Corso di Statistica Esercitazione 1.8
|
|
|
- Giuliana Sole
- 8 anni fa
- Visualizzazioni
Transcript
1 Corso di Statistica Esercitazione.8 Test su medie e proporzioni Prof.ssa T. Laureti a.a
2 Esercizio Un produttore vuole monitorare i valori dei livelli di impurità contenute nella merce che gli viene consegnata da una determinato fornitore. Su un campione casuale di n=0 consegne si sono osservati i seguenti valori: 2, 6,7,6 0,9 3, 5,8 0,6 2,2 6,4, a) Ipotizzando la normalità della distribuzione, si vuole verificare se il livello medio di impurità di tutta la merce si mantiene entro lo standard previsto (stabilito ad un livello di 2,9) oppure lo supera. Condurre la verifica di ipotesi al livello α=0,05 b) Sulla base dell esito del test, è possibile commettere un errore di I tipo o di II tipo?
3 a) Volendo verificare se il livello medio di impurità di tutta la merce si mantiene entro il valore standard di 2,9 oppure lo supera, specifichiamo il sistema di ipotesi nel modo seguente: 0 : µ : µ > 2,9 2,9 Test unilaterale con la regione di rifiuto sulla destra Sapendo che la popolazione segue una distribuzione Normale con varianza non nota ed avendo estratto un campione piccolo (n=0), la statistica test (condizionata ad assumere vera 0 ) è: X 2,9 ~ T n s n Dato α =0,05 il valore soglia è il valore della distribuzione t di Student con n-=9 gradi di libertà che lascia alla sua destra un area pari a α =0,05 t 0,05 =,833 α =0,05 t=,833
4 Dai dati campionari dobbiamo stimare la media e la varianza. La stima puntuale della media è: 0 x = x i = 3,05 0 i= La stima della varianza (utilizzando lo stimatore corretto s 2 ) è data da: s = ( x i x ) = 5, i= Il valore osservato della statistica test si ottiene da: ( ) 3,05 2,9 t = = 0,2 5,585 0 Poiché 0,2 <,833 (il valore osservato cade nell area di accettazione), l ipotesi nulla non può essere rifiutata al livello di significatività del 5% b) Poiché la conclusione del test ci porta ad accettare l ipotesi nulla, è possibile commettere un errore di II tipo (l errore che consiste nell accettare un ipotesi nulla falsa)
5 Esercizio 2 In un campione casuale di 20 partite del campionato di calcio di serie A, 52 sono terminate con un punteggio di parità. (a) Verificare l ipotesi nulla che oltre la metà degli incontri finisca con un pareggio contro l alternativa che la maggioranza delle partite finisca con la vittoria di una delle due squadre. Utilizzare il livello di significatività α=0,0. (b) La conclusione si modifica se, lasciando tutto il resto invariato, il livello di significatività si abbassa a α=0,05?
6 (a) Indicando con l evento successo il pareggio e come evento insuccesso la vittoria di una delle due squadre, vogliamo verificare se la proporzione di successi nella popolazione (pareggi) è maggiore di 0,5 oppure no. Le ipotesi si specificano nel modo seguente: 0 : π : π < 0,5 0,5 Test unilaterale con la regione di rifiuto sulla sinistra Il campione è sufficientemente numeroso (n=20) per poter utilizzare la distribuzione Normale come approssimazione. La statistica test (condizionata ad assumere vera 0 ) è: X 0,5 z = 0,5 ( 0,5 ) n Dato α =0,0 il valore soglia è il valore della distribuzione z che lascia alla sua α =0,0 sinistra un area pari a α =0,0 z=-,28 z=-,28
7 Dai dati campionari dobbiamo stimare la proporzione di pareggi. La stima puntuale è: 52 p = x = = 0, Il valore osservato della statistica test si ottiene da: z = 0,433 0,5 0,5 20 ( 0,5 ) =,47 Poiché -,47 < -,28 (il valore osservato cade nell area di rifiuto) si rifiuta l ipotesi nulla a favore dell ipotesi alternativa. Dai dati campionari, al livello α =0,0 si conclude che la maggioranza delle partite non finisce in parità, ma con la vittoria di una delle due squadre
8 (b) Con α =0,05 il valore soglia diventa z=-,64. In questo caso -,47 (valore osservato) è maggiore di -,64 (valore soglia). Quindi la conclusione si modifica rispetto a prima. L ipotesi nulla non può essere rifiutata al livello di significatività del 5%. In questa situazione, ci aspettiamo che il p-value assuma un valore compreso tra 0,05 e 0,0. Perché? Il p-value rappresenta il livello di significatività osservato, che calcoliamo (in questo caso, per un test unilaterale con regione critica a sinistra) come la probabilità di osservare un valore Z inferiore a quello effettivamente osservato. p value = P(Z < zcamp.) = P(Z <,47) = Φ(,47) = 0,07 Dal p-value notiamo subito che l ipotesi nulla deve essere rifiutata se fissiamo un livello di significatività α maggiore di 0,07 (il p-value, in questo caso, è minore di α e dà quindi scarso supporto all ipotesi nulla). Viceversa, se fissiamo un livello di significatività α minore di 0,07 l ipotesi nulla non può essere rifiutata (il p-value, in questo caso, supera α).
