Assunzioni (Parte I)
|
|
|
- Rosalia Amato
- 8 anni fa
- Visualizzazioni
Transcript
1 Assunzioni (Parte I) A M D Marcello Gallucci [email protected] Lezione 10
2 Modello Lineare Generale La regressione semplice e multipla e l'anova sono sottocasi del modello lineare generale (GLM) La validità del GLM applicato ai propri dati dipende dalla soddisfazione di alcune assunzioni relative ai dati Se le assunzioni sono violate, i risultati saranno distorti
3 Assunzioni della Regressione Semplice Quando conduciamo una regressione o una ANOVA, facciamo implicitamente alcune assunzioni sui dati: Scopo dell operazione Stimiamo gli effetti di relazione Assunzione associata La relazione è lineare Stimiamo la varianza spiegata La varianza di errore è uguale per tutti i valori predetti Testiamo la significatività Gli errori della regressione sono normalmente distribuiti
4 Assunzioni e Conseguenze La violazione di queste assunzioni (se non sono vere) porta a risultati non corretti Assunzione Se violata La relazione è lineare Non apprezziamo la relazione La varianza di errore è uguale per tutti i valori predetti La varianza spiegata sarà distorta Gli errori della regressione sono normalmente distribuiti Il valore-p sarà diverso dal vero rischio di commettere un errore nel rifiutare H0
5 Assunzione 1: Linearità Come visto precedentemente, la relazione che riusciamo a catturare con la regressione è una relazione lineare
6 Relazioni non lineari Le relazioni non lineari non sono catturate dalla correlazione/regressione Le variabili A e B sono associate in maniera perfetta, eppure la loro correlazione è solo 0.2 B La correlazione/regressione è in grado di quantificare solo le relazioni lineari A
7 Relazioni non lineari La parte non lineare della relazione si perde in quanto le concordanza tra scostamenti (covarianza) è diversa ai diversi valori delle variabili Incrementa qui 5,0 4,0 r=0.1 Incrementa qui Decrementa qui 3,0 0 Z(q) 2,0 1,0 Incrementa qui 0,0-1,0 Incrementa qui 0 In media incrementa di.8 dev.stand. per ogni dev.stad. dell altra -2,0-4,0-2,0 0,0 2,0 4,0 Z(x) In media incrementa di solo.1 dev.stand. Per ogni dev.stad. dell altra Lezione: 7
8 Assunzione 2: Omoschedasticità Quando stimiamo la varianza spiegata assumiamo che la varianza di errore sia uguale per tutti i valori predetti, cioè gli errori siano omoschedastici
9 Assunzione 2: Omoschedasticità Consideriamo una regressione con atteggiamento verso il wrestling come VD e classe di età (giovani, adulti, anziani) come VI Varianza VD per giovani = valore predetto attewrest Varianza VD per adulti Varianza VD per anziani classeeta
10 Assunzione 2: Omoschedasticità Ricordiamo (lezione 9) che la varianza spiegata può essere intesa come varianza totale meno varianza di errore R 2 è dato dalla percentuale di varianza non di errore s 2 =s 2 2 s y reg e s 2 =s 2 2 s reg y e R 2 = s y 2 s e 2 s y 2 attewrest classeeta
11 Assunzione 2: Omoschedasticità classeeta Totale Ricordiamo che la varianza spiegata può essere intesa come varianza totale meno varianza di errore Se le varianze sono diverse ai diversi valori della VI, la varianza di errore sarà diversa per i diversi valori Report Deviazione std. Deviazione std. Deviazione std. Deviazione std. Errore per i diversi livelli di VI attewrest z attewrest Errore piccolo per i giovani e anziani Errore grande per gli adulti classeeta
12 Violazione Omoschedasticità Ricordiamo (lezione 9) che la varianza spiegata può essere intesa come varianza totale meno varianza di errore Dunque l R 2 non sarà accurato, in quanto a diversi valori spiegheremo quantità di verse di varianza Modello 1 Riepilogo del modello R-quadrato Errore std. R R-quadrato corretto della stima.142 a a. Stimatori: (Costante), classeeta attewrest classeeta
13 Assunzione 3: Normalità Quando testiamo l ipotesi nulla sui coefficienti di regressione, assumiamo che gli errori associati alla regressione siano distribuiti normalmente
14 Errori di regressione Ricordiamo che la predizione non corrisponde di norma ai valori osservati Discrepanza osservati-predetti y i =a b yx x i predetti y i y i =y i a b yx x i errore Dunque i valori osservati di Y possono essere espressi come somma dei valori predetti e l errore y i = a b yx x i y i y i retta errore
15 Distribuzione degli errori Tali errori si assume essere distribuiti normalmente. Cioè se facciamo un istogramma degli errori per tutti i soggetti, otteniamo uan distribuzione fatta a campana 8.00 Istogramma Variabile dipendente: attewrest attetv Frequenza classeeta Regressione Residuo standardizzato Mean = -5.31E-16 Std. Dev. = N = 100 Attegiamento TV = classe eta
