Teorema del limite centrale TCL

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Teorema del limite centrale TCL"

Transcript

1 Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni di distribuzioni possono essere qualsiasi purché abbiano valori attesi e varianze comparabili. L enunciato del teorema è il seguente: Sia X una variabile casuale somma di variabili casuali x i X = Σ a i x i indipendenti ciascuna avente legge di distribuzione qualsiasi ma con valori attesi comparabili e varianze finite dello stesso ordine di grandezza. la distribuzione di probabilità della variabile X tende, all aumentare del numero delle variabili aleatorie x i, alla distribuzione normale con valore atteso E(X) = Σa i E(x i ) e varianza Var(X) = Σa i2 Var(x i ).

2 Distribuzione di probabilità di x medio = Σx i /N Un applicazione notevole del TLC è la determinazione della distribuzione di probabilità della media campionaria La media campionaria è una particolare combinazione lineare x medio = Σx i /N delle misure x i che sono variabili aleatorie ripetute e indipendenti proveniente da una stessa distribuzione che può essere qualsiasi (uniforme, binomiale..) di cui si suppone debba esistere valore atteso e varianza finiti (anche se non noti).

3 TCL: Valor medio e varianza della distribuzione delle medie L enunciato del TCL in questo caso si formula nel modo seguente: Sia dato un campione di N variabili casuali statisticamente indipendenti tra loro e provenienti da una distribuzione di probabilità ignota qualsiasi della quale esistono sia il valore medio atteso che la varianza σ 2 ( anche se non note) Sotto queste condizioni la distribuzione delle medie campionarie che si possono ottenere da un numero M di campioni della stessa v.a. tende al crescere di N alla distribuzione normale con valor medio e varianza (e quindi deviazione standard) dati dalle relazioni seguenti X medio = σ 2 medie = σ 2 /N σ medie = σ / N

4 Naturalmente, il termine grande è relativo. Tanto più la distribuzione della popolazione è diversa dalla normale, tanto maggiore deve essere la dimensione N del campione affinché sia sensato applicare il teorema del limite centrale. La regola euristica è che un campione con N 30 sia sufficientemente grande da giustificare l applicazione del teorema del limite centrale. Un problema nasce quando la distribuzione della popolazione è discreta. In questo caso, l applicazione del teorema porta ad approssimare la distribuzione discreta con una distribuzione continua. Questo problema si risolve introducendo quella che viene chiamata la correzione di continuita

5 Gli studenti hanno già verificato nei risultati della loro esperienza (lancio dei dadi) il significato della convergenza statistica della media campionaria al valore atteso della popolazione da cui il campione è estratto. Nell esempio qui riportato viene visualizzata la convergenza deli valor medio di campioni di dimensioni N crescenti al valore atteso = 10.5 della distribuzione di probabilità relativa alla comparsa di una faccia di un dado equiprobabile di 20 facce.

6 Se non si conosce a priori la deviazione standard vera si usa la sua miglior approssimazione x e la convergenza statistica stabilita dal teorema del limite centrale si pone come Questo importantissimo risultato verrà ottenuto anche in seguito usando la propagazione degli errori (cap.8 del Cannelli) Esso permette di calcolare deviazione standard delle medie dalla deviazione standard delle singole misure; Si osservi che la deviazione standard delle medie è 1/ N volte più piccolo della deviazione standard delle singole misure; questo implica che le medie campionarie si distribuiscono intorno alla media delle medie (che si suppone essere il valore vero ) con una curva di distribuzione di Gauss la cui dev. standard è più stretta di quella della distribuzione delle misure di un fattore 1/ N

7

8 Convergenza delle distribuzioni Binomiale e di Poisson alla distribuzione di Gauss Una maniera alternativa per giustificare la convergenza delle distribuzioni Binomiale e di Poisson alla distribuzione di Gauss è basata sul Teorema del Limite Centrale. Infatti la variabile k (Binomiale e di Poisson) può essere vista come la somma di n variabili aleatorie, ciascuna delle quali assume un valore 0 o 1 con probabilità p e q k = i x i x i = 0,1 Allora al crescere di n, la variabile aleatoria somma deve presentare una distribuzione di probabilità che tende a quella normale.

