STATISTICHE, DISTRIBUZIONI CAMPIONARIE E INFERENZA
|
|
|
- Michelangelo Chiesa
- 9 anni fa
- Visualizzazioni
Transcript
1 Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 STATISTICHE, DISTRIBUZIONI CAMPIONARIE E INFERENZA 2
2 SOMMARIO DEFINIZIONE DI INFERENZA STATISTICHE E DISTRIBUZIONI CAMPIONARIE STIMA PUNTUALE STIMA INTERVALLARE VERIFICA DI IPOTESI CARTE DI PROBABILITÀ 3 INFERENZA L inferenza statistica può essere definita come la disciplina che utilizza l informazione campionaria, per fare delle affermazioni sulla popolazione da cui il campione è stato tratto, in particolare sui parametri della distribuzione della popolazione stessa (solitamente µ e σ, vedere La rappresentazione e la sintesi dei dati ). Le affermazioni della statistica inferenziale sono di due tipi: STIMA: si vuole indicare un valore plausibile per il parametro della popolazione, sotto una delle 2 forme: 1. un valore ben definito (STIMA PUNTUALE) 2. un intervallo in cui molto verosimilmente il parametro sia incluso (STIMA INTERVALLARE) VERIFICA DI IPOTESI: indicare quale tra due specifiche ipotesi sul parametro (nulla o alternativa) sia da accettare 4
3 INFERENZA SUI PROCESSI PRODUTTIVI Si è visto come le distribuzioni di probabilità consentono di modellare e descrivere un fenomeno/processo di interesse. In relazione a questo obiettivo tuttavia, non è realistico pensare di conoscere i parametri che regolano tali fenomeni/processi e quindi è necessario ricorrere all inferenza per stimare tali parametri e per risolvere dei problemi decisionali che li riguardano. Ad esempio non è plausibile che sia possibile conoscere con esattezza o una dimensione media di una variabile numerica critica dal punto di vista delle prestazioni/qualità di un materiale, prodotto o processo o la frazione di unità non conformi, non idonee o difettose presenti in un processo di fabbricazione o la capacità di processo di rispondere alle specifiche di progettazione 5 STATISTICHE E DISTRIBUZIONI CAMPIONARIE I metodi inferenziali presuppongono che il campione di dati (x 1,..., x n ), ottenuto dalla popolazione di interesse, sia un campione casuale, cioè ottenuto in modo che le osservazioni {x i } siano indipendenti ed identicamente distribuite (IID). Ogni funzione dei dati campionari, che non contiene parametri ignoti, viene definita statistica. La media e la varianza campionaria (e la deviazione std), oltre a essere indici descrittivi della tendenza centrale e della variabilità del campione, sono esempi di statistiche. Notiamo che le statistiche, in quanto funzioni di v.a. sono loro stesse v.a. Se conosciamo la legge di distribuzione della popolazione dalla quale è preso il campione, possiamo determinare la legge di distribuzione della statistica, detta distribuzione campionaria. 6
4 CAMPIONAMENTO CAMPIONAMENTO DA DISTRIBUZIONE NORMALE Come conseguenza delle proprietà della distribuzione di una combinazione lineare di v.a. normali, se x=(x 1,..., x n ), è un campione casuale di numerosità n, estratto da una v.a. X normale con media µ e varianza σ 2, allora la media campionaria X N(µ, σ 2 /n). CAMPIONAMENTO DA ALTRE DISTRIBUZIONI In virtù del Teorema del Limite Centrale, senza riferimento al tipo di distribuzione della popolazione, la legge di distribuzione della media campionaria sopra citata è ancora approssimativamente valida: d 2 σ X N µ, n Il grado di approssimazione dipende dalla particolare forma della distribuzione di X: più è simmetrica migliore è l approssimazione. 7 CAMPIONAMENTO DA DISTRIBUZIONE BERNOULLIANA 8
