo e tra Q3 e il massimo) e le altezze dei due rettangoli che costituiscono la scatola (che rappresentano le distanze tra Q1 e mediana e tra mediana e Q3) si ottengono informazioni sulla simmetria della distribuzione: questa è tanto più simmetrica quanto le lunghezze dei baffi risultano simili tra loro e le altezze dei due rettangoli risultano simili tra loro. Nel nostro caso la variabile POSTI A SEDERE presenta una coda più allungata a destra per cui risulta lievemente asimmetrica positiva: la distanza tra la mediana e Q3 è maggiore della distanza della mediana rispetto a Q1). b) Misure di variabilità (rispetto ad un centro ) X=Incassi (1.26, 2] (2.1, 4.5] [4.5, 7] Totale n =3.10 Me=2.46 Scostamento semplice medio dalla media: = =. =1.308 Tanto più piccolo è lo scarto semplice medio tanto più i valori si addensano attorno alla media aritmetica. Scostamento semplice medio dalla mediana: = =. =1.38 Scostamento quadratico medio dalla media (o scarto quadratico medio): = = =1.59 Varianza: =. Devianza: numeratore della varianza= =2.53 la varianza è un indice assoluto che risente dell unità di misura della variabile.
4 Si può dimostrare inoltre che la varianza può essere calcolata alternativamente come: = ossia la varianza è pari alla media aritmetica dei quadrati meno il quadrato della media aritmetica. Nel nostro caso siccome si hanno dati in classi: = La varianza assume valore minimo (zero) quando tutte le modalità sono uguali tra loro e aumenta all aumentare della differenza tra i valori osservati. Il massimo può essere infinito perché gli scarti possono essere infinitamente grandi (ovvero le modalità infinitamente lontane dalla media aritmetica). Esercizio 2. Confronti in termini di variabilità In un piccolo paesino, ci sono soltanto due banche. Dei depositi dei clienti di due banche si conosce la distribuzione per classi: Depositi bancari (migliaia di euro) Banca 1 Banca 2 [0, 20) [20, 50) [50, 100) [100, 200) [200, 500) a) Si calcoli la varianza della variabile depositi dei clienti nelle due banche. b) Si confronti la variabilità dei depositi bancari nelle due banche.
5 Sol. a) Depositi Banca 1 [0, 20) [20, 50) [50, 100) [100, 200) [200, 500) Totale = 1 = =96.42 =96.42 = = 1 = = Depositi Banca 2 [0, 20) [20, 50) [50, 100) [100, 200) [200, 500) Totale = 1 = = = = = 1 = =
6 b) Per confrontare la variabilità di un carattere in due gruppi di unità statistiche non è opportuno ricorrere alla varianza, il cui valore dipende, oltre che dalla variabilità, dall ordine di grandezza del carattere X considerato (si dice, quindi, che la varianza è una misura dimensionata). Per questo motivo, è preferibile confrontare i coefficienti di variazione, che standardizzano gli scarti quadratici medi rispetto al diverso livello medio del fenomeno. Nel nostro caso, essendo i valori assunti dalla nostra variabile tutti positivi, possiamo calcolare i coefficienti di variazione: Coefficiente di variazione Depositi bancari 1 : = = = Coefficiente di variazione Depositi bancari 2: = = =0.92 Il coefficiente di variazione è un indice relativo, indipendente dall unità di misura e dall ordine di grandezza della variabile. Ha il minimo uguale a zero e il massimo non definito, giacché varia al variare del tipo di distribuzione. Note utili: se la media, in valore assoluto, risulta prossima a zero (per effetto di parziali compensazioni fra valori positivi e negativi), il CV può segnalare, in maniera errata, una variabilità molto elevata del fenomeno. Dal confronto tra i coefficienti di variazione relativi ai due gruppi di unità statistiche, concludiamo che la variabilità dei depositi è maggiore nella Banca 1, contrariamente a quello che avrebbe suggerito il confronto tra le due varianze. Altri indici relativi di variabilità (utili per il confronto tra distribuzioni): Indici percentuali di variabilità o di variabilità relativa alla media Siccome per gli indici di variabilità non si conosce il massimo che possono assumere è conveniente dividere il valore dell indice per il corrispondente indice di posizione scelto per misurare la dispersione. Ad esempio: la versione relativa dello scostamento semplice medio dalla media e dello scostamento semplice medio dalla mediana si ottiene dividendo tali indici per la corrispondente media o la corrispondente mediana rispettivamente. Per cui avremo:
7 DEPOSITI BANCA 1 Scostamento semplice medio dalla media relativo: = = =0.72 Scostamento semplice medio dalla mediana relativo: Me=71.88 = = =0.91 DEPOSITI BANCA 2: il calcolo dello scostamento semplice medio dalla media relativo e lo scostamento semplice medio dalla mediana relativo è lasciato per esercizio. Si commentino inoltre i risultati ottenuti.