9 Esercizio 3 In un fast food nell ora di punta si è calcolato che il tempo medio di attesa per un ordinazione è di 3,5 minuti. In corrispondenza del lancio di un nuovo prodotto si ha il sospetto che il tempo medio di attesa nell ora di punta possa significativamente aumentare. In tal caso il manager deciderà di aprire un altra cassa. Quando comincia la vendita del nuovo prodotto, su un campione di n=49 clienti si osserva un tempo medio di attesa pari a 4, minuti. La distribuzione dei tempi di attesa nella popolazione non è nota, ma conosciamo da esperienze passate che la deviazione standard della popolazione è pari a 2,2 minuti. Verificare l ipotesi nulla che il tempo medio di attesa sia rimasto invariato contro l alternativa che sia aumentato, al livello di significatività α=0,05
10 Il sistema di ipotesi è così definito: 0 : µ 3,5 : µ > 3,5 Test unilaterale con la regione di rifiuto sulla destra Non conoscendo la distribuzione della popolazione, poiché il campione è sufficientemente numeroso (n=49), per il Teorema del Limite Centrale la statistica test (condizionata ad assumere vera 0 ) è: Z = X σ 3,5 n σ=2,2 Dato α =0,05 il valore soglia è il valore della distribuzione z che lascia alla sua destra un area pari a α =0,05 z=,64 α =0,05 z=,64
11 La media campionaria è pari a x = 4, Il valore osservato della statistica test si ottiene da: ( 4, 3,5 ) z = 2,2 =,9 49 Poiché,9 >,64 (il valore osservato cade nell area di rifiuto) si rifiuta l ipotesi nulla al livello di significatività del 5%. Si conclude che il tempo di attesa è significativamente aumentato. Rifiutando 0, si può incorrere nell errore di I tipo: il costo di questo errore è rappresentato dal dover aprire un altra cassa nell ora di punta quando non è necessario.
Esercitazione 8 del corso di Statistica 2
Esercitazione 8 del corso di Statistica Prof. Domenico Vistocco Dott.ssa Paola Costantini 6 Giugno 8 Decisione vera falsa è respinta Errore di I tipo Decisione corretta non è respinta Probabilità α Decisione
Esercizi di Probabilità e Statistica
Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 giugno 26 Statistica Esercizio Sia {X n } n una famiglia di v.a. di media µ e varianza σ 2. Verificare che X = n n X i σ 2 = n (X i µ) 2 S 2 = n
Contenuti: Capitolo 14 del libro di testo
Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4
SOLUZIONE. a) Calcoliamo il valore medio delle 10 misure effettuate (media campionaria):
ESERCIZIO SU TEST STATISTICO (Z, T e χ ) Da una ditta di assemblaggio di PC ci viene chiesto di controllare la potenza media dissipata da un nuovo processore, che causa a volte problemi di sovraccarico
SOLUZIONI ESERCITAZIONE NR. 8 Test statistici
SOLUZIONI ESERCITAZIONE NR. 8 Test statistici ESERCIZIO nr. 1 Un campione casuale di dieci pazienti di sesso maschile in cura per comportamenti aggressivi nell ambito del contesto familiare è stato classificato
Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill
Statistica - metodologie per le scienze economiche e sociali /e S. Borra, A. Di Ciaccio - McGraw Hill Es.. Soluzione degli esercizi del capitolo 4 4. Il sistema d ipotesi è: μ 7, H : μ 7, Essendo 0 : t,
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento.