5 CAMPIONAMENTO DA DISTRIBUZIONE DI POISSON 9 STIMA DEI PARAMETRI DI UNA VARIABILE CASUALE Una variabile casuale è caratterizzata dalla sua legge di probabilità che è identificata dai suoi parametri. Dato un valore plausibile dei parametri, siamo in grado di descrivere e rappresentare un modello statistico per la caratteristica di interesse. Possiamo definire come stimatore di un parametro ignoto, la statistica (che è una variabili casuale) che corrisponde a tale parametro. Uno stimatore puntuale è una statistica che produce un singolo valore numerico. Un particolare valore numerico, ottenuto sulla base dei dati campionari, è detto stima. Uno stimatore intervallare è un intervallo casuale entro cui il vero valore del parametro cade con un livello di probabilità assegnata (livello di confidenza). Questi intervalli sono usualmente indicati come intervalli di confidenza. 10
6 PROPRIETÀ DI UNO STIMATORE Preso un campione casuale di n osservazioni da una v.c. X, la media campionaria x, la varianza campionaria s 2, la deviazione standard campionaria s, sono rispettivamente stimatori puntuali della media della popolazione µ, della varianza della popolazione σ 2 e della deviazione standard della popolazione σ. Agli stimatori sono richieste alcune importanti proprietà, tra le quali le più rilevanti sono o non distorsione: il valore atteso (la media) dello stimatore deve essere uguale al parametro da stimare o minima varianza: (in qualità di v.c.) ad uno stimatore è richiesto di avere la minore variabilità possibile, rispetto a tra tutti i possibili stimatori del parametro o consistenza: al crescere della numerosità campionaria, la varianza dello stimatore deve tendere a zero 11 MEDIA, VARIANZA E DEVIAZIONE STANDARD CAMPIONARIE Mentre la media campionaria x e la varianza campionaria s 2, sono stimatori non distorti della media della popolazione µ, della varianza della popolazione σ 2, la deviazione standard campionaria s NON è uno stimatore non distorto della deviazione standard della popolazione σ. 12
7 INTERVALLI DI CONFIDENZA 13 INTERVALLI DI CONFIDENZA 14
8 INTERVALLI DI CONFIDENZA INTERVALLO DI CONFIDENZA DELLA MEDIA CON VARIANZA NOTA Furthermore, a 100(1 α)% upper confidence bound on µ is whereas a 100(1 α)% lower confidence bound on µ is 15 INTERVALLI DI CONFIDENZA INTERVALLO DI CONFIDENZA DELLA MEDIA CON VARIANZA IGNOTA Notiamo che la distribuzione di riferimento non è normale, bensì la v.a. t di Student. la 16
9 INTERVALLI DI CONFIDENZA INTERVALLO DI CONFIDENZA DELLA PROPORZIONE 17 INTERVALLI DI CONFIDENZA CONDIZIONI PER L INFERENZA A DUE CAMPIONI 18
10 INTERVALLI DI CONFIDENZA DELLA DIFFERENZA DELLE MEDIE VARIANZE NOTE VARIANZE IGNOTE MA UGUALI 19 INTERVALLI DI CONFIDENZA DELLA DIFFERENZA DELLE MEDIE VARIANZE IGNOTE E DIVERSE 20
11 INTERVALLO DI CONFIDENZA DELLA DIFFERENZA DI DUE PROPORZIONI 21 VERIFICA D IPOTESI Una ipotesi statistica è una affermazione sui parametri di una distribuzione di probabilità. Ipotesi Alternativa Ipotesi Nulla L ipotesi nulla corrisponde allo stato delle cose che possiamo presumere vero se non sono intervenuti fattori di cambiamento. Ad esempio: il processo è sotto controllo o il processo è conforme. L ipotesi alternativa corrisponde invece ad una eventuale situazione di allontanamento dall ipotesi nulla che l analista vorrebbe mettere in evidenza in caso si verificasse. L ipotesi alternativa può essere bilateriale (simbolo, come nell esempio) o unilateriale (simbolo > o <, a seconda dell interesse dell analista). 22
12 ERRORE DI I E II TIPO 23 ERRORE DI I E II TIPO 24
13 PROCEDURA DECISIONALE La procedura decisionale per condurre una verificare di ipotesi consta dei seguenti passi: specificare l ipotesi nulla e l ipotesi alternativa di interesse considerare l appropriata statistica (meglio detta statistica test ) in relazione alle ipotesi di cui sopra fissare l errore di I tipo α (detto anche livello di significatività del test ) ad un valore accettabile; questa operazione identifica nella distribuzione della statistica test due regioni: la regione di accettazione e la regione di rifiuto (detta anche regione critica ) in base ai dati campionari (ottenuti da un campione casuale IID dalla popolazione sotto indagine) calcolare il valore osservato della statistica test se tale valore appartiene alla regione critica si deve rifiutare l ipotesi