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

STIMA DELLA VARIANZA CAMPIONARIA

STIMA DELLA VARIANZA CAMPIONARIA STIMA DELLA VARIANZA CAMPIONARIA Abbiamo visto che una stima puntuale corretta per il valore atteso µ delle variabili aleatorie X i è x n = (x 1 +.. + x n )/n. Una stima puntuale della varianza σ 2 delle

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

Indice. centrale, dispersione e forma Introduzione alla Statistica Statistica descrittiva per variabili quantitative: tendenza

Indice. centrale, dispersione e forma Introduzione alla Statistica Statistica descrittiva per variabili quantitative: tendenza XIII Presentazione del volume XV L Editore ringrazia 3 1. Introduzione alla Statistica 5 1.1 Definizione di Statistica 6 1.2 I Rami della Statistica Statistica Descrittiva, 6 Statistica Inferenziale, 6

Dettagli

Risultati esperienza sul lancio di dadi Ho ottenuto ad esempio:

Risultati esperienza sul lancio di dadi Ho ottenuto ad esempio: Dado B (6): 2 2 6 6 6 1 1 3 6 4 6 6 3 1 1 4 1 6 3 6 6 4 6 3 2 4 3 2 6 3 5 5 6 4 3 3 2 1 2 1 6 3 2 4 4 3 6 6 3 2 1 6 6 4 6 1 3 6 6 1 6 2 4 5 3 3 6 2 1 6 6 3 1 2 6 3 1 3 4 6 1 6 4 1 6 4 6 6 6 5 5 2 4 1 2

Dettagli

Distribuzioni campionarie. Antonello Maruotti

Distribuzioni campionarie. Antonello Maruotti Distribuzioni campionarie Antonello Maruotti Outline 1 Introduzione 2 Concetti base Si riprendano le considerazioni fatte nella parte di statistica descrittiva. Si vuole studiare una popolazione con riferimento

Dettagli

Modelli matematici di fenomeni aleatori Variabilità e casualità

Modelli matematici di fenomeni aleatori Variabilità e casualità Modelli matematici di fenomeni aleatori Variabilità e casualità La casualità è alla base della scelta degli individui che compongono un campione ai fini di un indagine statistica. La casualità è alla base

Dettagli

Corso di STATISTICA EGA - Classe 1 aa Docenti: Luca Frigau, Claudio Conversano

Corso di STATISTICA EGA - Classe 1 aa Docenti: Luca Frigau, Claudio Conversano Corso di STATISTICA EGA - Classe 1 aa 2017-2018 Docenti: Luca Frigau, Claudio Conversano Il corso è organizzato in 36 incontri, per un totale di 72 ore di lezione. Sono previste 18 ore di esercitazione

Dettagli

Distribuzioni di Probabilità

Distribuzioni di Probabilità Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale

Dettagli

ESAME. 9 Gennaio 2017 COMPITO A

ESAME. 9 Gennaio 2017 COMPITO A ESAME 9 Gennaio 2017 COMPITO A Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

PROBABILITÀ ELEMENTARE

PROBABILITÀ ELEMENTARE Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti

Dettagli

STATISTICHE, DISTRIBUZIONI CAMPIONARIE E INFERENZA

STATISTICHE, DISTRIBUZIONI CAMPIONARIE E INFERENZA Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 STATISTICHE, DISTRIBUZIONI CAMPIONARIE

Dettagli

Note sulla probabilità

Note sulla probabilità Note sulla probabilità Maurizio Loreti Dipartimento di Fisica Università degli Studi di Padova Anno Accademico 2002 03 1 La distribuzione del χ 2 0.6 0.5 N=1 N=2 N=3 N=5 N=10 0.4 0.3 0.2 0.1 0 0 5 10 15

