Minimi quadrati vincolati e test F
|
|
|
- Beata Antonella
- 8 anni fa
- Visualizzazioni
Transcript
1 Minimi quadrati vincolati e test F Impostazione del problema Spesso, i modelli econometrici che stimiamo hanno dei parametri che sono passibili di interpretazione diretta nella teoria economica. Consideriamo ad esempio una funzione di produzione Cobb-Douglas Q = AK α 1 L α 2. È noto dalla teoria microeconomica (o almeno, dovrebbe) che la Cobb-Douglas ha rendimenti di scala costanti se e solo se α + α 2 = 1. Scrivendo la funzione in logaritmi si ha q = a + α 1 k + α 2 l Supponiamo di condurre un esperimento in cui facciamo variare a nostro piacimento k e l, e osserviamo i cambiamenti in q. Se le ipotesi classiche sono rispettate, è naturale pensare di stimare il vettore di parametri β = con i minimi quadrati. Se però sapessimo o congetturassimo che la funzione è a rendimenti di scala costanti, vorremmo che la nostra stima di β incorporasse l informazione α 1 + α 2 = 1. Ovviamente, non c è alcuna garanzia che β rispetti questa condizione. In altri termini, cerchiamo uno stimatore β, che rispetti per costruzione il vincolo R β = d dove R = [0 1 1] e d = 1. Più in generale, vogliamo uno stimatore del modello y = Xβ + u che soddisfi a priori un insieme di l restrizioni che possiamo scrivere come Rβ = d. Soluzione Per trovarlo, minimizziamo la somma dei quadrati dei residui sotto vincolo. Definendo i residui come e(β) = y Xβ il Lagrangiano sarà a α 1 α 2 L = 1 2 e e + λ (Rβ d). Poiché la derivata di e rispetto a β è X, la condizione di primo ordine può essere scritta X ẽ = R λ, (1) dove indichiamo con β il vettore che rende vera la (1) e con ẽ il vettore y X β. 1
2 β 2 Figura 1: Esempio: vettore di due parametri ˆβ 2 β 2. ˆβ 1. β1 β 1 Le ellissi sono le curve di livello della funzione e e. Il vincolo è β 1 = 3β 2. Il numero di parametri k è uguale a 2 e il numero di vincoli l è pari a 1. Il punto di minimo non vincolato è β 1, β 2 ; Il punto di minimo vincolato è β 1, β 2. 2
3 L equazione (1) può essere riscritta in modo tale da rendere evidenti le relazioni che esistono fra il problema di minimo vincolato (e la sua soluzione) e il problema di minimo libero (e la sua soluzione, che è ovviamente lo stimatore OLS). In particolare, possiamo considerare le implicazioni della (1) 1. nello spazio dei parametri (R k ) 2. nello spazio dei vincoli (R l ) 3. nello spazio delle osservazioni (R T ) 4. nello spazio della funzione obiettivo (R). Cominciamo coi parametri: premoltiplicando la (1) per (X X) 1 si ottiene β β = (X X) 1 R λ da cui si può ricavare una relazione interessante fra lo stimatore vincolato e quello libero: β = β (X X) 1 R λ (2) Lo stimatore vincolato, quindi, è uguale a quello libero a cui viene aggiunto un fattore di correzione proporzionale a λ. La seconda cosa che si può dire riguarda lo spazio dei vincoli, e quindi il valore di λ: premoltiplicando la (2) per R si ha che λ = [ R(X X) 1 R ] 1 (R β d) (3) perché R β = d per costruzione. Dovrebbe essere chiaro dalla (3) che, se lo stimatore non vincolato rispetta già di per sé il vincolo (R β = d), allora λ = 0 e quindi lo stimatore vincolato coincide con quello libero. In questo senso, si può dire che il vettore λ ci dà una misura di quanto lo stimatore vincolato è diverso da quello libero; sarò più preciso fra poco. La formula che si trova di solito nei libri di testo la si ottiene combinando le equazioni (2) e (3): β = β (X X) 1 R [ R(X X) 1 R ] 1 (R β d) (4) Possiamo esaminare cosa succede nello spazio delle osservazioni premoltiplicando la (2) per X: X β = ỹ = ŷ X(X X) 1 R λ da cui discende ẽ = ê + X(X X) 1 R λ 3