nulla, altrimenti apparterrà alla regione di accettazione e non si può rifiutare l ipotesi nulla 25 IL P-VALUE NELLA PROCEDURA DECISIONALE In alternativa al considerare le due regioni di accettazione e rifiuto, è possibile prendere la decisione in base al p-value: Il p-value rappresenta la probabilità di osservare un valore della statistica test uguale o più estremo del valore che si calcola a partire dal campione, quando l ipotesi H 0 è vera. Il p-value è anche chiamato livello di significatività osservato, in quanto coincide con il più piccolo livello di significatività in corrispondenza del quale H 0 è rifiutata. In base a questo approccio, la regola decisionale per rifiutare H 0 è la seguente: Se il p-value è maggiore o uguale a α, l ipotesi nulla non è rifiutata. Se il p-value è minore di α, l ipotesi nulla è rifiutata. 26
14 UN ESEMPIO Consideriamo ad esempio il caso di una verifica di ipotesi sulla media (σ nota) dove la statistica test Z ha una distribuzione normale standard. In base ai dati campionari, il valore osservato della statistica test è Naturalmente, la decisione presa in base alla regione di accettazione/rifiuto è coerente a quella presa in base alla regola del p-value (= ). 27 ANALOGIA TRA VERIFICA D IPOTESI E INTERVALLI DI CONFIDENZA Pur rispondendo ad obiettivi e motivazioni sostanzialmente diverse, stima intervallare e verifica di ipotesi presentano molte analogie, tanto che queste due procedure inferenziali hanno come comune origine l espressione della distribuzione di probabilità di una stessa statistica test. Prendiamo, ad esempio, il caso della verifica di ipotesi sulla media (σ nota) ed il corrisponde problema di stima intervallare di µ (σ nota): entrambe le procedure si riferiscono alla distribuzione normale standard della statistica Z (vedi slide seguente). Fissato il livello di significatività α ed il livello di confidenza a (1 α), si può facilmente verificare che il valore µ 0 sotto ipotesi è compreso nell intervallo di confidenza se e solo se l ipotesi nulla viene accettata. Questo risultato è generalizzabile a tutte le altre procedure di stima intervallare e alla corrispondente verifica di ipotesi. 28
15 VERIFICA D IPOTESI SULLA MEDIA (VARIANZA NOTA) H 1 nell equazione 3-22 rappresenta una ipotesi alternativa a due code (o bilaterale) La procedura per testare questa ipotesi consiste: considerare un campione casuale di n osservazioni della variabile casuale X, calcolare la statistica test, e rigettare H 0 se Z 0 > Z α/2, dove Z α/2 è il percentile superiore a livello α/2 della distribuzione normale standard 29 VERIFICA D IPOTESI SULLA MEDIA (VARIANZA IGNOTA) Per le ipotesi alternative a due code, rigettare H 0 se t 0 > t α/2,n-1, dove t α/2,n-1, è il percentile superiore a livello α/2 della distribuzione t con n 1 gradi di libertà Per l ipotesi alternativa ad una coda, se H 1 : µ 1 > µ 0, rigettare H 0 if t 0 > t α,n 1, e se H 1 : µ 1 < µ 0, rigettare H 0 if t 0 < t α,n 1 Si potrebbe inoltre calcolare il P-value del t-test 30
16 ESEMPIO 31 ESEMPIO 32
17 ESEMPIO 33 VERIFICA D IPOTESI SULLA PROPORZIONE 34
18 VERIFICA D IPOTESI SULLA DIFFERENZE DI 2 MEDIE (VARIANZE NOTE) 35 VERIFICA D IPOTESI SULLA DIFFERENZE DI 2 MEDIE (VARIANZE IGNOTE) VARIANZE IGNOTE MA UGUALI 36
19 VERIFICA D IPOTESI SULLA DIFFERENZE DI 2 MEDIE (VARIANZE IGNOTE) VARIANZE IGNOTE E DIVERSE 37 VERIFICA D IPOTESI SULLA DIFFERENZE DI 2 PROPORZIONI 38
20 VALUTAZIONE DELLA POTENZA DEL TEST 39 RELAZIONE TRA POTENZA DEL TEST E DIMENSIONE CAMPIONARIA 40
21 CURVA OPERATIVA CARATTERISTICA 41
Distribuzioni campionarie. Antonello Maruotti
Distribuzioni campionarie Antonello Maruotti Outline 1 Introduzione 2 Concetti base Si riprendano le considerazioni fatte nella parte di statistica descrittiva. Si vuole studiare una popolazione con riferimento
Capitolo 11 Test chi-quadro
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corsi di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.