16 Violazione normalità Se tali errori non sono distribuiti normalmente, il test di significatività non sarà corretto Istogramma Variabile dipendente: attepol attepol Frequenza classeeta Regressione Residuo standardizzato Mean = -6.33E-17 Std. Dev. = N = 100 Attegiamento politico = classe eta
17 Test delle assunzioni
18 Analisi dei residui Per determinare se e quanto le assunzioni sono rispettare, è possible analizzare i residui della regressione/anova y i y i =y i a b yx x i
19 Calcolare i residui Il calcolo dei residui (di norma fatto dal software automaticamente) consta nella mera sottrazione, per ogni soggetto, del punteggio predetto da quello osservato y i y i =y i a b yx x i
20 Calcolare i residui Nell'interfaccia SPSS, accediamo all'opzione Salva
21 Calcolare i residui Chiediamo di salvare i residui ed i valori predetti Cosi' facendo verranno create due variabili PRE= valori predetti RES= valori residui
22 Controllo assunzioni Linearità e omoschedasticità: Se la relazione tra le variabili è lineare e l'assunzione di omoschedasticità è rispettata, lo scatterplot dei predetti vs residui deve avere una forma a casuale rispetto all'asse delle X
23 Omoschedastico Sembrano distribuiti a caso
24 Possibili violazioni Non sembrano distribuiti a caso
25 Esempi VI Continua Sembrano distribuiti a caso Non Sembrano distribuiti a caso
26 Esempi VI categorica Non Sembrano distribuiti a caso
27 Possibili violazioni Presenza di casi estremi outlier
28 Outlier Outlier o influential points sono residui di molto discordanti con la distribuzione nel campione. Essi corrispondono a soggetti con valori estremi o nella variabile dipendente o nella indipendente. Gli outlier si eliminano dall'analisi
29 Outlier Outlier o influential points sono residui di molto discordanti con la distribuzione nel campione. Essi corrispondono a soggetti con valori estremi o nella variabile dipendente o nella indipendente. Gli outlier si eliminano dall'analisi
30 Normalità dei residui Per verificare la normalità dei residui (cioè che si distribuiscano secondo una distribuzione Gaussiana normale), osserveremo l'istogramma
31 Test di Normalità E' possibile testare l'ipotesi nulla che la distribuzione dei residui sia normale: test di Kolmogorov-Smirnov Il test di Kolmogorv-Smirnov testa la differenza tra la distribuzione dei residui e una normale gaussiana
32 Test di Normalità E' possibile testare l'ipotesi nulla che la distribuzione dei residui sia normale: test di Kolmogorov-Smirnov Il test di Kolmogorv-Smirnov testa la differenza tra la distribuzione dei residui e una normale gaussiana Se il test NON è significativo, l'assunzione di normalità è rispettata
33 Normalità dei residui Per verificare la normalità dei residui (cioè che si distribuiscano secondo una distribuzione Gaussiana normale), osserveremo l'istogramma
34 Test di Normalità E' possibile testare l'ipotesi nulla che la distribuzione dei residui sia normale: test di Kolmogorov-Smirnov Il test di Kolmogorv-Smirnov testa la differenza tra la distribuzione dei residui e una normale gaussiana
35 Verifica assunzioni Per poter affermare che i risultati della nostra regressione/anova sono validi, è necessario che i dati rispettino le assunzioni É possibile verificare le assunzioni analizzando i residui della regressione/anova Il diagramma di dispersione che lega i valori predetti ai residui deve avere un andamento piatto, simetrico e regolare (banda costante senza outliers) La distribusione dei residui deve essere normale (test di Kolmogorov-Smirnov) Nella prossima lezione affronteremo dei possibili rimedi alla violazione delle assunzioni
36 Fine Fine della Lezione X
Introduzione all Analisi della Varianza (ANOVA)
Introduzione all Analisi della Varianza (ANOVA) AMD Marcello Gallucci [email protected] Variabili nella Regressione Nella regressione, la viariabile dipendente è sempre quantitativa e, per quello
Regressione Lineare Semplice e Correlazione
Regressione Lineare Semplice e Correlazione 1 Introduzione La Regressione è una tecnica di analisi della relazione tra due variabili quantitative Questa tecnica è utilizzata per calcolare il valore (y)
Il modello di regressione
Il modello di regressione Capitolo e 3 A M D Marcello Gallucci Milano-Bicocca Lezione: II Concentti fondamentali Consideriamo ora questa ipotetica ricerca: siamo andati in un pub ed abbiamo contato quanti