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle abelle riportate alla fine del documento. Esercizio 1 La concentrazione media di sostanze inquinanti osservata nelle acque di un fiume
Approssimazione normale alla distribuzione binomiale
Approssimazione normale alla distribuzione binomiale P b (X r) costoso P b (X r) P(X r) per N grande Teorema: Se la variabile casuale X ha una distribuzione binomiale con parametri N e p, allora, per N
x ;x Soluzione Gli intervalli di confidenza possono essere ottenuti a partire dalla seguente identità: da cui si ricava: IC x ;x = +
ESERCIZIO 6.1 Si considerino i 0 campioni di ampiezza n = estratti da una popolazione X di N = 5 elementi distribuiti normalmente, con media µ = 13,6 e σ = 8,33. A partire dalle 0 determinazioni della
Test d Ipotesi Introduzione
Test d Ipotesi Introduzione Uno degli scopi più importanti di un analisi statistica è quello di utilizzare i dati provenienti da un campione per fare inferenza sulla popolazione da cui è stato estratto
Test per una media - varianza nota
Situazione Test per una media - varianza nota Popolazione N(µ,σ 2 ); varianza σ 2 nota. µ 0 numero reale fissato. Test di livello α per µ Statistica: Z n = X n µ 0 σ/ n. H 0 H 1 Rifiutiamo H 0 se p-value
Lezione 16. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 16. A. Iodice. Ipotesi statistiche
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 23 Outline 1 2 3 4 5 6 () Statistica 2 / 23 La verifica delle ipotesi Definizione Un ipotesi statistica
ESAME. 9 Gennaio 2017 COMPITO B
ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto
Capitolo 9 Verifica di ipotesi: test basati su un campione
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 9 Verifica di ipotesi: test basati su un campione Insegnamento: Statistica Corsi di Laurea Triennale in Economia Facoltà di Economia, Università
Un esempio. Ipotesi statistica: supposizione riguardante: un parametro della popolazione. la forma della distribuzione della popolazione
La verifica delle ipotesi In molte circostanze il ricercatore si trova a dover decidere quale, tra le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Approssimazione normale della Poisson (TLC) In un determinato tratto di strada il numero di incidenti
Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica
Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 8 Intervalli di confidenza Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università
Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione
Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione Alessandra Mattei Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) Università degli Studi di Firenze
Gli errori nella verifica delle ipotesi
Gli errori nella verifica delle ipotesi Nella statistica inferenziale si cerca di dire qualcosa di valido in generale, per la popolazione o le popolazioni, attraverso l analisi di uno o più campioni E
STATISTICA ESERCITAZIONE 13
STATISTICA ESERCITAZIONE 13 Dott. Giuseppe Pandolfo 9 Marzo 2015 Errore di I tipo: si commette se l'ipotesi nulla H 0 viene rifiutata quando essa è vera Errore di II tipo: si commette se l'ipotesi nulla
05. Errore campionario e numerosità campionaria
Statistica per le ricerche di mercato A.A. 01/13 05. Errore campionario e numerosità campionaria Gli schemi di campionamento condividono lo stesso principio di fondo: rappresentare il più fedelmente possibile,
Esercizi riassuntivi di Inferenza
Esercizi riassuntivi di Inferenza Esercizio 1 Un economista vuole stimare il reddito medio degli abitanti di una cittadina mediante un intervallo al livello di confidenza del 95%. La distribuzione del
Test di ipotesi. Test
Test di ipotesi Test E una metodologia statistica che consente di prendere una decisione. Esempio: Un supermercato riceve dal proprio fornitore l assicurazione che non più del 5% delle mele di tipo A dell