Carta di credito standard. Carta di credito business. Esercitazione 12 maggio 2016
Esercitazione 12 maggio 2016 ESERCIZIO 1 Si supponga che in un sondaggio di opinione su un campione di clienti, che utilizzano una carta di credito di tipo standard (Std) o di tipo business (Bsn), si siano
STIMA DELLA VARIANZA CAMPIONARIA
STIMA DELLA VARIANZA CAMPIONARIA Abbiamo visto che una stima puntuale corretta per il valore atteso µ delle variabili aleatorie X i è x n = (x 1 +.. + x n )/n. Una stima puntuale della varianza σ 2 delle
Indice. centrale, dispersione e forma Introduzione alla Statistica Statistica descrittiva per variabili quantitative: tendenza
XIII Presentazione del volume XV L Editore ringrazia 3 1. Introduzione alla Statistica 5 1.1 Definizione di Statistica 6 1.2 I Rami della Statistica Statistica Descrittiva, 6 Statistica Inferenziale, 6
Verifica delle ipotesi
Statistica inferenziale Stima dei parametri Verifica delle ipotesi Concetti fondamentali POPOLAZIONE o UNIVERSO Insieme degli elementi cui si rivolge il ricercatore per la sua indagine CAMPIONE Un sottoinsieme
LEZIONI DI STATISTICA MEDICA
LEZIONI DI STATISTICA MEDICA Lezione n.12 - Test statistico Sezione di Epidemiologia & Statistica Medica Università degli Studi di Verona IPOTESI SCIENTIFICA Affermazione che si può sottoporre a verifica
LEZIONI DI STATISTICA MEDICA
LEZIONI DI STATISTICA MEDICA Lezione n.11 - Principi dell inferenza statistica - Campionamento - Distribuzione campionaria di una media e di una proporzione - Intervallo di confidenza di una media e di
Esercizi di Probabilità e Statistica
Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 giugno 26 Statistica Esercizio Sia {X n } n una famiglia di v.a. di media µ e varianza σ 2. Verificare che X = n n X i σ 2 = n (X i µ) 2 S 2 = n
Esercitazioni di statistica
Esercitazioni di statistica Intervalli di confidenza Stefania Spina Universitá di Napoli Federico II [email protected] 10 Dicembre 2014 Stefania Spina Esercitazioni di statistica 1/43 Stefania Spina
Contenuti: Capitolo 14 del libro di testo
Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4
STATISTICA ESERCITAZIONE
STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in
Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica
Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 8 Intervalli di confidenza Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università
Statistica Inferenziale
Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione
Teorema del limite centrale TCL
Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni
NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI
NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI I METODI PER IL CONFRONTO DI MEDIE (Campioni non indipendenti) Prof.ssa G. Serio, Prof. P. Trerotoli, Cattedra di Statistica Medica, Università di Bari
Statistica. Capitolo 10. Verifica di Ipotesi su una Singola Popolazione. Cap. 10-1
Statistica Capitolo 1 Verifica di Ipotesi su una Singola Popolazione Cap. 1-1 Obiettivi del Capitolo Dopo aver completato il capitolo, sarete in grado di: Formulare ipotesi nulla ed ipotesi alternativa
Campionamento La statistica media campionaria e la sua distribuzione
Campionamento La statistica media campionaria e la sua distribuzione 1 Definisco il problema da studiare: es. tempo di percorrenza tra abitazione e università Carattere: tempo ossia v.s. continua Popolazione:
Esercitazioni di Statistica
Esercitazioni di Statistica La distribuzione delle statistiche campionarie Teorema del limite centrale Prof. Livia De Giovanni [email protected] Esercizio (Scozzafava) Una ferrovia metropolitana
Il Test di Ipotesi Lezione 5
Last updated May 23, 2016 Il Test di Ipotesi Lezione 5 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura I anno, II semestre Il test di ipotesi Cuore della statistica inferenziale!