1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl
1/4 Capitolo 4 La variabilità di una distribuzione Intervalli di variabilità Box-plot Indici basati sullo scostamento dalla media Confronti di variabilità Standardizzazione Statistica - Metodologie per
Esercitazioni di statistica
Esercitazioni di statistica Boxplot e numeri indici Stefania Spina Universitá di Napoli Federico II [email protected] 14 Ottobre 014 Stefania Spina Esercitazioni di statistica 1/37 Definizioni La
Lezione 4 a - Misure di dispersione o di variabilità
Lezione 4 a - Misure di dispersione o di variabilità Abbiamo visto che la media è una misura della localizzazione centrale della distribuzione (il centro di gravità). Popolazioni con la stessa media possono
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Differenze semplici medie, confronti in termini di mutua variabilità La distribuzione del prezzo
Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva
Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di
Teoria e tecniche dei test. Concetti di base
Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi
STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA
STATISTICA DESCRITTIVA Elementi di statistica medica STATISTICA DESCRITTIVA È quella branca della statistica che ha il fine di descrivere un fenomeno. Deve quindi sintetizzare tramite pochi valori(indici
STATISTICHE DESCRITTIVE Parte II
STATISTICHE DESCRITTIVE Parte II INDICI DI DISPERSIONE Introduzione agli Indici di Dispersione Gamma Differenza Interquartilica Varianza Deviazione Standard Coefficiente di Variazione introduzione Una
Esercizio 1 Questa tabella esprime i tempi di durata di 200 apparecchiature elettriche:
Istituzioni di Statistica 1 Esercizi su indici di posizione e di variabilità Esercizio 1 Questa tabella esprime i tempi di durata di 200 apparecchiature elettriche: Durata (ore) Frequenza 0 100? 100 200
Capitolo 3 Sintesi e descrizione dei dati quantitativi
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 3 Sintesi e descrizione dei dati quantitativi Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e tecnologie Alimentari" Unità
Esercitazioni di Statistica
Esercitazioni di Statistica Indici di posizione e di variabilità Prof. Livia De Giovanni [email protected] Esercizio 1 Data la seguente distribuzione unitaria del carattere X: X : 4 2 4 2 6 4
Stesso valore medio per distribuzioni diverse
Fonti e strumenti statistici per la comunicazione Prof.ssa Isabella Mingo A.A. 014-015 Stesso valore medio per distribuzioni diverse u i X 11 X 1 X 13 A 1 1 B 8 1 C 0 1 D 3 3 1 E 19 34 1 F 0 41 1 Un uguale
2. Variabilità mediante il confronto di valori caratteristici della
2. Variabilità mediante il confronto di valori caratteristici della distribuzione Un approccio alternativo, e spesso utile, alla misura della variabilità è quello basato sul confronto di valori caratteristici
REGRESSIONE E CORRELAZIONE
REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.
