Esempio (Azzalini, pp. 6-15)
|
|
|
- Aureliano Carella
- 8 anni fa
- Visualizzazioni
Transcript
1 Inferenza statistica procedimento per indurre le caratteristiche non note di un aggregato a partire dalle informazioni disponibili su una parte di esso. Obiettivo del corso presentare la teoria ed i metodi statistici che presiedono a tale procedimento. In particolare: - metodi basati sul concetto di verosimiglianza; - metodi parametrici; - metodi per la stima e la verifica di ipotesi. Un po di terminologia Unità statistiche elementi che compongono la popolazione e il campione (individui, soggetti, casi). Variabili caratteristiche (qualitative o quantitative) delle unità statistiche cui è rivolto l interesse dell inferenza statistica. Esempio (Azzalini, pp. 6-15) Popolazione partita di 5000 guarnizioni in materiale plastico Obiettivo valutare la qualità dei pezzi forniti Unità statistica la guarnizione della partita Variabile conformità delle guarnizioni alle specifiche tecniche Modalità della variabile: conforme/ non conforme (difettoso). In simboli: Conformità alle specifiche tecniche Non conforme 1 Conforme 0 θ = probabilità di produzione di una guarnizione non conforme Y Ber(θ), con 0 θ 1 Y (modello probabilistico del problema inferenziale) 1 2
2 Principali ragioni per il ricorso ad un campione: 1) esigenze di tempestività; 2) vincoli economici; 3) popolazioni virtuali, di dimensioni non finite; 4) campionamento distruttivo. Come deve essere il campione? - rappresentativo della popolazione (ovvero) - selezionato in base a caratteristiche indipendenti da quelle oggetto di studio (ovvero) - selezionato con un meccanismo di tipo casuale Un meccanismo casuale permette inoltre di valutare il grado di corrispondenza tra il campione e la popolazione. Esperimento aleatorio ausiliario Equivalenza ideale tra: popolazione urna unità statistiche palline (una pallina numerata per ciascuna unità) Estrazione casuale delle palline dall urna = estrazione casuale delle unità dalla popolazione. Possibili varianti del processo di estrazione (modelli di campionamento): - con o senza reinserimento di una pallina estratta - con probabilità di estrazione diversa per ciascuna pallina - con probabilità di estrazione che dipende dalla pallina estratta - con più di un urna (es.: estrazione casuale di un urna e successiva estrazione casuale di una pallina dall urna estratta) - ecc Campione casuale semplice (estrazione con reinserimento in cui gli elementi del campione provengono tutti dalla medesima popolazione) 3 4
3 Numero di unità da estrarre: n (Y1,, Yi,, Yn): campione PRIMA dell estrazione Yi è detta variabile casuale campionaria Il modello di campionamento determina: - la dipendenza / l indipendenza tra le Yi - il legame tra ciascuna Yi e il modello probabilistico. Nel caso di un campione casuale semplice: - le Yi sono indipendenti, - la distribuzione di ogni Yi coincide con quella specificata nel modello probabilistico per Y. Campione casuale semplice: composto da n v.c. campionarie I.I.D. Campione casuale semplice di numerosità n = 50 estratto dal lotto di 5000 guarnizioni: (y1= 1, y2= 0,, y50= 1) 50 x = y i guarnizioni sono difettose i= 1 50 x guarnizioni sono conformi. Poniamo che x = 4. k = numero di guarnizioni difettose nella partita =? θ = k/5000 =? 4 : 50 = k : 5000 = θ che risolta per θ ci dà: θ = 4/50. Campione casuale semplice di n = 50 guarnizioni (modello di campionamento) Modello statistico del problema inferenziale: - modello probabilistico: bernoulliano - modello di campionamento: casuale semplice. 5 6