Intervalli di confidenza
Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
Caratterizzazione dei consumi energetici (parte 3)
ESERCITAZIONE 4 Caratterizzazione dei consumi energetici (parte 3) 4.1 CuSum: elementi di analisi statistica Il diagramma delle somme cumulate dei residui in funzione del tempo (CuSum) può essere in generale
Capitolo 10. Test basati su due campioni e ANOVA a una via. Statistica II ed. Levine, Krehbiel, Berenson Apogeo
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 10 Test basati su due campioni e ANOVA a una via Insegnamento: Statistica Applicata Corsi di Laurea in "Scienze e tecnologie Alimentari"
Distribuzioni campionarie
1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari
Capitolo 10. Test basati su due campioni e ANOVA a una via. Statistica II ed. Levine, Krehbiel, Berenson. Casa editrice: Pearson
Levine, Krehbiel, Berenson Statistica II ed. Casa editrice: Pearson Capitolo 10 Test basati su due campioni e ANOVA a una via Insegnamento: Statistica Corsi di Laurea Triennale in Economia Dipartimento
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Stimatore media campionaria Il tempo in minuti necessario a un certo impiegato dell anagrafe
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
Capitolo 8. Probabilità: concetti di base
1 Capitolo 8 Probabilità: concetti di base Statistica - Metodologie per le scienze economiche e sociali 2/ed S. Borra, A. Di Ciaccio Copyright 2008 The McGraw-Hill Companies srl 2 Concetti primitivi di
Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota)
STATISTICA (2) ESERCITAZIONE 5 26.02.2014 Dott.ssa Antonella Costanzo Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota) Il responsabile del controllo qualità di un azienda che
Il Test di Ipotesi Lezione 5
Last updated May 23, 2016 Il Test di Ipotesi Lezione 5 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura I anno, II semestre Il test di ipotesi Cuore della statistica inferenziale!
Intervallo di confidenza
Intervallo di confidenza Prof. Giuseppe Verlato, Prof. Roberto de Marco Sezione di Epidemiologia e Statistica Medica, Università di Verona campione inferenza popolazione Media Riportare sempre anche Stima
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE. a.a.
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 CDF empirica
UNIVERSITÀ DEGLI STUDI DI PERUGIA
SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale
Prova Scritta di METODI STATISTICI PER L AMMINISTRAZIONE DELLE IMPRESE (Milano, )
Università degli Studi di Milano Bicocca Scuola di Economia e Statistica Corso di Laurea in Economia e Amministrazione delle Imprese (ECOAMM) Prova Scritta di METODI STATISTICI PER L AMMINISTRAZIONE DELLE
Esercitazione 8 maggio 2014
Esercitazione 8 maggio 2014 Esercizio 2 dal tema d esame del 13.01.2014 (parte II). L età media di n gruppo di 10 studenti che hanno appena conseguito la laurea triennale è di 22 anni. a) Costruire un
Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezioni del 7/1/2003 e del 14/1/2003
Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezioni del 7/1/003 e del 14/1/003 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore
Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016
Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione
Matematica II: Calcolo delle Probabilità e Statistica Matematica
Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # 6 1 Test ed intervalli di confidenza per una popolazione Esercizio n. 1 Il calore (in calorie
Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali
Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si
STATISTICHE, DISTRIBUZIONI CAMPIONARIE E INFERENZA
Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 STATISTICHE, DISTRIBUZIONI CAMPIONARIE
Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.