Valori Medi. Docente Dott.ssa Domenica Matranga
Valori Medi Docente Dott.ssa Domenica Matranga Valori medi Medie analitiche - Media aritmetica - Media armonica - Media geometrica - Media quadratica Medie di posizione - Moda -Mediana - Quantili La media
Questionario 1. Sono assegnati i seguenti dati
Questionario 1. Sono assegnati i seguenti dati 30 30 10 30 50 30 60 60 30 20 20 20 30 20 30 30 20 10 10 40 20 30 10 10 10 30 40 30 20 20 40 40 40 dire se i dati illustrati sono unità statistiche valori
Statistica descrittiva II
Probabilità e Statistica Esercitazioni a.a. 009/010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Statistica descrittiva II Ines Campa Probabilità e Statistica - Esercitazioni
Misure di dispersione (o di variabilità)
14/1/01 Misure di dispersione (o di variabilità) Range Distanza interquartile Deviazione standard Coefficiente di variazione Misure di dispersione 7 8 9 30 31 9 18 3 45 50 x = 9 range=31-7=4 x = 9 range=50-9=41
INDICATORI DI TENDENZA CENTRALE
INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo indice che riassume o descrive i dati e dipende dalla
Esercitazioni di Statistica
Esercitazioni di Statistica Rappresentazioni grafiche Prof. Livia De Giovanni [email protected] Esercizio 1 Si consideri la seguente distribuzione delle industrie tessili secondo il fatturato
INDICATORI DI TENDENZA CENTRALE
INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo è indice che riassume o descrive i dati e dipende
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo [email protected] TIPI DI MEDIA: GEOMETRICA, QUADRATICA, ARMONICA Esercizio 1. Uno scommettitore puntando una somma iniziale
LE MISURE DI TENDENZA CENTRALE. Dott. Giuseppe Di Martino Scuola di Specializzazione in Igiene e Medicina Preventiva
LE MISURE DI TENDENZA CENTRALE Dott. Giuseppe Di Martino Scuola di Specializzazione in Igiene e Medicina Preventiva Individuare un indice che rappresenti significativamente un insieme di dati statistici
La Variabilità statistica
La Variabilità statistica Una peculiarità dei caratteri rilevati nelle unità statistiche di un collettivo, è quella di presentare valori o attributi in tutto o in parte diversi. Si chiama variabilità (nel
Università del Piemonte Orientale. Corso di Laurea in Medicina e Chirurgia. Corso di Statistica Medica. Statistica Descrittiva Variabili numeriche
Università del Piemonte Orientale Corso di Laurea in Medicina e Chirurgia Corso di Statistica Medica Statistica Descrittiva Variabili numeriche Misure di tendenza centrale Media (aritmetica) Mediana Media
1) Calcolare l indice di eterogeneità di Gini per i caratteri Qualifica Funzionale e Regime di Impiego.
Università di Cassino Esercitazione di Statistica del 9 novembre 2007 Dott.ssa Paola Costantini Considerando il DATASET DIPENDENTI: ID Stipendio N. di anni di Qualifica Età percepito servizio funzionale
STATISTICA DESCRITTIVA (variabili quantitative)
STATISTICA DESCRITTIVA (variabili quantitative) PRIMO ESEMPIO: Concentrazione di un elemento chimico in una roccia. File di lavoro di STATVIEW Cliccando sul tasto del pane control si ottiene il cosiddetto
Sintesi dei dati in una tabella. Misure di variabilità (cap. 4) Misure di forma (cap. 5) Statistica descrittiva (cap. 6)
Sintesi dei dati in una tabella Misure di variabilità (cap. 4) Misure di forma (cap. 5) Statistica descrittiva (cap. 6) Sintesi dei dati Spesso si vuole effettuare una sintesi dei dati per ottenere indici
Università del Piemonte Orientale. Corso di Laurea in Biotecnologie. Corso di Statistica Medica. Statistica Descrittiva: Variabili numeriche
Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica Statistica Descrittiva: Variabili numeriche Corso triennale biotecnologie - Statistica Medica Statistica descrittiva
Esercizio 1 Nella seguente tabella sono riportate le lunghezze in millimetri di 40 foglie di platano:
4. STATISTICA DESCRITTIVA ESERCIZI Esercizio 1 Nella seguente tabella sono riportate le lunghezze in millimetri di 40 foglie di platano: 138 164 150 132 144 125 149 157 146 158 140 147 136 148 152 144