Statistica multivariata Donata Rodi 17/10/2016
Statistica multivariata Donata Rodi 17/10/2016 Quale analisi? Variabile Dipendente Categoriale Continua Variabile Indipendente Categoriale Chi Quadro ANOVA Continua Regressione Logistica Regressione Lineare
Analisi Multivariata dei Dati. Regressione Multipla
Analisi Multivariata dei Dati Regressione Multipla A M D Marcello Gallucci Milano-Bicocca Lezione: III Effetti multipli Consideriamo ora il caso in cui la variabile dipendente possa essere spiegata da
Il modello lineare misto
Il modello lineare misto (capitolo 9) A M D Marcello Gallucci Univerisità Milano-Bicocca Lezione: 15 GLM Modello Lineare Generale vantaggi Consente di stimare le relazioni fra due o più variabili Si applica
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è
viii Indice generale
Indice generale 1 Introduzione al processo di ricerca 1 Sommario 1 Il processo di ricerca 3 Concetti e variabili 5 Scale di misura 8 Test di ipotesi 10 Evidenza empirica 10 Disegni di ricerca 11 Sintesi
Modelli Lineari Generalizzati. (Cap. 10) Marcello Gallucci Univerisità Milano-Bicocca
Modelli Lineari Generalizzati (Cap. 0) Marcello Gallucci Univerisità Milano-Bicocca Preludio La maggior parte delle comuni tecniche statistiche volte ad individuare le relazioni fra variabili, quali Correlazioni,
La multicollinearità sorge quando c è un elevata correlazione tra due o più variabili esplicative.
Lezione 14 (a cura di Ludovica Peccia) MULTICOLLINEARITA La multicollinearità sorge quando c è un elevata correlazione tra due o più variabili esplicative. In un modello di regressione Y= X 1, X 2, X 3
Esercizi di statistica
Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
Regressione Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007
Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il costo mensile Y di produzione e il corrispondente volume produttivo X per uno dei propri stabilimenti. Volume
docente: J. Mortera/P. Vicard Nome
A opportuni passaggi). Verrà accettato in consegna solo il presente plico. 2. [9] Una certa zona è servita da 4 compagnie telefoniche. Per ciascuna compagnia è stato rilevato il costo al minuto (in centesimi
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA PROCEDURA/TECNICA DI ANALISI DEI DATI SPECIFICAMENTE DESTINATA A STUDIARE LA RELAZIONE TRA UNA VARIABILE NOMINALE (ASSUNTA
Analisi Multivariata dei Dati
Analisi Multivariata dei Dati Introduzione al corso e al modello statistico A M D Marcello Gallucci Milano-Bicocca Lezione: I Programma Odierno I numeri del corso Programma del corso Concetti Statistici
Regressione lineare semplice
Regressione lineare semplice Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Statistica con due variabili var. nominale, var. nominale: gruppo sanguigno - cancro
Prova di recupero di Probabilità e Statistica - A * 21/04/2006
Prova di recupero di Probabilità e Statistica - A * /04/006 (NB: saranno prese in considerazione solo le risposte adeguatamente motivate) tempo di lavoro: Due ore. Per conseguire la patente di guida, un
Analisi della regressione multipla
Analisi della regressione multipla y = β 0 + β 1 x 1 + β 2 x 2 +... β k x k + u 2. Inferenza Assunzione del Modello Classico di Regressione Lineare (CLM) Sappiamo che, date le assunzioni Gauss- Markov,
Misure Ripetute. Partizione della Varianza. Marcello Gallucci
Misure Ripetute Partizione della Varianza Marcello Gallucci GLM l ANOVA a misure ripetute rappresenta un caso del modello lineare generale in cui la variabilità non è valutata tra gruppi ma tra misure
lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1
lezione n. 6 (a cura di Gaia Montanucci) METODO MASSIMA VEROSIMIGLIANZA PER STIMARE β 0 E β 1 Distribuzione sui termini di errore ε i ε i ~ N (0, σ 2 ) ne consegue : ogni y i ha ancora distribuzione normale,
Teoria e tecniche dei test. Concetti di base
Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Regressione Lineare e Correlazione Argomenti della lezione Determinismo e variabilità Correlazione Regressione Lineare
Argomenti della lezione:
Lezione 13 L analisi della Varianza (ANOVA): il modello lineare Argomenti della lezione: Modello lineare Disegni a una via L Analisi della Varianza (ANOVA): Esamina differenze tra le medie di due o più
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
Variabili indipendenti qualitative. In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli.
