Statistica descrittiva e statistica inferenziale
|
|
|
- Giuliana Fiore
- 9 anni fa
- Visualizzazioni
Transcript
1 Statistica descrittiva e statistica inferenziale 1
2 ALCUNI CONCETTI POPOLAZIONE E CAMPIONE Popolazione: insieme finito o infinito di unità statistiche classificate secondo uno o più caratteri Campione: sottoinsieme proprio di una popolazione, estratto dalla popolazione medesima con un metodo di campionamento rappresentativo Statistica descrittiva (dati da popolazione e da campione) Statistica inferenziale (estensione dal campione alla popolazione) TEORIA DELLA PROBABILITÁ Legame tra descrizione quantitativa inferenza statistica 2
3 RICHIAMI DI CAMPIONAMENTO E INFERENZA STATISTICA Popolazione infinita o finita ma molto numerosa Limiti di risorse (denaro, tempo, organizzazione) all effettuazione di una rilevazione censuaria Studio dei fenomeni di interesse su un sottoinsieme della popolazione Campione statistico di numerosità n: sottoinsieme di n elementi (o di eventi elementari) tratti da un universo statistico Se nella scelta degli elementi da includere nel campione si rispettano alcune regole, è possibile valutare tali informazioni in termini probabilistici 3
4 4
5 Campionamento probabilistico (o casuale): è nota, o calcolabile, la probabilità di ogni unità statistica della popolazione di entrare a far parte del campione Selezione non probabilistica (campione non probabilistico): non è nota, né è ricavabile, la probabilità di inclusione nel campione Col campione casuale in qualche fase della procedura di estrazione del campione viene impiegato un elemento di casualizzazione (il controllo della procedura di estrazione delle unità che vanno a formare il campione viene sottratto all uomo e affidato al caso) 5
6 VARI TIPI DI CAMPIONE CAMPIONI PROBABILISTICI (ogni unità che lo compone viene estratta con una probabilità nota) CAMPIONAMENTO CASUALE SEMPLICE: tutte le unità della popolazione di riferimento hanno la stessa probabilità di essere incluse nel campione (sorteggio o tavola dei numeri casuali); CAMPIONAMENTO SISTEMATICO: differisce dal campionamento casuale semplice solo dal punto di viste della tecnica di estrazione dei soggetti; le unità campionarie vengono estratte scorrendo la lista dei soggetti e selezionandone uno ogni dato intervallo. CAMPIONAMENTO STRATIFICATO: si articola in tre fasi: a) innanzitutto bisogna suddividere la popolazione di riferimento in sottopopolazioni (dette strati) il più possibile omogenee; b) si estrae un campione da ogni strato; c) si uniscono i campioni corrispondenti ai singoli strati per ottenere il campione complessivo; CAMPIONAMENTO A STADI: la popolazione viene suddivisa in unità primarie e unità secondarie. Il campionamento si effettua in due stadi, cioè attraverso due estrazioni: si estrae un campione di unità primarie e successivamente un campione di unità secondarie all interno delle unità primarie estratte in precedenza. CAMPIONAMENTO A GRAPPOLI: simile al campionamento a stadi e viene utilizzata quando la popolazione risulta naturalmente suddivisa in gruppi di unità spazialmente contigue (famiglie, classi scolastiche, reparti di lavoro, ecc.). Non vengono estratte le unità elementari ma i grappoli e poi tutte le unità del grappolo estratto sono 6 incluse nel campione.