Statistiche per riassumere i dati
Statistiche per riassumere i dati María Eugenia Castellanos Dep. Estadística e I.O. Universidad Rey Juan Carlos Visiting Professor Università di Cagliari. Cagliari, Marzo 2010 María Eugenia Castellanos
MISURE DI SINTESI 54
MISURE DI SINTESI 54 MISURE DESCRITTIVE DI SINTESI 1. MISURE DI TENDENZA CENTRALE 2. MISURE DI VARIABILITÀ 30 0 µ Le due distribuzioni hanno uguale tendenza centrale, ma diversa variabilità. 30 0 Le due
La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci
La statistica Elaborazione e rappresentazione dei dati Gli indicatori statistici Introduzione La statistica raccoglie ed analizza gruppi di dati (su cose o persone) per trarne conclusioni e fare previsioni
Gli indici di variabilità
Le misure della variabilità 4/5 ottobre 2011 Statistica sociale 1 Gli indici di variabilità In tutti gli esempi visti nell ultima lezione, abbiamo visto che le grandezze considerate - pur nelle diverse
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Misura dell associazione tra due caratteri Uno store manager è interessato a studiare la relazione
Rappresentazioni grafiche
Rappresentazioni grafiche Su una popolazione di n = 20 unità sono stati rilevati i seguenti fenomeni: stato civile (X) livello di scolarità (Y ) numero di figli a carico (Z) reddito in migliaia di (W )
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative
Esempio sulla media geometrica
Media geometrica La media geometrica di un insieme di n valori positivi x, x 2,, x n di un carattere quantitativo X è pari alla radice n-esima del prodotto dei singoli valori: x g n x x2 K x n Esempio
A1. La curva normale (o di Gauss)
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 202/203 lezione n. 8 dell aprile 203 - di Massimo Cristallo - A. La curva normale (o di Gauss) La curva
ESERCIZI DI RIEPILOGO 1
ESERCIZI DI RIEPILOGO 1 ESERCIZIO 1 La tabella seguente contiene la distribuzione di frequenza della variabile X = età (misurata in anni) per un campione casuale di bambini: x i 4.6 8 3.2 3 5.4 6 2.6 2
Carta di credito standard. Carta di credito business. Esercitazione 12 maggio 2016
Esercitazione 12 maggio 2016 ESERCIZIO 1 Si supponga che in un sondaggio di opinione su un campione di clienti, che utilizzano una carta di credito di tipo standard (Std) o di tipo business (Bsn), si siano
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 41 Outline 1 2 3 4 5 () Statistica 2 / 41 Misura del legame Data una variabile doppia (X, Y ), la
STATISTICA: esercizi svolti sulla DIPENDENZA IN MEDIA
STATISTICA: esercizi svolti sulla DIPEDEZA I MEDIA 1 1 LA DIPEDEZA I MEDIA 2 1 LA DIPEDEZA I MEDIA 1. La popolazione in migliaia di unità occupata in Piemonte nel 1985 per reddito annuo Y (migliaia di
Esercitazione II Statistica e Calcolo delle Probabilità (con soluzioni)
Esercitazione II Statistica e Calcolo delle Probabilità (con soluzioni) Esercizio 1: Alla fine di una giornata di lavoro un intervistatore si accorge di aver perso i dati raccolti su un certo numero di
Esempi di confronti grafici
Esempi di confronti grafici Esempi di confronti grafici 7/3 Capitolo 3 LE MEDIE La media aritmetica La media geometrica La trimmed mean La mediana La moda I percentili Statistica - Metodologie per
STATISTICA 1 ESERCITAZIONE 2
Frequenze STATISTICA 1 ESERCITAZIONE 2 Dott. Giuseppe Pandolfo 7 Ottobre 2013 RAPPRESENTAZIONE GRAFICA DEI DATI Le rappresentazioni grafiche dei dati consentono di cogliere la struttura e gli aspetti caratterizzanti
Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa
Esercizi Svolti Esercizio 1 Per una certa linea urbana di autobus sono state effettuate una serie di rilevazioni sui tempi di attesa ad una determinata fermata; la corrispondente distribuzione di frequenza
Università di Cassino. Esercitazioni di Statistica 1 del 29 Gennaio 2010. Dott. Mirko Bevilacqua
Università di Cassino Esercitazioni di Statistica del 29 Gennaio 200 Dott. Mirko Bevilacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (kg) LAUREA SCARPA OCCHI CAPELLI M 79 65