4 Consideriamo ora lo spazio della funzione obiettivo: la somma dei quadrati dei residui vincolati (cioè il minimo vincolato) ẽ ẽ può essere scritta nel seguente modo: ẽ ẽ = ê ê + λ R(X X) 1 R λ (5) dove abbiamo sfruttato il fatto che, per costruzione, X ê = 0. Ora, la (5) ci dice una cosa importante: la differenza che c è fra il minimo vincolato e il minimo libero (che è evidentemente sempre positiva) può essere scritta come una forma quadratica in λ. Mettendo assieme la equazioni (3) e (5) si arriva alla seguente uguaglianza: ẽ ẽ ê ê = λ R(X X) 1 R λ = (R β d) [ R(X X) 1 R ] 1 (R β d) (6) L espressione (6) è molto interessante, perché ci dice che la stessa quantità può essere interpretata in tre modi diversi ed equivalenti: 1. ẽ ẽ ê ê è la differenza che c è fra la funzione obiettivo vincolata e non. Maggiore è questa differenza, maggiore è la perdita di capacità che il modello vincolato ha di accostarsi ai dati empiricamente osservati; 2. λ R(X X) 1 R λ è una forma quadratica che vale 0 solo se λ = 0. poiché abbiamo già visto che λ = 0 solo se le stime vincolate coincidono con quelle libere, questa grandezza varia sostanzialmente con la distanza fra il vettore β ed il vettore β; poiché λ è il vettore dei moltiplicatori di Lagrange del problema di minimo vincolato è possibile come è noto darne una lettura in termini di prezzo ombra: l i-esimo elemento del vettore λ ci dice quanto migliora la funzione obiettivo ad una variazione piccola del vincolo corrispondente 1 ; 3. la grandezza (R β d) [ R(X X) 1 R ] 1 (R β d) è una forma quadratica (definita positiva) in (R β d), ossia in un vettore che è pari a 0 solo se lo stimatore libero rispetta già di per sé il vincolo. Prova di ipotesi Sotto le ipotesi classiche è possibile utilizzare i risultati esposti fin qui a fini di prova di ipotesi: in questo caso il nostro vincolo (Rβ d) rappresenta l ipotesi nulla che intendiamo sottoporre a verifica. Sulla base delle considerazioni fatte in precedenza ci si potrebbe attendere che una statistica test ragionevole possa essere basata sulle diverse capacità di adattamento ai dati dei modelli libero e vincolato. In effetti, è proprio così. a d. 1 Formalmente, si può dimostrare che λ è il vettore di derivate parziali di ẽ ẽ/2 rispetto 4
5 Consideriamo la differenza ẽ ẽ ê ê. Come abbiamo visto prima, questa grandezza può essere scritta anche come (R β d) [ R(X X) 1 R ] 1 (R β d). Se valgono le ipotesi classiche, sappiamo che β N [ β, (X X) 1]. Di conseguenza, date le proprietà della normale, (R β d) N [ Rβ d, R(X X) 1 R ] Se effettivamente il vincolo vale (e quindi Rβ = d), allora il valore atteso di (R β d) è 0 e, più in generale, (R β d) N [ 0, R(X X) 1 R ], cosicché l espressione (R β d) [ R(X X) 1 R ] 1 (R β d) è proporzionale (a meno di un fattore 1 ) ad una variabile casuale χ 2 con l gradi di libertà (tanti quante sono le righe di R). Questa quantità può essere quindi presa come base per un test sull ipotesi H 0 : Rβ d. Infatti, se quest ipotesi è vera, allora la grandezza nella (6) divisa per si distribuisce come una χ 2, e valori grandi possono verificarsi o in casi eccezionali o quando l ipotesi nulla è falsa. Sulla base di questa considerazione, possiamo decidere di rifiutare H 0 quando ẽ ẽ ê ê assume valori grandi (relativamente alle tavole del χ 2 ). C è solo un problema: normalmente non è una grandezza nota. Abbiamo però una sua stima s 2 = ê ê T k che, come sappiamo, è corretta. Per derivare una statistica test con una distribuzione trattabile, si consideri che la grandezza ê ê s2 = (T k) si distribuisce anch essa come una χ 2 con T k gradi di libertà. Se riuscissimo a dimostrare che s 2 è indipendente da ẽ ẽ ê ê, allora potremmo sfruttare le proprietà 2 delle distribuzioni χ 2 ed F. 2 Se 8 < : A χ 2 n B χ 2 d A B allora A/n si distribuisce come una F con gradi di libertà pari a n e d. B/d 5
6 Consideriamo il rapporto ẽ ẽ ê ê ê ê T k, (7) l che può essere visto come il rapporto fra due variabili casuali χ 2 divise per i rispettivi gradi di libertà. Da quanto detto sopra, se riuscissimo a provare che il denominatore ed il numeratore sono indipendenti, avremmo che la statistica F = ẽ ẽ ê ê ê ê T k l (ottenuta semplicemente semplificando il fattore dall equazione (7)) si distribuisce come una F di Snedecor. La dimostrazione, tuttavia, è immediata, in quanto abbiamo già visto che s 2 è indipendente da β. Poiché, in forza della (6), si ha che ẽ ẽ ê ê può essere scritta come una forma quadratica in β dove la matrice in mezzo è nonstocastica, se ne può dedurre anche il risultato che ci serve 3. 3 Può essere un simpatico esercizio dimostrare che il test F può anche essere scritto come F = ẽ P X ẽ ẽ M X ẽ T k l e dimostrare l indipendenza di numeratore e denominatore per questa via. 6