5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema
Statistica. Esercitazione 14. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice. Verifica di ipotesi
Esercitazione 14 Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () 1 / 14 Ex.1: Verifica Ipotesi sulla media (varianza nota) Le funi prodotte da un certo macchinario hanno una
NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI VERIFICA DI IPOTESI PER IL CONFRONTO TRA DUE PROPORZIONI
NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI VERIFICA DI IPOTESI PER IL CONFRONTO TRA DUE PROPORZIONI IL PROBLEMA Si vuole verificare se un nuovo trattamento per la cura dell otite è più efficace
STATISTICA ESERCITAZIONE
STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in
Corso di Psicometria Progredito
Corso di Psicometria Progredito 4.1 I principali test statistici per la verifica di ipotesi: Il test t Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico
I appello di calcolo delle probabilità e statistica
I appello di calcolo delle probabilità e statistica A.Barchielli, L. Ladelli, G. Posta 8 Febbraio 13 Nome: Cognome: Matricola: Docente: I diritti d autore sono riservati. Ogni sfruttamento commerciale
Fondamenti di Psicometria. La statistica è facile!!! VERIFICA DELLE IPOTESI
Fondamenti di Psicometria La statistica è facile!!! VERIFICA DELLE IPOTESI INFERENZA STATISTICA Teoria della verifica dell ipotesi : si verifica, in termini probabilistici, se una certa affermazione relativa
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. La v.c. Uniforme Continua Secondo alcuni sondaggi sul sito della Apple (technical support site,
Test delle Ipotesi Parte I
Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test
STATISTICA AZIENDALE Modulo Controllo di Qualità
STATISTICA AZIENDALE Modulo Controllo di Qualità A.A. 009/10 - Sottoperiodo PROA DEL 14 MAGGIO 010 Cognome:.. Nome: Matricola:.. AERTENZE: Negli esercizi in cui sono richiesti calcoli riportare tutte la
Capitolo 10 Test delle ipotesi
Capitolo 10 Test delle ipotesi 1 Stima e verifica di ipotesi Modello di popolazione e campionamento: La popolazione viene descritta da una variabile aleatoria dipendente da un parametro incognito. Si ipotizza
Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 23/5/2017
Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 3/5/017 Contents 1 Intervalli di confidenza 1 Intervalli su un campione 1.1 Intervallo di confidenza per la media................................
Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi
Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi Esercizio 1 Data la variabile casuale X con funzione di densità f(x) = 2x, per 0 x 1; f(x) = 0 per x [0, 1], determinare: a) P( - 0,5 < X< 0,7) b)
Statistica Inferenziale
Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Riepilogo lezione 9 Abbiamo visto metodi per la determinazione di uno stimatore puntuale e casi per: Carattere con
Confronto tra due popolazioni Lezione 6
Last updated May 9, 06 Confronto tra due popolazioni Lezione 6 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura I anno, II semestre Concetti visti nell ultima lezione Le media
Il campionamento e l inferenza. Il campionamento e l inferenza
Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento
Analisi della regressione multipla
Analisi della regressione multipla y = β 0 + β 1 x 1 + β 2 x 2 +... β k x k + u 2. Inferenza Assunzione del Modello Classico di Regressione Lineare (CLM) Sappiamo che, date le assunzioni Gauss- Markov,
Test d ipotesi: confronto fra medie
Test d ipotesi: confronto fra medie Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona CONFRONTO FRA MEDIE 1) confronto fra una media campionaria e una media di popolazione
Statistica Metodologica Avanzato Test 1: Concetti base di inferenza
Test 1: Concetti base di inferenza 1. Se uno stimatore T n è non distorto per il parametro θ, allora A T n è anche consistente B lim Var[T n] = 0 n C E[T n ] = θ, per ogni θ 2. Se T n è uno stimatore con
LEZIONI DI STATISTICA MEDICA
LEZIONI DI STATISTICA MEDICA Lezione n.11 - Principi dell inferenza statistica - Campionamento - Distribuzione campionaria di una media e di una proporzione - Intervallo di confidenza di una media e di
a) Usando i seguenti livelli di significatività, procedere alla verifica di ipotesi, usando come ipotesi alternativa un'ipotesi unidirezionale:
ESERCIZIO 1 Da studi precedenti, il responsabile del rischio di una grande banca sa che l'ammontare medio di denaro che deve essere corrisposto dai correntisti che hanno il conto scoperto è pari a 240.
L Analisi della Varianza ANOVA (ANalysis Of VAriance)
L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 Concetti generali: Confronto simultaneo tra più di due popolazioni, esempi... La analisi della varianza estende il confronto a p gruppi con p>2.