7 CAMPIONI NON PROBABILISTICI quando il disegno probabilistico non può essere impostato oppure si sa a priori che non potrà essere attuato nella fase di rilevazione CAMPIONAMENTO PER QUOTE: in primo luogo bisogna suddividere la popolazione di riferimento in un certo numero di strati definiti da alcune variabili delle quali si conosce la distribuzione; quindi si calcola il peso percentuale di ciascuno strato, cioè la quota di popolazione complessiva che appartiene ad ogni strato; infine, moltiplicando ciascuno di questi pesi per l ampiezza n del campione si stabiliscono le quote, cioè il numero di interviste da effettuare in ciascuno strato. Utilizzato nelle ricerche di mercato e nei sondaggi di opinione. CAMPIONAMENTO A VALANGA: consiste nell individuare i soggetti da inserire nel campione a partire dagli stessi soggetti intervistati. Si parte da un piccolo numero di individui dai requisiti richiesti, i quali sono utilizzati come informatori per identificare altri individui aventi le medesime caratteristiche; col procedere della rilevazione il numero dei nominativi dovrebbe crescere esponenzialmente. CAMPIONAMENTO A SCELTA RAGIONATA: le unità vengono scelte sulla base di alcune loro caratteristiche. Trova applicazione nel caso di campioni molto piccoli o in situazioni particolari nelle quali l importanza di alcune unità esige la loro inclusione ai fini della completezza delle informazioni raccolte. 7
8 ESTRAZIONE CON E SENZA RIPETIZIONE. Estrazione con ripetizione o Bernoulliana: Lascia invariata la popolazione di origine 1/N è la probabilità di estrazione di ciascun elemento Estrazione senza ripetizione o esaustiva: La popolazione di origine si riduce di una unità a seguito di ogni estrazione 1/N, 1/(N-1),, 1/(N-n+1) sono rispettivamente la probabilità di estrazione del primo, del secondo,, dell n.esimo elemento del campione 8
9 UNIVERSO DEI CAMPIONI ESTRAZIONE CON RIPETIZIONE N N N N... N = N n ESTRAZIONE SENZA RIPETIZIONE N ( N 1) ( N 2)... ( N n 1) N! ( N n)! ESTRAZIONE IN BLOCCO N ( N 1)... ( N n! N 1) N n 9
10 STATISTICHE CAMPIONARIE Qualsiasi funzione calcolata sui dati campionari, che non dipende da parametri ignoti Sono statistiche campionarie, tra l altro, tutti gli indici descrittivi (media, mediana, varianza, ecc.) quando siano calcolati su un campione piuttosto che sulla popolazione completa Le statistiche si indicano generalmente con le lettere dell alfabeto latino: si userà la lettera maiuscola per la variabile che assume i diversi valori di quella statistica nell universo campionario al variare del campione; con la lettera minuscola si indica, invece, il particolare valore assunto dalla statistica a seguito dell estrazione di un dato campione. 10
11 DISTRIBUZIONI CAMPIONARIE DELLE STATISTICHE Rappresenta tutti i possibili valori che la statistica può assumere al variare del campione nell universo campionario. L importanza della distribuzione campionaria delle statistiche ai fini dell inferenza è legata alla possibilità di determinare i limiti di validità dei risultati campionari per l intera popolazione. Tale distribuzione campionaria è una funzione discreta o continua che comprende tutti i valori di una statistica nell universo dei campioni, non va confusa con la distribuzione del carattere oggetto di studio. 11
Indagine statistica. Indagine Totale Indagine Campionaria Fasi dell indagine
10/1 Indagine statistica Indagine Totale Indagine Campionaria Fasi dell indagine definizione degli obiettivi definizione delle unità e delle variabili da rilevare scelta del periodo di riferimento individuazione
Campionamento La statistica media campionaria e la sua distribuzione. Paola Giacomello Dip. Scienze Sociali ed Economiche Uniroma1
Campionamento La statistica media campionaria e la sua distribuzione 1 Definisco il problema da studiare: es. tempo di percorrenza tra abitazione e università Carattere: tempo ossia v.s. continua Popolazione:
CAMPIONAMENTO - ALCUNI TERMINI CHIAVE
CAMPIONAMENTO - ALCUNI TERMINI CHIAVE POPOLAZIONE = qualsiasi insieme di oggetti (unità di analisi) di ricerca N = ampiezza della popolazione PARAMETRI = caratteristiche della popolazione [media, proporzione
Teoria e tecniche dei test
Teoria e tecniche dei test Lezione 9 LA STANDARDIZZAZIONE DEI TEST. IL PROCESSO DI TARATURA: IL CAMPIONAMENTO. Costruire delle norme di riferimento per un test comporta delle ipotesi di fondo che è necessario
Campionamento La statistica media campionaria e la sua distribuzione
Campionamento La statistica media campionaria e la sua distribuzione 1 Definisco il problema da studiare: es. tempo di percorrenza tra abitazione e università Carattere: tempo ossia v.s. continua Popolazione:
standardizzazione dei punteggi di un test
DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano [email protected] standardizzazione dei punteggi di un test serve a dare significato ai punteggi che una persona ottiene ad un test, confrontando la