Statistica. Matematica con Elementi di Statistica a.a. 2015/16
Statistica La statistica è la scienza che organizza e analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva: dalla mole di dati
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
Elementi di statistica
Scuola media G. Ungaretti Elementi di statistica Prof. Enrico Castello Ti insegnerò a conoscere i criteri organizzatori di una tabella di dati distinguere frequenze assolute e frequenze percentuali determinare
Esercitazioni di Metodi Statistici per la Biologia
Esercitazioni di Metodi Statistici per la Biologia Francesco Caravenna E-mail: [email protected] Web: http://www.math.unipd.it/ fcaraven/didattica Indirizzo: Dipartimento di Matematica,
SCOPO DELL ANALISI DI CORRELAZIONE
CORRELAZIONE 1 SCOPO DELL ANALISI DI CORRELAZIONE STUDIARE LA RELAZIONE TRA DUE VARIABILI X E Y 2 diagrammi di dispersione un diagramma di dispersione (o grafico di dispersione) èuna rappresentazione grafica
MISURE DI DISPERSIONE
MISURE DI DISPERSIONE 78 MISURE DI DISPERSIONE Un insieme di dati numerici può essere sintetizzato da alcuni valori tipici, che indicano il grado di variabilità dei dati stessi. Grado di Variabilità o
Capitolo 12. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 12.1: Suggerimento
Capitolo Suggerimenti agli esercizi a cura di Elena Siletti Esercizio.: Suggerimento Per verificare se due fenomeni sono dipendenti in media sarebbe necessario confrontare le medie condizionate, in questo
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA PROCEDURA/TECNICA DI ANALISI DEI DATI SPECIFICAMENTE DESTINATA A STUDIARE LA RELAZIONE TRA UNA VARIABILE NOMINALE (ASSUNTA
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri
Prova scritta di STATISTICA. CDL Biotecnologie. (Programma di Massimo Cristallo - A)
Prova scritta di STATISTICA CDL Biotecnologie (Programma di Massimo Cristallo - A) 1. Un associazione di consumatori, allo scopo di esaminare la qualità di tre diverse marche di batterie per automobili,
Rapporto tra valore di mercato e valore catastale: iniquità territoriali
1. Introduzione Rapporto tra valore di mercato e valore catastale: iniquità territoriali di Simona LONGHI * Il presente lavoro è volto ad analizzare, con riferimento esclusivo al settore residenziale,
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria [email protected] Il concetto di interpolazione In matematica, e in particolare in
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 1 Outline () Statistica 2 / 1 La curtosi La curtosi è la caratteristica della forma della distribuzione
Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA
Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA 1 Distribuzione di frequenza Punto vendita e numero di addetti PUNTO VENDITA 1 2 3
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi
Esercitazione: La distribuzione NORMALE
Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle
1/55. Statistica descrittiva
1/55 Statistica descrittiva Organizzare e rappresentare i dati I dati vanno raccolti, analizzati ed elaborati con le tecniche appropriate (organizzazione dei dati). I dati vanno poi interpretati e valutati
TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo
TOPOGRAFIA 2013/2014 L operazione di misura di una grandezza produce un numero reale che esprime il rapporto della grandezza stessa rispetto a un altra, a essa omogenea, assunta come unità di misura. L
Statistica. Esplicazione integrato con Appunti. Marco D Epifano
Esplicazione integrato con Appunti Marco D Epifano Liberamente tratto da Introduzione alla statistica, Monti. L acquisto del lavoro è subordinato a quello del libro dal quale è tratto. Leggi gli altri
Esercitazione 6 marzo 2014
Esercitazione marzo 04 Esercizio dal tema d esame 0.0.04 (parte prima) Il gestore di un'azienda ha approvato il finanziamento di una medesima campagna pubblicitaria nei due stati europei in cui distribuisce
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 2 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1.1
Premessa: la dipendenza in media