Il modello di regressione lineare multipla. Il modello di regressione lineare multipla
Introduzione E la generalizzazione del modello di regressione lineare semplice: per spiegare il fenomeno d interesse Y vengono introdotte p, con p > 1, variabili esplicative. Tale generalizzazione diventa
Esercizi di statistica
Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..
Variabili indipendenti qualitative. In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli.
Variabili indipendenti qualitative Di solito le variabili nella regressione sono variabili continue In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli Ad esempio:
MODELLO DI REGRESSIONE LINEARE. le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza,
MODELLO DI REGRESSIONE LINEARE le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza, teorema di Gauss-Markov, verifica di ipotesi e test di
Massimi e minimi vincolati
Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché
Test F per la significatività del modello
Test F per la significatività del modello Per verificare la significatività dell intero modello si utilizza il test F Si vuole verificare l ipotesi H 0 : β 1 = 0,, β k = 0 contro l alternativa che almeno
lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1
lezione n. 6 (a cura di Gaia Montanucci) METODO MASSIMA VEROSIMIGLIANZA PER STIMARE β 0 E β 1 Distribuzione sui termini di errore ε i ε i ~ N (0, σ 2 ) ne consegue : ogni y i ha ancora distribuzione normale,
Contenuti: Capitolo 14 del libro di testo
Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4
CAPITOLO 1 LA FUNZIONE DI PRODUZIONE E LA CRESCITA ECONOMICA
CAPITOLO 1 LA FUZIOE DI PRODUZIOE E LA CRESCITA ECOOMICA 11 La funzione di produzione Data una funzione di produzione in cui la quantità prodotta () dipende dalla quantità di capitale () e di lavoro ()
04 - Numeri Complessi
Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,
Analisi della varianza
Analisi della varianza Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona ANALISI DELLA VARIANZA - 1 Abbiamo k gruppi, con un numero variabile di unità statistiche.
Modelli Log-lineari Bivariati
Modelli Log-lineari Bivariati Luca Stefanutti Università di Padova Dipartimento di Psicologia Applicata Via Venezia 8, 35131 Padova L.Stefanutti (Università di Padova) Modelli Log-lineari 1 / 71 Contenuti
Statistica Applicata all edilizia: il modello di regressione
Statistica Applicata all edilizia: il modello di regressione E-mail: [email protected] 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE
ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE 1 Funzioni libere I punti stazionari di una funzione libera di più variabili si ottengono risolvendo il sistema di equazioni
COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI
COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI In questa Appendice, mostreremo come un impresa possa individuare la sua combinazione di minimo costo dei fattori produttivi attraverso il calcolo
R - Esercitazione 6. Andrea Fasulo Venerdì 22 Dicembre Università Roma Tre
R - Esercitazione 6 Andrea Fasulo [email protected] Università Roma Tre Venerdì 22 Dicembre 2017 Il modello di regressione lineare semplice (I) Esempi tratti da: Stock, Watson Introduzione all econometria
Sviluppi e derivate delle funzioni elementari
Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
Corso di Statistica Industriale
Corso di Statistica Industriale Corsi di Laurea Specialistica in Ingegneria Gestionale e Ingegneria Meccanica Docente: Ilia Negri Orario del corso: Martedì: dalle 14.00 alle 16.00 Venerdì: dalle 10.30
Premessa: la dipendenza in media
Premessa: la dipendenza in media Supponiamo di avere K diversi livelli di un fattore che potrebbero influire su una determinata variabile. Per esempio supponiamo di domandarci se la diversificazione (intesa
ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME
ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di
Cognome e Nome:... Corso di laurea:...