4 Alcuni interrogativi aperti: 1) esistono altri modi ragionevoli di procedere per determinare θ? 2) qual è il grado di accuratezza del valore θ? 3) qual è un intervallo di valori plausibili per θ? 4) se n = 100 x = 8 cosa cambia? 5) il fornitore garantisce max 5% di guarnizioni difettose, il campione ne contiene l 8%; l industria che produce le pompe può contestare la partita? il campione è sfortunato? 6) esiste un criterio generale applicabile ad ogni situazione, anche più complessa? La risposta si basa su opportuni metodi di inferenza statistica, e dipende dalla relazione che sussiste tra k (ovvero θ) e x. Si tratta di una relazione regolata da leggi del calcolo delle probabilità. x è la determinazione di una variabile casuale X La distribuzione di probabilità di X è determinata: - dal modello probabilistico (bernoulliano); - dal modello di campionamento (casuale semplice): X Bin(n, θ) n x x n x P{X = x} = θ ( θ) X Bin(50, θ) 50 θ x x x P{X = x} = ( 1 θ) 1 x = 0, 1,, n 50 dove θ = k/5000, dove k = 0, 1,, 5000 x = 0, 1,, 50 (1.1) La (1.1) identifica una classe di funzioni di probabilità binomiali (uguali nella forma diverse nel parametro). Tra queste vi è anche quella da cui deriva il campione. 7 8
5 Cambiamento di terminologia: da inferenza sulle caratteristiche non note di un aggregato a inferenza sul valore del parametro θ della distribuzione di probabilità di una variabile casuale. La funzione di verosimiglianza Per x = 4 la (1.1) diventa: 50 4 L(θ) = θ 4 ( 1 θ) 46 con 0 θ 1 Problemi di inferenza statistica: 1) problemi di stima statistica 2) problemi di verifica di ipotesi statistiche 0,19 0,14 L(θ) 0,09 0,04-0,01-0,01 0,19 0,39 0,59 0,79 0,99 θ Esprime il grado di accordo tra i possibili valori di θ e il valore osservato di x. maxl(θ) quando θ= θˆ =4/50. θˆ = 4/50 è la stima di massima verosimiglianza di θ. 9 10
6 Nel caso generale: n θ x x n x L(θ) = ( ) 1 θ 0 θ 1, e la stima di θ di massima verosimiglianza è θˆ = x/n ATTENZIONE!!! La funzione di verosimiglianza non è una funzione di densità di probabilità!!! Stima intervallare Qual è un insieme di valori plausibili per θ? Verifica di ipotesi (θ1, θ2) Il problema della verifica di ipotesi e quello della stima intervallare sono legati tra loro. (θ1, θ2) = intervallo di valori plausibili per θ contenente la stima θˆ qualunque θ (θ1, θ2) è compatibile con θˆ θ0 = valore prefissato di riferimento per θ θ0 è compatibile con θˆ θ0 (θ1, θ2) L individuazione di una stima intervallare si basa sulla verosimiglianza: valori più plausibili del parametro hanno una verosimiglianza più alta. C è conformità tra l osservazione empirica (8% di guarnizioni difettose nel campione) ed un valore prefissato di riferimento per il parametro (il 5% garantito dal fornitore)? Sì, purché la discrepanza tra i due valori rientri entro i limiti attesi per la discrepanza tra il vero valore del parametro e una sua stima basata su un campione casuale
7 La verosimiglianza relativa L(θ)/ L( θˆ ) = L*(θ) 0 θ 1, Esempio di criterio per la determinazione di una stima intervallare di θ: L*(θ) > 1/5 = 0,2 0,99 0,99 0,79 0,79 L*(θ) 0,59 L(θ) 0,59 0,39 0,39 0,19 0,19-0,01-0,01 0,03 0,07 0,11 0,15 0,19 0,23 0,27 0 L*(θ) 1 L*(θ) = 1 per θ = θˆ L*(θ) è la verosimiglianza divisa per una costante (di normalizzazione) θ -0,01-0,01 0,03 0,07 0,11 0,15 0,19 0,23 0,27 Se θ = 0,05 L*(θ) = 0,668 l affermazione del fornitore non è incompatibile con il risultato sperimentale θ 13 14
8 n = 100, x = 8, θˆ = 8/100 0,99 0,79 n = 50 n = 100 0,59 L*(θ) 0,39 0,19-0,01-0,01 0,03 0,07 0,11 0,15 0,19 0,23 0,27 θ - la nuova verosimiglianza relativa è più concentrata attorno alla stima di massima verosimiglianza - valori del parametro diversi da θˆ sono meno verosimili - la stima intervallare si restringe attorno a θˆ - la verosimiglianza relativa per θ = 0,05 diminuisce (da 0,668 a 0,446) Il principio del campionamento ripetuto θˆ è una v.c; E( θˆ ) =? Var( θˆ ) =? θˆ - θ? 15
Il campionamento e l inferenza. Il campionamento e l inferenza
Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento
STATISTICA: esercizi svolti sulle VARIABILI CASUALI
STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri
LEZIONI DI STATISTICA MEDICA
LEZIONI DI STATISTICA MEDICA Lezione n.11 - Principi dell inferenza statistica - Campionamento - Distribuzione campionaria di una media e di una proporzione - Intervallo di confidenza di una media e di
Distribuzioni campionarie. Antonello Maruotti
Distribuzioni campionarie Antonello Maruotti Outline 1 Introduzione 2 Concetti base Si riprendano le considerazioni fatte nella parte di statistica descrittiva. Si vuole studiare una popolazione con riferimento
Statistica Metodologica Avanzato Test 1: Concetti base di inferenza