Il Campionamento Statistico
Il Campionamento Statistico Campionamento sistematico (1/2) Introdotto per ovviare ai costi elevati del campionamento casuale e semplice; richiede la selezione casuale soltanto
Analizzare in termini quantitativi significa basarsi su dati e non su idee o ipotesi
Statistica La Statistica è una metodologia per l analisi quantitativa dei fenomeni collettivi, cioè fenomeni il cui studio richiede l osservazione di un insieme di manifestazioni individuali Analizzare
Indice Aspetti generali sul campionamento da popolazioni finite Campionamento probabilistico Disegno campionario semplice
Indice 1 Aspetti generali sul campionamento da popolazioni finite.. 1 1.1 Rilevazionicensuarieerilevazionicampionarie... 1 1.2 Lineemetodologichediunarilevazionestatistica... 3 1.3 Popolazioni, etichette,
Il campionamento e l inferenza. Il campionamento e l inferenza
Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento
Il campionamento statistico. prof. C.Guida
Il campionamento statistico prof. C.Guida Per determinare le caratteristiche fondamentali di una popolazione statistica non è sempre necessario analizzare tutta la popolazione, ma risulta sufficiente esaminare
POPOLAZIONE CAMPIONE
CAMPIONAMENTO 1 POPOLAZIONE Insieme finito o infinito di unità legate da almeno una caratteristica comune, che consenta di stabilire un criterio di appartenenza alla popolazione stessa. Esempio Bambini
Distribuzioni campionarie. Antonello Maruotti
Distribuzioni campionarie Antonello Maruotti Outline 1 Introduzione 2 Concetti base Si riprendano le considerazioni fatte nella parte di statistica descrittiva. Si vuole studiare una popolazione con riferimento
CON O SENZA REIMMISSIONE
CAMPIONAMENTO Per una buona inferenza o induzione statistica, bisogna affrontare il problema del campionamento, ovvero del come raccogliere un campione della popolazione affinché la si possa studiare induttivamente.
PRINCIPI DI EPIDEMIOLOGIA E SORVEGLIANZA Orvieto, 22 marzo Maria Miceli
PRINCIPI DI EPIDEMIOLOGIA E SORVEGLIANZA Orvieto, 22 marzo 2006 Campionamento Maria Miceli Cos è il campionamento? Procedura attraverso la quale alcuni membri della popolazione sono selezionati come rappresentatitivi
Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura
INDICE GENERALE Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura XI XIV XV XVII XVIII 1 LA RILEVAZIONE DEI FENOMENI
Distribuzioni campionarie
1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari
Il campionamento. Storia del campionamento nelle scienze sociali
Il campionamento Storia del campionamento nelle scienze sociali 1895 (Congresso internazionale di statistica a Berna) : A.Kiaer campionamento ragionato al posto di indagini censuarie 1926 : A.Bowley: campionamento
Il Campionamento. La popolazione di riferimento
Il Campionamento La popolazione di riferimento La popolazione (o universo) di una ricerca è quell insieme dei casi che teoricamente costituiscono l oggetto di indagine e che hanno in comune almeno una
b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta):
ESERCIZIO 1 Una grande banca vuole stimare l ammontare medio di denaro che deve essere corrisposto dai correntisti che hanno il conto scoperto. Si seleziona un campione di 100 clienti su cui si osserva
Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva
Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.
Statistica Inferenziale
Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione
Prova scritta di STATISTICA. CDL Biotecnologie. (Programma di Massimo Cristallo - A)
Prova scritta di STATISTICA CDL Biotecnologie (Programma di Massimo Cristallo - A) 1. Un associazione di consumatori, allo scopo di esaminare la qualità di tre diverse marche di batterie per automobili,
LE DISTRIBUZIONI CAMPIONARIE
LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria
L indagine campionaria Lezione 5
Anno accademico 2007/08 L indagine campionaria Lezione 5 Docente: prof. Maurizio Pisati Campionamento Il campionamento è l insieme delle operazioni finalizzate a generare il campione iniziale di una data
zio L'INDAGINE CAMPIONARIA Metodi, disegni e tecniche di campionamento
zio L'INDAGINE CAMPIONARIA Metodi, disegni e tecniche di campionamento B f F~ :_ ~ () ì E(.'.6.. CJ?.. E S T Luigi Fabbris L'indagine camp1onar1a Metodi, disegni e tecniche di campionamento La Nuova Italia
Alfredo Rizzi. Già professore ordinario di teoria dell inferenza statistica
Alfredo Rizzi Già professore ordinario di teoria dell inferenza statistica INDUZIONE E DEDUZIONE INDUZIONE : PROCEDIMENTO LOGICO CHE CONSISTE NELL INFERIRE DA OSSERVAZIONI ED ESPERIENZE PARTICOLARI I PRINCIPI
9. ELEMENTI DI TECNICA DEI CAMPIONI
UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso di Laurea in Scienze per l'investigazione e la Sicurezza 9. ELEMENTI DI TECNICA DEI CAMPIONI Prof.
Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota)
STATISTICA (2) ESERCITAZIONE 5 26.02.2014 Dott.ssa Antonella Costanzo Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota) Il responsabile del controllo qualità di un azienda che
La Statistica: introduzione e approfondimenti
La Statistica: introduzione e approfondimenti Definizione di statistica Che cosa è la statistica? La statistica è una disciplina scientifica che trae i suoi risultati dalla raccolta, dall elaborazione
Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti
Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti [email protected]) Cos è la Statistica caratterizzato
Andrea Manganaro. Tecniche di campionamento a confronto per i sistemi di audit regionali
Andrea Manganaro Tecniche di campionamento a confronto per i sistemi di audit regionali Definizione del problema Le regioni finanziano ogni anno diverse attività tramite due fondi europei: il Fondo Europeo
STATISTICA INFERENZIALE
STATISTICA INFERENZIALE Introduzione L insieme di tutte le unità statistiche che compongono il fenomeno collettivo considerato costituisce l universo statistico o, semplicemente, universo. L insieme costituito
Capitolo 7. Distribuzioni campionarie. Statistica. Levine, Krehbiel, Berenson
Levine, Krehbiel, Berenson Statistica Capitolo 7 Distribuzioni campionarie Insegnamento: Statistica Applicata Corsi di Laurea in "Scienze e tecnologie Alimentari" Unità Integrata Organizzativa Agraria,
LA LUNGHEZZA DEI GENI UMANI (Es4.1)
STATISTICA INFERENZIALE: le caratteristiche della popolazione complessiva sono indotte da quelle osservate su un campione estratto dalla popolazione stessa(esempio exit poll) PROBLEMA: dato un campione
Giovanna Boccuzzo Dipartimento di Scienze Statistiche Università di Padova
La costruzione dei dati e la rappresentazione di informazione statistica Giovanna Boccuzzo Dipartimento di Scienze Statistiche Università di Padova Da dove provengono i dati statistici? Fonti esaustive
Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni
La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con
STATISTICA ESERCITAZIONE
STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in
Lezione n. 1 _Complementi di matematica
Lezione n. 1 _Complementi di matematica INTRODUZIONE ALLA STATISTICA La statistica è una disciplina che si occupa di fenomeni collettivi ( cioè fenomeni in cui sono coinvolti più individui o elementi )
Esempi di confronti grafici
Esempi di confronti grafici Esempi di confronti grafici 7/3 Capitolo 3 LE MEDIE La media aritmetica La media geometrica La trimmed mean La mediana La moda I percentili Statistica - Metodologie per
Esercitazioni di statistica
Esercitazioni di statistica Gli indici statistici di sintesi: Gli indici di centralità Stefania Spina Universitá di Napoli Federico II [email protected] 7 Ottobre 2014 Stefania Spina Esercitazioni
a) Usando i seguenti livelli di significatività, procedere alla verifica di ipotesi, usando come ipotesi alternativa un'ipotesi unidirezionale:
ESERCIZIO 1 Da studi precedenti, il responsabile del rischio di una grande banca sa che l'ammontare medio di denaro che deve essere corrisposto dai correntisti che hanno il conto scoperto è pari a 240.
Modelli descrittivi, statistica e simulazione
Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone ([email protected]) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)
Distribuzione Normale
Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di
Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.
discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3
STATISTICHE, DISTRIBUZIONI CAMPIONARIE E INFERENZA
Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 STATISTICHE, DISTRIBUZIONI CAMPIONARIE
Esercizi di Probabilità e Statistica
Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 giugno 26 Statistica Esercizio Sia {X n } n una famiglia di v.a. di media µ e varianza σ 2. Verificare che X = n n X i σ 2 = n (X i µ) 2 S 2 = n
Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2010/2011 STATISTICA. Docente: Paolo Mazzocchi
Università degli Studi di Napoli Parthenope Facoltà di Scienze Motorie a.a. 2010/2011 STATISTICA [email protected] Programma 1) Tabelle: distribuzioni di frequenze; classi di valori; tabelle
NOZIONI DI CALCOLO DELLE PROBABILITÀ
NOZIONI DI CALCOLO DELLE PROBABILITÀ ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le ripetizioni, o occasioni
Statistica descrittiva II
Probabilità e Statistica Esercitazioni a.a. 009/010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Statistica descrittiva II Ines Campa Probabilità e Statistica - Esercitazioni
La statistica descrittiva per le variabili quantitative
La statistica descrittiva per le variabili quantitative E la sintesi dei dati Gli indici di posizione/tendenza centrale OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di
Statistica. Matematica con Elementi di Statistica a.a. 2015/16
Statistica La statistica è la scienza che organizza e analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva: dalla mole di dati
PSICOMETRIA. Corso di laurea triennale (classe 34) VERIFICA DELL IPOTESI CON DUE CAMPIONI
PSICOMETRIA Corso di laurea triennale (classe 34) VERIFICA DELL IPOTESI CON DUE CAMPIONI CAMPIONI INDIPENDENTI Campioni estratti casualmente dalla popolazione con caratteristiche omogenee Assegnazione
Teorema del limite centrale TCL
Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni
Individuazione della popolazione e della lista delle unità statistiche
14. INDAGINE STATISTICA L indagine statistica è la principale tecnica con cui si possono acquisire informazioni concernenti la manifestazione di un fenomeno su una data popolazione. L obiettivo principale
Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.