Premessa: la dipendenza in media Supponiamo di avere K diversi livelli di un fattore che potrebbero influire su una determinata variabile. Per esempio supponiamo di domandarci se la diversificazione (intesa
LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)
LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) Allo scopo di interpolare un istogramma di un carattere statistico X con una funzione continua (di densità), si può far ricorso nell analisi statistica alla
STATISTICA I - CORSO DI LAUREA IN STATISTICA a.a. 2004/2005 Prova intermedia del 01 aprile 2005
STATISTICA I - CORSO DI LAUREA IN STATISTICA a.a. 2004/2005 Prova intermedia del 01 aprile 2005 Esercizio 1 La Tabella 1 contiene alcuni dati relativi a 14 aziende. Tabella 1 Dati (fittizi) su alcune aziende
ESEMPI DI DOMANDE PER TUTTE E DUE LE TIPOLOGIE DI PARTECIPANTI
ESEMPI DI DOMANDE PER TUTTE E DUE LE TIPOLOGIE DI PARTECIPANTI Esercizio 1 L elevata densità di popolazione di un paese (rapporto tra numero di abitanti e superficie) indica che: a. l'ammontare della popolazione
Statistica. Campione
1 STATISTICA DESCRITTIVA Temi considerati 1) 2) Distribuzioni statistiche 3) Rappresentazioni grafiche 4) Misure di tendenza centrale 5) Medie ferme o basali 6) Medie lasche o di posizione 7) Dispersione
Andrea Bonanomi Università Cattolica del Sacro Cuore. Principi di Statistica Descrittiva. Milano, 9 gennaio 2015 Camera di Commercio
Andrea Bonanomi Università Cattolica del Sacro Cuore Principi di Milano, 9 gennaio 2015 Camera di Commercio RIPETIBILITA ATTUALE RILEVAZIONE TOTALE RIPETIBILITA VIRTUALE RILEVAZIONE PARZIALE UNIVERSO CAMPIONE
SCHEDA N 8 DEL LABORATORIO DI FISICA
SCHEDA N 1 IL PENDOLO SEMPLICE SCHEDA N 8 DEL LABORATORIO DI FISICA Scopo dell'esperimento. Determinare il periodo di oscillazione di un pendolo semplice. Applicare le nozioni sugli errori di una grandezza
STATISTICHE DESCRITTIVE
STATISTICHE DESCRITTIVE ARGOMENTI DELLA LEZIONE concetti introduttivi indici di tendenza centrale indici di dispersione indici di posizione 2 concetti introduttivi Unità statistiche elementi che costituiscono
Esercitazione di Statistica Indici di associazione
Esercitazione di Statistica Indici di associazione 28/10/2015 La relazione tra caratteri Indipendenza logica Quando si suppone che tra due caratteri non ci sia alcuna relazione di causa-effetto. Indipendenza
Esercitazioni di statistica
Esercitazioni di statistica Gli indici statistici di sintesi: Gli indici di centralità Stefania Spina Universitá di Napoli Federico II [email protected] 7 Ottobre 2014 Stefania Spina Esercitazioni
dott.ssa Gabriella Agrusti Docimologia 1
dott.ssa Gabriella Agrusti Docimologia 1 Il ciclo di incontri 1. Impostazione di un archivio di dati 2. Pulizia dei dati 3. Calcolo delle frequenze 4. Difficoltà e discriminatività 5. Misure di tendenza
Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni
Anno 3 Funzioni esponenziali e logaritmi: le 4 operazioni 1 Introduzione In questa lezione impareremo a conoscere le funzioni esponenziali e i logaritmi; ne descriveremo le principali caratteristiche e
Lezioni di Statistica del 15 e 18 aprile Docente: Massimo Cristallo
UIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECOOMIA Corso di laurea in Economia Aziendale anno accademico 2012/2013 Lezioni di Statistica del 15 e 18 aprile 2013 Docente: Massimo Cristallo LA RELAZIOE
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici)
Statistica La statistica può essere vista come la scienza che organizza ed analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva:
I NUMERI RELATIVI ALGEBRA PER RICORDARE PREREQUISITI
ALGEBRA I NUMERI RELATIVI PREREQUISITI l conoscere le proprietaá delle quattro operazioni con i numeri naturali e saperle applicare l svolgere calcoli con le frazioni CONOSCENZE gli insiemi Z, Q, R la
Statistica descrittiva
Statistica descrittiva Elementi di statistica 3 1 Generalità Un indice sintetico (o misura statistica) è un valore, ottenuto attraverso una procedura esplicita, che si usa in luogo di una serie di altri