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

ESAME. 9 Gennaio 2017 COMPITO B

ESAME. 9 Gennaio 2017 COMPITO B ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

Statistica. Lezione 4

Statistica. Lezione 4 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 4 a.a 2011-2012 Dott.ssa Daniela

Dettagli

1.1 Obiettivi della statistica Struttura del testo 2

1.1 Obiettivi della statistica Struttura del testo 2 Prefazione XV 1 Introduzione 1.1 Obiettivi della statistica 1 1.2 Struttura del testo 2 2 Distribuzioni di frequenza 2.1 Informazione statistica e rilevazione dei dati 5 2.2 Distribuzioni di frequenza

Dettagli

LA DISTRIBUZIONE NORMALE o DI GAUSS

LA DISTRIBUZIONE NORMALE o DI GAUSS p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici,

Dettagli

STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo

STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)

Dettagli

Cap. 7 Distribuzioni campionarie

Cap. 7 Distribuzioni campionarie Cap. 7 Distribuzioni campionarie 1 Popolazione e Campione Una popolazione è l insieme di tutte le unità oggetto di studio Tutti i potenziali votanti nelle prossime elezioni Tutti i pezzi prodotti oggi

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica La distribuzione delle statistiche campionarie Teorema del limite centrale Prof. Livia De Giovanni [email protected] Esercizio (Scozzafava) Una ferrovia metropolitana

Dettagli

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE 1. Distribuzione congiunta Ci sono situazioni in cui un esperimento casuale non si può modellare con una sola variabile casuale,

Dettagli

LA LUNGHEZZA DEI GENI UMANI (Es4.1)

LA LUNGHEZZA DEI GENI UMANI (Es4.1) STATISTICA INFERENZIALE: le caratteristiche della popolazione complessiva sono indotte da quelle osservate su un campione estratto dalla popolazione stessa(esempio exit poll) PROBLEMA: dato un campione

Dettagli

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Probabilità e Statistica

Probabilità e Statistica Probabilità e Statistica Variabili Casuali Approssimazioni Marco Pietro Longhi C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica a.s. 2018/2019 Marco Pietro Longhi Prob.

Dettagli

RICHIAMI DI CALCOLO DELLE PROBABILITÀ

RICHIAMI DI CALCOLO DELLE PROBABILITÀ UNIVERSITA DEL SALENTO INGEGNERIA CIVILE RICHIAMI DI CALCOLO DELLE PROBABILITÀ ing. Marianovella LEONE INTRODUZIONE Per misurare la sicurezza di una struttura, ovvero la sua affidabilità, esistono due

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statistica - metodologie per le scienze economiche e sociali /e S. Borra A. Di Ciaccio - McGraw Hill s. 9. Soluzione degli esercizi del capitolo 9 In base agli arrotondamenti effettuati nei calcoli si

Dettagli

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione del corso di Statistica Prof. Domenico Vistocco Alfonso Iodice D Enza May 30, 007 1 Esercizio Si consideri una popolazione caratterizzata dai numeri, 3, 6, 8, 11. Si considerino tutti i possibili

Dettagli

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con

Dettagli

PROBABILITA. Distribuzione di probabilità

PROBABILITA. Distribuzione di probabilità DISTRIBUZIONI di PROBABILITA Distribuzione di probabilità Si definisce distribuzione di probabilità il valore delle probabilità associate a tutti gli eventi possibili connessi ad un certo numero di prove

Dettagli

Verifica delle ipotesi

Verifica delle ipotesi Statistica inferenziale Stima dei parametri Verifica delle ipotesi Concetti fondamentali POPOLAZIONE o UNIVERSO Insieme degli elementi cui si rivolge il ricercatore per la sua indagine CAMPIONE Un sottoinsieme

Dettagli

Compiti tematici capp. 5,6

Compiti tematici capp. 5,6 Compiti tematici capp. 5,6 a cura di Giovanni M. Marchetti 2016 ver. 0.6 Indice Esercizi dai compiti a casa (HW..................................... 8 1. Se X e Y sono due variabili casuali independenti,