Metodi statistici per le ricerche di mercato
Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per
PROBABILITÀ ELEMENTARE
Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti
Corso di STATISTICA EGA - Classe 1 aa Docenti: Luca Frigau, Claudio Conversano
Corso di STATISTICA EGA - Classe 1 aa 2017-2018 Docenti: Luca Frigau, Claudio Conversano Il corso è organizzato in 36 incontri, per un totale di 72 ore di lezione. Sono previste 18 ore di esercitazione
Tipi di variabili. Indici di tendenza centrale e di dispersione
Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)
Capitolo 7. Distribuzioni campionarie. Statistica. Levine, Krehbiel, Berenson
Levine, Krehbiel, Berenson Statistica Capitolo 7 Distribuzioni campionarie Insegnamento: Statistica Applicata Corsi di Laurea in "Scienze e tecnologie Alimentari" Unità Integrata Organizzativa Agraria,
Corso di Statistica Esercitazione 1.8
Corso di Statistica Esercitazione.8 Test su medie e proporzioni Prof.ssa T. Laureti a.a. 202-203 Esercizio Un produttore vuole monitorare i valori dei livelli di impurità contenute nella merce che gli
Test di ipotesi. Test
Test di ipotesi Test E una metodologia statistica che consente di prendere una decisione. Esempio: Un supermercato riceve dal proprio fornitore l assicurazione che non più del 5% delle mele di tipo A dell
Concetti principale della lezione precedente
Corso di Statistica medica e applicata 9 a Lezione Dott.ssa Donatella Cocca Concetti principale della lezione precedente I concetti principali che sono stati presentati sono: Variabili su scala nominale
05. Errore campionario e numerosità campionaria
Statistica per le ricerche di mercato A.A. 01/13 05. Errore campionario e numerosità campionaria Gli schemi di campionamento condividono lo stesso principio di fondo: rappresentare il più fedelmente possibile,
Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 23/5/2017
Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 3/5/017 Contents 1 Intervalli di confidenza 1 Intervalli su un campione 1.1 Intervallo di confidenza per la media................................
Esempio (Azzalini, pp. 6-15)
Inferenza statistica procedimento per indurre le caratteristiche non note di un aggregato a partire dalle informazioni disponibili su una parte di esso. Obiettivo del corso presentare la teoria ed i metodi
Statistica Metodologica
Statistica Metodologica Esercizi di Probabilita e Inferenza Silvia Figini e-mail: [email protected] Problema 1 Sia X una variabile aleatoria Bernoulliana con parametro p = 0.7. 1. Determinare la media
Esercitazione # 6. a) Fissato il livello di significatività al 5% si tragga una conclusione circa l opportunità di avviare la campagna comparativa.
Statistica Matematica A Esercitazione # 6 DUE MEDIE CON VARIANZE NOTE: Esercizio # Le ditte A e B producono sfere luminose. Una volta attivata la reazione chimica che rende luminosa una di queste sfere,
Richiami di inferenza statistica. Strumenti quantitativi per la gestione. Emanuele Taufer
Richiami di inferenza statistica Strumenti quantitativi per la gestione Emanuele Taufer Inferenza statistica Inferenza statistica: insieme di tecniche che si utilizzano per ottenere informazioni su una
Il campionamento e l inferenza. Il campionamento e l inferenza
Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento
STATISTICA APPLICATA Prof.ssa Julia Mortera. INTRODUZIONE al STATISTICA
STATISTICA APPLICATA Prof.ssa Julia Mortera INTRODUZIONE al CAMPIONAMENTO e all INFERENZA STATISTICA Inferenza Statistica Nell inferenza statistica si usano le statistiche campionarie per fare previsioni
COGNOME.NOME...MATR..