DISTRIBUZIONI DI CAMPIONAMENTO
DISTRIBUZIONI DI CAMPIONAMENTO 12 DISTRIBUZIONE DI CAMPIONAMENTO DELLA MEDIA Situazione reale Della popolazione di tutti i laureati in odontoiatria negli ultimi 10 anni, in tutte le Università d Italia,
STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7:
esercitazione 7 p. 1/13 STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7: 20-05-2004 Luca Monno Università degli studi di Pavia [email protected] http://www.lucamonno.it
Distribuzione Normale
Distribuzione Normale istogramma delle frequenze di un insieme di misure relative a una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata
Quanti soggetti devono essere selezionati?
Quanti soggetti devono essere selezionati? Determinare una appropriata numerosità campionaria già in fase di disegno dello studio molto importante è molto Studi basati su campioni troppo piccoli non hanno
Teorema del Limite Centrale
Teorema del Limite Centrale Problema. Determinare come la media campionaria x e la deviazione standard campionaria s misurano la media µ e la deviazione standard σ della popolazione. È data una popolazione
Questo calcolo richiede che si conoscano media e deviazione standard della popolazione.
Università del Piemonte Orientale Corso di laurea in biotecnologie Corso di Statistica Medica La distribuzione t - student 1 Abbiamo visto nelle lezioni precedenti come il calcolo del valore Z, riferito
Statistica Metodologica
Statistica Metodologica Esercizi di Probabilita e Inferenza Silvia Figini e-mail: [email protected] Problema 1 Sia X una variabile aleatoria Bernoulliana con parametro p = 0.7. 1. Determinare la media
PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD.
PROVA SCRITTA DI STATISTICA cod. 4038 CLEA-CLAPI-CLEFIN-CLELI cod. 5047 CLEA-CLAPI-CLEFIN-CLEMIT 5 Novembre 003 SOLUZIONI MOD. A In 8 facoltà di un ateneo italiano vengono rilevati i seguenti dati campionari
IL CONFRONTO TRA LE VARIANZE DI DUE POPOLAZIONI
IL CONFRONTO TRA LE VARIANZE DI DUE POPOLAZIONI Perchè confrontare le varianze stimate in due campioni? Torniamo all'esempio dei frinosomi Per poter applicare il test t avevamo detto che le varianze, e
PSICOMETRIA. Corso di laurea triennale (classe 34) VERIFICA DELL IPOTESI CON DUE CAMPIONI
PSICOMETRIA Corso di laurea triennale (classe 34) VERIFICA DELL IPOTESI CON DUE CAMPIONI CAMPIONI INDIPENDENTI Campioni estratti casualmente dalla popolazione con caratteristiche omogenee Assegnazione
Esame di Statistica del 19 settembre 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova).
Esame di Statistica del 19 settembre 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si
Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni
La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con
Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione
Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2010/2011 Statistica Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza
Premessa: la dipendenza in media
Premessa: la dipendenza in media Supponiamo di avere K diversi livelli di un fattore che potrebbero influire su una determinata variabile. Per esempio supponiamo di domandarci se la diversificazione (intesa
STATISTICA. Esercizi vari
STATISTICA Esercizi vari Esercizio 5.6 p. 205 Variabile Coeff. Dev. std. Statistica t p-value Intercetta 23.384 1.592 14.691 0 Profondità -1.435 0.213-6.726 0 = 0.850 Esercizio 5.6 p. 205 Variabile Coeff.
Lezione VII: t-test. Prof. Enzo Ballone
Lezione VII: t-test Cattedra di Biostatistica Dipartimento di Scienze Biomediche, Università degli Studi G. d Annunzio di Chieti Pescara Prof. Enzo Ballone Un terzo problema: si considerino 2 campioni
R - Esercitazione 6. Andrea Fasulo Venerdì 22 Dicembre Università Roma Tre
R - Esercitazione 6 Andrea Fasulo [email protected] Università Roma Tre Venerdì 22 Dicembre 2017 Il modello di regressione lineare semplice (I) Esempi tratti da: Stock, Watson Introduzione all econometria