Variabili indipendenti qualitative Di solito le variabili nella regressione sono variabili continue In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli Ad esempio:
Confronto tra due popolazioni Lezione 6
Last updated May 9, 06 Confronto tra due popolazioni Lezione 6 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura I anno, II semestre Concetti visti nell ultima lezione Le media
R - Esercitazione 6. Andrea Fasulo Venerdì 22 Dicembre Università Roma Tre
R - Esercitazione 6 Andrea Fasulo [email protected] Università Roma Tre Venerdì 22 Dicembre 2017 Il modello di regressione lineare semplice (I) Esempi tratti da: Stock, Watson Introduzione all econometria
Misure Ripetute. Analisi dei dati in disegni di ricerca con misure ripetute. Marcello Gallucci
Misure Ripetute Analisi dei dati in disegni di ricerca con misure ripetute Marcello Gallucci Introduzione Consideriamo una ricerca in cui un gruppo di pazienti è sottoposto ad un trattamento terapeutico
Dispensa di Statistica
Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza
Carta di credito standard. Carta di credito business. Esercitazione 12 maggio 2016
Esercitazione 12 maggio 2016 ESERCIZIO 1 Si supponga che in un sondaggio di opinione su un campione di clienti, che utilizzano una carta di credito di tipo standard (Std) o di tipo business (Bsn), si siano
Statistica. Capitolo 12. Regressione Lineare Semplice. Cap. 12-1
Statistica Capitolo 1 Regressione Lineare Semplice Cap. 1-1 Obiettivi del Capitolo Dopo aver completato il capitolo, sarete in grado di: Spiegare il significato del coefficiente di correlazione lineare
Analisi della varianza
1. 2. univariata ad un solo fattore tra i soggetti (between subjects) 3. univariata: disegni fattoriali 4. univariata entro i soggetti (within subjects) 5. : disegni fattoriali «misti» L analisi della
3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17
C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica
Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A
Università degli Studi di Padova Corso di Laurea in Medicina e Chirurgia - A.A. 015-16 Corso Integrato: Statistica e Metodologia Epidemiologica Disciplina: Statistica e Metodologia Epidemiologica Docenti:
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento.
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle abelle riportate alla fine del documento. Esercizio 1 La concentrazione media di sostanze inquinanti osservata nelle acque di un fiume
le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi:
DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano [email protected] si basano su tre elementi: le scale di misura sistema empirico: un insieme di entità non numeriche (es. insieme di persone; insieme
Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009)
Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009) Quesito: Posso stimare il numero di ore passate a studiare statistica sul voto conseguito all esame? Potrei calcolare il coefficiente di correlazione.
Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica
13. Regressione lineare parametrica Esistono numerose occasioni nelle quali quello che interessa è ricostruire la relazione di funzione che lega due variabili, la variabile y (variabile dipendente, in
Laboratorio di Statistica Aziendale Modello di regressione lineare semplice
Laboratorio di Statistica Aziendale Modello di regressione lineare semplice Dott.ssa Michela Pasetto [email protected] Caricamento del dataset Il dataset SalesData si trova nella cartella condivisa
REGRESSIONE lineare e CORRELAZIONE. Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori
REGRESSIONE lineare e CORRELAZIONE Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori Y X La NATURA e la FORZA della relazione tra variabili si studiano con la REGRESSIONE
Analisi della Varianza Fattoriale
Analisi della Varianza Fattoriale AMD Marcello Gallucci [email protected] Ripasso dell ANOVA Lo studio degli effetti di una serie di variabili indipendenti nominale (gruppi) su un variabile dipendente
Il confronto fra medie
L. Boni Obiettivo Verificare l'ipotesi che regimi alimentari differenti non producano mediamente lo stesso effetto sulla gittata cardiaca Ipotesi nulla IPOTESI NULLA La dieta non dovrebbe modificare in
CAPITOLO 11 ANALISI DI REGRESSIONE
VERO FALSO CAPITOLO 11 ANALISI DI REGRESSIONE 1. V F Se c è una relazione deterministica tra due variabili,x e y, ogni valore dato di x,determinerà un unico valore di y. 2. V F Quando si cerca di scoprire
PROBABILITÀ ELEMENTARE
Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi
Analisi descrittiva: calcolando medie campionarie, varianze campionarie e deviazioni standard campionarie otteniamo i dati:
Obiettivi: Esplicitare la correlazione esistente tra l altezza di un individuo adulto e la lunghezza del suo piede e del suo avambraccio. Idea del progetto: Il progetto nasce dall idea di acquistare scarpe
STATISTICA A K (60 ore)
STATISTICA A K (60 ore) Marco Riani [email protected] http://www.riani.it Richiami sulla regressione Marco Riani, Univ. di Parma 1 MODELLO DI REGRESSIONE y i = a + bx i + e i dove: i = 1,, n a + bx i rappresenta
VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul
1 Introduzione alla Teoria della Probabilità... 1 1.1 Introduzione........................................ 1 1.2 Spazio dei Campioni ed Eventi Aleatori................ 2 1.3 Misura di Probabilità... 5
Statistica Applicata all edilizia: il modello di regressione
Statistica Applicata all edilizia: il modello di regressione E-mail: [email protected] 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione
Regressione lineare con un solo regressore
Regressione lineare con un solo regressore La regressione lineare è uno strumento che ci permette di stimare e di fare inferenza sui coefficienti incogniti di una retta. Lo scopo principale è di stimare
STATISTICA ESERCITAZIONE 13
STATISTICA ESERCITAZIONE 13 Dott. Giuseppe Pandolfo 9 Marzo 2015 Errore di I tipo: si commette se l'ipotesi nulla H 0 viene rifiutata quando essa è vera Errore di II tipo: si commette se l'ipotesi nulla
Esercitazione 5 - Statistica (parte II) Davide Passaretti 9/3/2017
Esercitazione 5 - Statistica (parte II) Davide Passaretti 9/3/2017 Contents 1 Inferenza sulla regressione semplice 1 1.1 Test sulla pendenza della retta................................... 1 1.2 Test sull
Esercizi riassuntivi di Inferenza
Esercizi riassuntivi di Inferenza Esercizio 1 Un economista vuole stimare il reddito medio degli abitanti di una cittadina mediante un intervallo al livello di confidenza del 95%. La distribuzione del
Analisi della Varianza - II
Analisi della Varianza - II M Q ANOVA entro i soggetti, modelli misti, ANCOVA Marco Perugini Milano-Bicocca 1 Lez: XXIX ANOVA a una via la VARIANZA Possiamo stimare la varianza (MQ = media dei quadrati)
ESAME. 9 Gennaio 2017 COMPITO B
ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE. a.a.
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 CDF empirica
REGRESSIONE E CORRELAZIONE
REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.
Test F per la significatività del modello
Test F per la significatività del modello Per verificare la significatività dell intero modello si utilizza il test F Si vuole verificare l ipotesi H 0 : β 1 = 0,, β k = 0 contro l alternativa che almeno
Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale)
Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale) Esercizio 1: Un indagine su 10.000 famiglie ha dato luogo, fra le altre, alle osservazioni riportate nella
Regressione Semplice. Correlazioni. sconto leverage. sconto Correlazione di Pearson 1,275. Sign. (a due code),141
Regressione Semplice Analisi Per avere una prima idea della struttura di dipendenza fra le variabili in esame, possiamo cominciare col costruire la matrice di correlazione delle variabili presenti nel
Inferenza statistica II parte
Inferenza statistica II parte Marcella Montico Servizio di epidemiologia e biostatistica Test statistici II parte Variabili quantitative Caso 1 Variabile Dipendente = quantitativa Variabile Indipendente
Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25
Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 04-Grafici delle distribuzioni vers. 1.0 (17 ottobre 2014) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca
Efficacia dei Trattamenti
Efficacia dei Trattamenti Efficacia dei Trattamenti Dimostrare una relazione di causa-effetto tra il trattamento (causa) e i risultati ottenuti (effetto). Pre-requisiti Precedenza temporale della causa
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Approssimazione normale della Poisson (TLC) In un determinato tratto di strada il numero di incidenti
Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza.
Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza. Misure ripetute forniscono dati numerici distribuiti attorno ad un valore centrale indicabile con un indice (indice
Analisi della varianza a una via
Analisi della varianza a una via Statistica descrittiva e Analisi multivariata Prof. Giulio Vidotto PSY-NET: Corso di laurea online in Discipline della ricerca psicologico-sociale SOMMARIO Modelli statistici
Analisi avanzate basate sulla regressione (Cap. 7)
Analisi avanzate basate sulla regressione (Cap. 7) AMD Marcello Gallucci [email protected] Regressione Multipla A seconda dello status delle variabili indipendenti, possiamo differenziare diversi
Regressioni Non Lineari
Regressioni Non Lineari Fino ad ora abbiamo solo considerato realazioni lineari Ma le relazioni lineari non costituiscono sempre le migliori approssimazioni La regressione multipla può anche essere formulata
Sperimentazioni di Fisica I mod. A Statistica - Lezione 2
Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 A. Garfagnini M. Mazzocco C. Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Statistica Lezione 2: 1. Istogrammi
ESERCIZIO 1. Di seguito vengono riportati i risultati di un modello fattoriale di analisi della varianza con 3 fattori tra i soggetti.
ESERCIZIO. Di seguito vengono riportati i risultati di un modello fattoriale di analisi della varianza con fattori tra i soggetti. Variabile dipendente: PERF Sorgente Modello corretto Intercept SEX_96
Regressione lineare semplice: inferenza
Regressione lineare semplice: inferenza Eduardo Rossi 2 2 Università di Pavia (Italy) Marzo 2014 Rossi Regressione lineare semplice Econometria - 2014 1 / 60 Outline 1 Introduzione 2 Verifica di ipotesi
Regressione lineare multipla
Regressione lineare multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2014 Rossi Regressione lineare Econometria - 2014 1 / 31 Outline 1 La distorsione da variabili omesse 2 Causalità 3 Misure
Laboratorio di Statistica 1 con R Esercizi per la Relazione. I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati
Laboratorio di Statistica 1 con R Esercizi per la Relazione I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati nel corso. Esercizio 1. 1. Facendo uso dei comandi
L indagine campionaria Lezione 3
Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato
Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura
INDICE GENERALE Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura XI XIV XV XVII XVIII 1 LA RILEVAZIONE DEI FENOMENI
La regressione lineare. Rappresentazione analitica delle distribuzioni
La regressione lineare Rappresentazione analitica delle distribuzioni Richiamiamo il concetto di dipendenza tra le distribuzioni di due caratteri X e Y. Ricordiamo che abbiamo definito dipendenza perfetta
Test delle Ipotesi Parte I
Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test
Regressione e Correlazione (cap. 11) Importazione dati da file di testo
Regressione e Correlazione (cap. 11) Importazione dati da file di testo Introduzione Nella statistica applicata si osserva la relazione (dipendenza) tra due o più grandezze. Esigenza: determinare una funzione
Contenuti: Capitolo 14 del libro di testo
Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4
Fondamenti di statistica per il miglioramento genetico delle piante. Antonio Di Matteo Università Federico II
Fondamenti di statistica per il miglioramento genetico delle piante Antonio Di Matteo Università Federico II Modulo 2 Variabili continue e Metodi parametrici Distribuzione Un insieme di misure è detto
Esame di Statistica A-Di Prof. M. Romanazzi
1 Università di Venezia Esame di Statistica A-Di Prof. M. Romanazzi 25 Maggio 2015 Cognome e Nome..................................... N. Matricola.......... Valutazione Il punteggio massimo teorico di
Statistica multivariata
Parte 3 : Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Analisi multivariata Cercare di capire
ESERCIZIO 1. Vengono riportati di seguito i risultati di un analisi discriminante.
ESERCIZIO 1. Vengono riportati di seguito i risultati di un analisi discriminante. Test di uguaglianza delle medie di gruppo SELF_EFF COLL_EFF COIN_LAV IMPEGNO SODDISF CAP_IST COLLEGHI Lambda di Wilks