Dettagli

Statistica Corso Base (Serale) Dott.ssa Cristina Mollica

Statistica Corso Base (Serale) Dott.ssa Cristina Mollica Statistica Corso Base Serale Dott.ssa Cristina Mollica [email protected] Campionamento Esercizio 1. Da una ricerca si è osservato che il peso del prodotto A varia tra i e i 530 grammi. 1 Ipotizzando

Dettagli

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari"

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in Scienze e Tecnologie Alimentari Levine, Krehbiel, Berenson Statistica Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari" Unità Integrata Organizzativa

Dettagli

APPUNTI DI STATISTICA INFERENZIALE. Avalle Fulvia, maggio 2014, ITSOS MARIE CURIE CLASSI 4A BIO e 4B BIO

APPUNTI DI STATISTICA INFERENZIALE. Avalle Fulvia, maggio 2014, ITSOS MARIE CURIE CLASSI 4A BIO e 4B BIO APPUNTI DI STATISTICA INFERENZIALE Avalle Fulvia, maggio 2014, ITSOS MARIE CURIE CLASSI 4A BIO e 4B BIO PREREQUISITI VARIABILE ALEATORIA (QUANTITATIVA): è una funzione che associa un numero reale ad ogni

Dettagli

Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25

Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25 Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. La variabile Uniforme Continua Data una scheda telefonica da 5 euro di cui non si sa se sia

Dettagli

STATISTICA ESERCITAZIONE

STATISTICA ESERCITAZIONE STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in

Dettagli

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14 Esercitazione del 0/06/05 Probabilità e Statistica Foglio David Barbato Esercizio. Ci sono 0 monetine di cui 5 con due teste, con due croci e regolari una moneta regolare ha una faccia testa e una faccia

Dettagli

CAMPIONAMENTO - ALCUNI TERMINI CHIAVE

CAMPIONAMENTO - ALCUNI TERMINI CHIAVE CAMPIONAMENTO - ALCUNI TERMINI CHIAVE POPOLAZIONE = qualsiasi insieme di oggetti (unità di analisi) di ricerca N = ampiezza della popolazione PARAMETRI = caratteristiche della popolazione [media, proporzione

Dettagli

Valutazione incertezza di categoria B

Valutazione incertezza di categoria B Valutazione incertezza di categoria B La valutazione consiste nell assegnare alla grandezza x uno scarto tipo σ in base alle informazioni disponibili Le informazioni riguardano: ) Gli estremi dell intervallo

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 205- P.Baldi Lista di esercizi 5, 8 febbraio 20. Esercizio Si fanno 25 estrazioni

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

STATISTICA: esercizi svolti sulle VARIABILI CASUALI

STATISTICA: esercizi svolti sulle VARIABILI CASUALI STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri

Dettagli

Schema lezione 5 Intervalli di confidenza

Schema lezione 5 Intervalli di confidenza Schema lezione 5 Intervalli di confidenza Non centrerò quella barca, ne sono convinto al 95% COMPRENDERE: Significato di intervallo di confidenza Uso degli stimatori come quantità di pivot per stime intervallari

Dettagli

Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi

Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi Esercizio 1 Data la variabile casuale X con funzione di densità f(x) = 2x, per 0 x 1; f(x) = 0 per x [0, 1], determinare: a) P( - 0,5 < X< 0,7) b)

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

STATISTICA ESERCITAZIONE. 1) Specificare la distribuzione di probabilità della variabile e rappresentarla graficamente;

STATISTICA ESERCITAZIONE. 1) Specificare la distribuzione di probabilità della variabile e rappresentarla graficamente; 0.00 0.05 0.10 0.15 0.20 STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 4 Maggio 2015 Esercizio 1 (Uniforme discreta) Si consideri l esperimento lancio di un dado non truccato. Sia X la variabile casuale

Dettagli