Test 1: Concetti base di inferenza 1. Se uno stimatore T n è non distorto per il parametro θ, allora A T n è anche consistente B lim Var[T n] = 0 n C E[T n ] = θ, per ogni θ 2. Se T n è uno stimatore con
Statistica Inferenziale
Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Riepilogo lezione 9 Abbiamo visto metodi per la determinazione di uno stimatore puntuale e casi per: Carattere con
Campionamento La statistica media campionaria e la sua distribuzione. Paola Giacomello Dip. Scienze Sociali ed Economiche Uniroma1
Campionamento La statistica media campionaria e la sua distribuzione 1 Definisco il problema da studiare: es. tempo di percorrenza tra abitazione e università Carattere: tempo ossia v.s. continua Popolazione:
STATISTICHE, DISTRIBUZIONI CAMPIONARIE E INFERENZA
Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 STATISTICHE, DISTRIBUZIONI CAMPIONARIE
LE DISTRIBUZIONI CAMPIONARIE
LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria
Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva
Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.
Statistica descrittiva e statistica inferenziale
Statistica descrittiva e statistica inferenziale 1 ALCUNI CONCETTI POPOLAZIONE E CAMPIONE Popolazione: insieme finito o infinito di unità statistiche classificate secondo uno o più caratteri Campione:
Variabili casuali. - di Massimo Cristallo -
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali
STATISTICA ESERCITAZIONE
STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in
Analizzare in termini quantitativi significa basarsi su dati e non su idee o ipotesi
Statistica La Statistica è una metodologia per l analisi quantitativa dei fenomeni collettivi, cioè fenomeni il cui studio richiede l osservazione di un insieme di manifestazioni individuali Analizzare
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE. a.a.
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 CDF empirica
PROBABILITÀ ELEMENTARE
Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti
Campionamento La statistica media campionaria e la sua distribuzione
Campionamento La statistica media campionaria e la sua distribuzione 1 Definisco il problema da studiare: es. tempo di percorrenza tra abitazione e università Carattere: tempo ossia v.s. continua Popolazione:
Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1
Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni
Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura
INDICE GENERALE Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura XI XIV XV XVII XVIII 1 LA RILEVAZIONE DEI FENOMENI
Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali
Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si
Tipi di variabili. Indici di tendenza centrale e di dispersione
Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)
Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio
Corso di Laurea: Diritto per le Imprese e le istituzioni a.a. 2016-17 Statistica Probabilità Lezioni : 11, 12 Docente: Alessandra Durio 1 Contenuti 1. Variabili casuali notevoli DISCRETE (uniforme, di
Esercitazioni di Statistica
Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni [email protected] Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto
Distribuzioni campionarie
1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari
b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta):
ESERCIZIO 1 Una grande banca vuole stimare l ammontare medio di denaro che deve essere corrisposto dai correntisti che hanno il conto scoperto. Si seleziona un campione di 100 clienti su cui si osserva
Cap. 7 Distribuzioni campionarie
Cap. 7 Distribuzioni campionarie 1 Popolazione e Campione Una popolazione è l insieme di tutte le unità oggetto di studio Tutti i potenziali votanti nelle prossime elezioni Tutti i pezzi prodotti oggi
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Stimatore media campionaria Il tempo in minuti necessario a un certo impiegato dell anagrafe
Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 23/5/2017
Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 3/5/017 Contents 1 Intervalli di confidenza 1 Intervalli su un campione 1.1 Intervallo di confidenza per la media................................
Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE
Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA
DISTRIBUZIONI DI CAMPIONAMENTO
DISTRIBUZIONI DI CAMPIONAMENTO 12 DISTRIBUZIONE DI CAMPIONAMENTO DELLA MEDIA Situazione reale Della popolazione di tutti i laureati in odontoiatria negli ultimi 10 anni, in tutte le Università d Italia,
Schema lezione 5 Intervalli di confidenza
Schema lezione 5 Intervalli di confidenza Non centrerò quella barca, ne sono convinto al 95% COMPRENDERE: Significato di intervallo di confidenza Uso degli stimatori come quantità di pivot per stime intervallari
1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.
Corso di Laurea INTERFACOLTÀ - Esercitazione di Statistica n 6 ESERCIZIO 1: 1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. lancio di
Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo
Statistica 2 Esercitazioni Dott. L 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: [email protected]
STATISTICA ESERCITAZIONE 9
STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione
a) 36/100 b) 1/3 c)
Da un urna contenente 10 palline, di cui 6 bianche e 4 nere, si estraggono due palline. Determinare la probabilità del seguente evento E=«le due palline sono bianche» nel caso di estrazioni a) con rimbussolamento
SOLUZIONI ESERCITAZIONE NR. 8 Test statistici
SOLUZIONI ESERCITAZIONE NR. 8 Test statistici ESERCIZIO nr. 1 Un campione casuale di dieci pazienti di sesso maschile in cura per comportamenti aggressivi nell ambito del contesto familiare è stato classificato
Prova scritta di STATISTICA. CDL Biotecnologie. (Programma di Massimo Cristallo - A)
Prova scritta di STATISTICA CDL Biotecnologie (Programma di Massimo Cristallo - A) 1. Un associazione di consumatori, allo scopo di esaminare la qualità di tre diverse marche di batterie per automobili,
Distribuzioni e inferenza statistica
Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione
Elementi di statistica per l econometria
Indice Prefazione i 1 Teoria della probabilità 1 1.1 Definizioni di base............................. 2 1.2 Probabilità................................. 7 1.2.1 Teoria classica...........................
L indagine campionaria Lezione 3
Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato
La progettazione di un indagine statistica
Dip. di Scienze Umane e Sociali [email protected] Outline 1 L indagine campionaria 2 3 Outline 1 L indagine campionaria 2 3 L indagine campionaria [1/2] Principalmente influenzata da: tempi costi
Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari"
Levine, Krehbiel, Berenson Statistica Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari" Unità Integrata Organizzativa
LEZIONE 2.5. corso di statistica. Francesco Lagona Università Roma Tre. LEZIONE 2.5 p. 1/12
LEZIONE 2.5 p. 1/12 LEZIONE 2.5 corso di statistica Francesco Lagona Università Roma Tre LEZIONE 2.5 p. 2/12 distribuzione doppia di due variabili aleatorie consideriamo la distribuzione doppia di due
Test delle Ipotesi Parte I
Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test
esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;
Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno
Teoria e tecniche dei test
Teoria e tecniche dei test Lezione 9 LA STANDARDIZZAZIONE DEI TEST. IL PROCESSO DI TARATURA: IL CAMPIONAMENTO. Costruire delle norme di riferimento per un test comporta delle ipotesi di fondo che è necessario
Contenuti: Capitolo 14 del libro di testo
Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,
Statistica Inferenziale
Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Riepilogo lezione 8 Abbiamo visto: Metodi per la determinazione di uno stimatore Metodo di massima verosimiglianza
Esercizi su variabili aleatorie discrete
Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare
3.1 La probabilità: eventi e variabili casuali
Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza
Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 15: Metodi non parametrici
Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 15: Metodi non parametrici 1 Metodi non parametrici Statistica classica La misurazione avviene con
Intervallo di confidenza
Intervallo di confidenza Prof. Giuseppe Verlato, Prof. Roberto de Marco Sezione di Epidemiologia e Statistica Medica, Università di Verona campione inferenza popolazione Media Riportare sempre anche Stima
Indagine statistica. Indagine Totale Indagine Campionaria Fasi dell indagine
10/1 Indagine statistica Indagine Totale Indagine Campionaria Fasi dell indagine definizione degli obiettivi definizione delle unità e delle variabili da rilevare scelta del periodo di riferimento individuazione
Statistica Inferenziale
Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione
Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25
Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità
3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17
C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica
Esercitazione 7 del corso di Statistica (parte 1)
Esercitazione 7 del corso di Statistica (parte 1) Dott.ssa Paola Costantini 5 Marzo 011 Esercizio 1 Sullo spazio campionario: = 1,,,, 5,, 7,,, considerando l esperimento casuale estrazione di un numero,
05. Errore campionario e numerosità campionaria
Statistica per le ricerche di mercato A.A. 01/13 05. Errore campionario e numerosità campionaria Gli schemi di campionamento condividono lo stesso principio di fondo: rappresentare il più fedelmente possibile,
Inferenza statistica Donata Rodi 04/10/2016
Inferenza statistica Donata Rodi 04/10/2016 Popolazione Campionamento Campione Parametri Inferenza Statistiche µ, ϭ 2 descrittive Stima X, s 2 Quale test? Parametrico o no Scala di misura 1 gruppo 2 gruppi
Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti:
Lezione 1 La Probabilità Scopo del Corso: Introduzione alla probabilità e alle procedure di inferenza statistica Introduzione ad alcune importanti tecniche di analisi multivariata dei dati Organizzazione
Esercizi di Probabilità e Statistica
Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 giugno 26 Statistica Esercizio Sia {X n } n una famiglia di v.a. di media µ e varianza σ 2. Verificare che X = n n X i σ 2 = n (X i µ) 2 S 2 = n
Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota)
STATISTICA (2) ESERCITAZIONE 5 26.02.2014 Dott.ssa Antonella Costanzo Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota) Il responsabile del controllo qualità di un azienda che
Esercizi/domande su spazio campionario, eventi ed insiemistica. Daniela Bertacchi
Esercizi/domande su spazio campionario, eventi ed insiemistica Daniela Bertacchi Lo spazio campionario Se Ω è uno spazio campionario, allora Ω è anche: A) l evento certo; B) un evento elementare; C) una
standardizzazione dei punteggi di un test
DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano [email protected] standardizzazione dei punteggi di un test serve a dare significato ai punteggi che una persona ottiene ad un test, confrontando la
Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica.
Probabilità e Statistica Esercitazioni a.a. 2009/200 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Estrazioni I Ines Campa Probabilità e Statistica - Esercitazioni -
Calcolo della probabilità
Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.
POPOLAZIONE CAMPIONE
CAMPIONAMENTO 1 POPOLAZIONE Insieme finito o infinito di unità legate da almeno una caratteristica comune, che consenta di stabilire un criterio di appartenenza alla popolazione stessa. Esempio Bambini
Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.
discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3
Teorema del limite centrale TCL
Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni
p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4
CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,
DISTRIBUZIONE NORMALE (1)
DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale
Statistica 1- parte II
Statistica 1- parte II Esercitazione 1 Dott.ssa Antonella Costanzo 11/02/2016 Esercizio 1. Modelli discreti di probabilità: le v.c. binomiale e geometrica (come caso particolare della v.c. binomiale negativa),
Statistica Inferenziale
Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Riepilogo lezione 6 Abbiamo visto: Definizione di popolazione, di campione e di spazio campionario Distribuzione
CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati
CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 1. Dati gli eventi A,B,C, ognuno dei quali implica il successivo, e tali che P (A) è metà della probabilità di B, che a sua volta ha probabilità metà di quella
4. Si supponga che il tempo impiegato da una lettera spedita dall Italia per arrivare a destinazione segua una distribuzione normale con media
Esercizi sulle distribuzioni, il teorema limite centrale e la stima puntuale Corso di Probabilità e Inferenza Statistica, anno 007-008, Prof. Mortera 1. Sia X la durata in mesi di una valvola per radio.
0 z < z < 2. 0 z < z 3
CALCOLO DELLE PROBABILITÀ o - 7 gennaio 004. Elettronica : 4; Nettuno: 3.. Data un urna di composizione incognita con palline bianche e nere, sia K = il numero di palline bianche nell urna è il doppio
Esercizi di Calcolo combinatorio: disposizioni
Calcolo combinatorio: disposizioni La Big Triple all ippodromo del luogo consiste nell indicare il corretto ordine di arrivo dei cavalli classificati tra i primi tre nella nona corsa. Se ci sono 12 cavalli
QUINCUNX: IL TUBO DI GALTON Prof. Antonio Lanzotti
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 QUINCUNX: IL TUBO DI GALTON Prof. Antonio Lanzotti A cura di: Ing.