5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema
FENOMENI CASUALI. fenomeni casuali
PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI
REGRESSIONE E CORRELAZIONE
REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando
Variabili e scale di misura
Variabili e scale di misura Statistica descrittiva e Analisi multivariata Prof. Giulio Vidotto PSY-NET: Corso di laurea online in Discipline della ricerca psicologico-sociale IL CAMPIONAMENTO Esempio:
Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici)
Statistica La statistica può essere vista come la scienza che organizza ed analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva:
Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016
Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione
SMID a.a. 2005/2006 Corso di Statistica per la Ricerca Sperimentale I sondaggi 23/1/2006
SMID a.a. 2005/2006 Corso di Statistica per la Ricerca Sperimentale I sondaggi 23/1/2006 Scopo della ricerca Riuscire a determinare le caratteristiche di un fenomeno attraverso un campionamento di alcuni
Distribuzioni e inferenza statistica
Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione
RELAZIONE FINALE DEL DOCENTE. Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 4BPT A. S. 2015/2016
RELAZIONE FINALE DEL DOCENTE Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 4BPT A. S. 2015/2016 In relazione alla programmazione curricolare sono stati conseguiti, in termini di livello medio,
1. Introduzione ai disegni sperimentali. 5. Analisi della regressione lineare. 6. Confronto tra proporzioni di due o più campioni indipendenti
BIOSTATISTICA 1. Introduzione ai disegni sperimentali 2. Un carattere quantitativo misurato in un campione: elementi di statistica descrittiva e inferenziale 3. Confronto tra medie di due campioni indipendenti
Esercitazioni di Statistica
Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni [email protected] Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto
Obiettivi Strumenti Cosa ci faremo? Probabilità, distribuzioni campionarie. Stimatori. Indici: media, varianza,
Obiettivi Strumenti Cosa ci faremo? inferenza Probabilità, distribuzioni campionarie uso stima Stimatori significato teorico descrizione Indici: media, varianza, calcolo Misure di posizione e di tendenza
I disegni sperimentali e il controllo
I disegni sperimentali e il 1. Procedure del 2. Disegni monofattoriali 3. Disegni multifattoriali Il disegno sperimentale Popolazione Campionamento casuale Campione Misura variabili di interesse Gruppo
TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo
TOPOGRAFIA 2013/2014 L operazione di misura di una grandezza produce un numero reale che esprime il rapporto della grandezza stessa rispetto a un altra, a essa omogenea, assunta come unità di misura. L
Esercizi di Calcolo combinatorio: disposizioni
Calcolo combinatorio: disposizioni La Big Triple all ippodromo del luogo consiste nell indicare il corretto ordine di arrivo dei cavalli classificati tra i primi tre nella nona corsa. Se ci sono 12 cavalli
Approssimazione normale alla distribuzione binomiale
Approssimazione normale alla distribuzione binomiale P b (X r) costoso P b (X r) P(X r) per N grande Teorema: Se la variabile casuale X ha una distribuzione binomiale con parametri N e p, allora, per N
Elementi di statistica medica
DEFINIZIONE DI STATISTICA Elementi di statistica medica Introduzione Analisi quantitativa dei fenomeni collettivi allo scopo di descriverli e di individuare leggi e modelli che, classificando le loro variazioni,
dati e la loro significatività statistica con l utilizzo della calcolatrice per l analisi statistica dei dati.
Università degli Studi di Sassari Corso di Laurea in: Biotecnologie del Corso di: STATISTICA (CFU: 6) A.A. 2014/2015 Obiettivi formativi Fornire le conoscenze statistiche di base per la raccolta, l analisi,
Il campionamento. risultati ottenuti sul campione sono generalizzabili alla popolazione da cui è stato estratto
Il campionamento Il campionamento Insieme delle operazioni che consistono nella selezione, nelle intenzioni rappresentativa, degli appartenenti ad una popolazione, allo scopo di studiare una porzione della