Statistica - corso base Prof. B. Liseo Prova di esame dell 8 gennaio 201 Cognome e Nome:................................................................... Corso di laurea:.......................................................................
Teorema delle Funzioni Implicite
Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)
11. Misure con segno.
11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante
Geometria e Topologia I (U1-4) 2006-mag-10 61
Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca
Esercitazione 8 del corso di Statistica 2
Esercitazione 8 del corso di Statistica Prof. Domenico Vistocco Dott.ssa Paola Costantini 6 Giugno 8 Decisione vera falsa è respinta Errore di I tipo Decisione corretta non è respinta Probabilità α Decisione
Statistica 1 A.A. 2015/2016
Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 35 Il modello di regressione
1 Il polinomio minimo.
Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene
Limiti di successioni
Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
Il modello di regressione lineare multipla con regressori stocastici
Università di Pavia Il modello di regressione lineare multipla con regressori stocastici Eduardo Rossi Il valore atteso condizionale Modellare l esperimento casuale bivariato nel quale le variabili casuali
Appunti sui Codici di Reed Muller. Giovanni Barbarino
Appunti sui Codici di Reed Muller Giovanni Barbarino Capitolo 1 Codici di Reed-Muller I codici di Reed-Muller sono codici lineari su F q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità
Il teorema di Schwarz
Il teorema di Schwarz 1. Quante sono le derivate parziali seconde, terze,...? Il procedimento di derivazione parziali applicato ad una funzione f(x, y) di due variabili raddoppia il numero di derivate
Note sulle funzioni convesse/concave
Note sulle funzioni convesse/concave 4th December 2008 1 Definizioni e proprietà delle funzioni convesse/concave. Definizione 1.1 Un insieme A IR n è detto convesso se per ogni x 1 e x 2 punti di A, il
Metodo dei minimi quadrati e matrice pseudoinversa
Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati
Il teorema di Rouché-Capelli
Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un
4.11 Massimi e minimi relativi per funzioni di più variabili
5. Determinare, al variare del parametro a R, la natura delle seguenti forme quadratiche: (i) Φ(x, y, z) = x 2 + 2axy + y 2 + 2axz + z 2, (ii) Φ(x, y, z, t) = 2x 2 + ay 2 z 2 t 2 + 2xz + 4yt + 2azt. 4.11
Lezione 16. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 16. A. Iodice. Ipotesi statistiche
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 23 Outline 1 2 3 4 5 6 () Statistica 2 / 23 La verifica delle ipotesi Definizione Un ipotesi statistica
1 Ampliamento del piano e coordinate omogenee
1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di
Esistenza ed unicità per equazioni differenziali
Esistenza ed unicità per equazioni differenziali Per concludere queste lezioni sulle equazioni differenziali vogliamo dimostrare il teorema esistenza ed unicità per il problema di Cauchy. Faremo la dimostrazione
Esercizi sulle radici
Esercizi sulle radici Semplificazione Per semplificare una radice utilizzando, quando necessario, i valori assoluti, dobbiamo ricordare che se una radice ha indice pari, il suo radicando (il numero che
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è
STATISTICA ESERCITAZIONE 13
STATISTICA ESERCITAZIONE 13 Dott. Giuseppe Pandolfo 9 Marzo 2015 Errore di I tipo: si commette se l'ipotesi nulla H 0 viene rifiutata quando essa è vera Errore di II tipo: si commette se l'ipotesi nulla
IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero
IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno
Test delle Ipotesi Parte I
Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy. E-mail: [email protected] 1 SOLUZIONI:
Regressione multipla
Regressione multipla L obiettivo è costruire un modello probabilistico per spiegare la variabile y tramite più di una variabile indipendente x 1, x 2,..., x k. Esempio: Per un efficiente progettazione
a + 2b + c 3d = 0, a + c d = 0 c d
SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,
Esercizi di ottimizzazione vincolata
Esercizi di ottimizzazione vincolata A. Agnetis, P. Detti Esercizi svolti 1 Dato il seguente problema di ottimizzazione vincolata max x 1 + x 2 x 1 4x 2 3 x 1 + x 2 2 0 x 1 0 studiare l esistenza di punti
Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri
Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante
Analisi della regressione multipla
Analisi della regressione multipla y = β 0 + β 1 x 1 + β 2 x 2 +... β k x k + u 2. Inferenza Assunzione del Modello Classico di Regressione Lineare (CLM) Sappiamo che, date le assunzioni Gauss- Markov,
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA PROCEDURA/TECNICA DI ANALISI DEI DATI SPECIFICAMENTE DESTINATA A STUDIARE LA RELAZIONE TRA UNA VARIABILE NOMINALE (ASSUNTA
Ulteriori applicazioni del test del Chi-quadrato (χ 2 )
Ulteriori applicazioni del test del Chi-quadrato (χ 2 ) Finora abbiamo confrontato con il χ 2 le numerosità osservate in diverse categorie in un campione con le numerosità previste da un certo modello
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
Alcune nozioni di calcolo differenziale
Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio
04 - Logica delle dimostrazioni
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,
LeLing12: Ancora sui determinanti.
LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling
I teoremi della funzione inversa e della funzione implicita
I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1
Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.
Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,
FUNZIONI DI DUE VARIABILI
Una unzione di più variabili viene indicata come: : A B con A R Se n la unzione presenta due variabili indipendenti e viene normalmente scritta come: z La sua rappresentazione graica si realizza introducendo
Il test (o i test) del Chi-quadrato ( 2 )
Il test (o i test) del Chi-quadrato ( ) I dati: numerosità di osservazioni che cadono all interno di determinate categorie Prima di tutto, è un test per confrontare proporzioni Esempio: confronto tra numero
Spazi vettoriali euclidei.
Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti
1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7.
1 FORME QUADRATICHE 1 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli esercizi
Alcune nozioni preliminari di teoria elementare di insiemi e funzioni
Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso Propedeutico - METS A.A. 2013/2014 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor,
Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.
LICEO B. RUSSELL A.S. 2010/2011 DALLA TEORIA DEI NUMERI ALLE CONGRUENZE Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.
Gli errori nella verifica delle ipotesi
Gli errori nella verifica delle ipotesi Nella statistica inferenziale si cerca di dire qualcosa di valido in generale, per la popolazione o le popolazioni, attraverso l analisi di uno o più campioni E
Metodi per la risoluzione di sistemi lineari
Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante
Elementi di matematica - dott. I. GRASSI
Gli assi cartesiani e la retta. Il concetto di derivata. È ormai d uso comune nei libri, in televisione, nei quotidiani descrivere fenomeni di varia natura per mezzo di rappresentazioni grafiche. Tali
L indagine campionaria Lezione 3
Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato
1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4
1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica [email protected] LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti
I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.
ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio
Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo
Statistica 2 Esercitazioni Dott. L 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: [email protected]
IV-2 Forme quadratiche
1 FORME QUADRATICHE 1 IV-2 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli
Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori.
ËÁËÌ ÅÁ ÈÁ ÆÁ ½ Queste note attualmente e probabilmente per un bel po ) sono altamente provvisorie e molto probabilmente) non prive di errori 41 Sistemi 2D Come abbiamo già detto tipicamente è impossibile
Esercitazione 8 maggio 2014
Esercitazione 8 maggio 2014 Esercizio 2 dal tema d esame del 13.01.2014 (parte II). L età media di n gruppo di 10 studenti che hanno appena conseguito la laurea triennale è di 22 anni. a) Costruire un
MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1
MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1 1- Il volume di un corpo di qualsiasi forma è proporzionale al cubo di una qualunque delle sue dimensioni lineari.
Appunti su Indipendenza Lineare di Vettori
Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo
LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)
LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema
Test sull ellisse (vai alla soluzione) Quesiti
Test sull ellisse (vai alla soluzione) Quesiti ) Considerata nel piano cartesiano l ellisse Γ : + y = 8 valutare il valore di verità delle seguenti affermazioni. I fuochi si trovano sull asse delle ordinate
Metodi per la risoluzione di sistemi lineari
Metodi per la risoluzione di sistemi lineari 1 Sistemi di equazioni lineari 1.1 Determinante di matrici quadrate Ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante della matrice