STATISTICA 29.01.15 - PROVA GENERALE (CHALLENGE) Modalità A (A) ai fini della valutazione verranno considerate solo le risposte riportate dallo studente negli appositi riquadri bianchi: in caso di necessità
Capitolo 9 Verifica di ipotesi: test basati su un campione
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 9 Verifica di ipotesi: test basati su un campione Insegnamento: Statistica Corsi di Laurea Triennale in Economia Facoltà di Economia, Università
Capitolo 12 La regressione lineare semplice
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università
ESAME. 9 Gennaio 2017 COMPITO A
ESAME 9 Gennaio 2017 COMPITO A Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto
Il test (o i test) del Chi-quadrato ( 2 )
Il test (o i test) del Chi-quadrato ( ) I dati: numerosità di osservazioni che cadono all interno di determinate categorie Prima di tutto, è un test per confrontare proporzioni Esempio: confronto tra numero
3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17
C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica
LE DISTRIBUZIONI CAMPIONARIE
LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria
Distribuzioni di Probabilità
Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale
Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25
Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità
ESAME. 9 Gennaio 2017 COMPITO B
ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto
1.1 Obiettivi della statistica Struttura del testo 2
Prefazione XV 1 Introduzione 1.1 Obiettivi della statistica 1 1.2 Struttura del testo 2 2 Distribuzioni di frequenza 2.1 Informazione statistica e rilevazione dei dati 5 2.2 Distribuzioni di frequenza
X = X 1 + X 2 +... + X n. dove. 1 se alla i-esima prova si ha un successo 0 se alla i-esima prova si ha un insuccesso. X i =
PIU DI UNA VARIABILE CASUALE Supponiamo di avere n variabili casuali, X 1, X 2,..., X n. Le n variabili casuali si dicono indipendenti se e solo se P(X 1 x 1 X 2 x 2... X n x n ) = = P(X 1 x 1 ) P(X 2
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento.
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento. Esercizio 1 Un chimico che lavora per una fabbrica di batterie, sta cercando una batteria
Capitolo 8. Probabilità: concetti di base
1 Capitolo 8 Probabilità: concetti di base Statistica - Metodologie per le scienze economiche e sociali 2/ed S. Borra, A. Di Ciaccio Copyright 2008 The McGraw-Hill Companies srl 2 Concetti primitivi di
Distribuzioni campionarie
1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari
Statistica Inferenziale
Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Riepilogo lezione 9 Abbiamo visto metodi per la determinazione di uno stimatore puntuale e casi per: Carattere con
Statistica Inferenziale
Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Esercizio 1 (stima puntuale) In un processo di controllo di qualità, siamo interessati al numero mensile di guasti
MISURE DI SINTESI 54
MISURE DI SINTESI 54 MISURE DESCRITTIVE DI SINTESI 1. MISURE DI TENDENZA CENTRALE 2. MISURE DI VARIABILITÀ 30 0 µ Le due distribuzioni hanno uguale tendenza centrale, ma diversa variabilità. 30 0 Le due
ALCUNI ELEMENTI DI VERIFICA DI IPOTESI STATISTICHE Vittorio Colagrande
ALCUNI ELEMENTI DI VERIFICA DI IPOTESI STATISTICHE Vittorio Colagrande Altro problema dell inferenza è quello della verifica di ipotesi: si ipotizza su una caratteristica di una popolazione oggetto di
Capitolo 9 Verifica di ipotesi: test basati su un campione
Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 9 Verifica di ipotesi: test basati su un campione Insegnamento: Statistica Corsi di Laurea Triennale in Economia Dipartimento di Economia
LA LUNGHEZZA DEI GENI UMANI (Es4.1)
STATISTICA INFERENZIALE: le caratteristiche della popolazione complessiva sono indotte da quelle osservate su un campione estratto dalla popolazione stessa(esempio exit poll) PROBLEMA: dato un campione
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Approssimazione normale della Poisson (TLC) In un determinato tratto di strada il numero di incidenti
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi
La distribuzione normale
La v.a. normale standardizzata La distribuzione normale standardizzata La distribuzione normale è difficilmente trattabile dal punto di vista calcolatorio, a causa dei suoi due parametri, µ e σ 2. Il ricorso
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
