LABORATORIO DI PROBABILITA E STATISTICA
|
|
|
- Edoardo Mora
- 8 anni fa
- Visualizzazioni
Transcript
1 UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi Corso di laurea in Informatica e Bioinformatica 9 ESERCIZI DI RIPASSO FINALE (1 di 2)
2 1 - STATISTICA DESCRITTIVA TABLET ESERCIZIO 1: La seguente tabella riporta i volumi di vendita (in migliaia di pezzi) dei principali produttori di computer nel secondo trimestre del Creare una tabella in R che riporti i volumi di vendita in migliaia di pezzi e in percentuale. Alla fine creare un grafico a istogramma per i volumi di vendita in migliaia e uno a torta per le percentuali. MARCHIO VENDITE Apple Samsung Lenovo Asus Acer Altri
3 1 - STATISTICA DESCRITTIVA TABLET > marchio=c("apple", "Samsung", "Lenovo", "Asus", "Acer", "Altri") > vendite=c(13300, 8500, 2400, 2300, 1000, 21900) > tablet=data.frame(marchio, vendite) > tablet marchio vendite 1 Apple Samsung Lenovo Asus Acer Altri 21900
4 1 - STATISTICA DESCRITTIVA TABLET # CREIAMO LA COLONNA DELLE PERCENTUALI DI VENDITA > tot_vendite=sum(vendite) > tot_vendite [1] > perc=vendite/tot_vendite > perc [1]
5 1 - STATISTICA DESCRITTIVA TABLET # CREIAMO LA COLONNA DELLE PERCENTUALI DI VENDITA > tablet=data.frame(tablet, perc) > tablet marchio vendite perc 1 Apple Samsung Lenovo Asus Acer Altri
6 1 - STATISTICA DESCRITTIVA TABLET # GRAFICO DEI VOLUMI DI VENDITA > barplot(vendite, names.arg=marchio) Apple Lenovo Asus Acer Altri
7 1 - STATISTICA DESCRITTIVA TABLET # GRAFICO DEI VOLUMI DI VENDITA > barplot(vendite, names.arg=marchio, col=heat.colors(6)) Apple Lenovo Asus Acer Altri
8 1 - STATISTICA DESCRITTIVA TABLET # GRAFICO A TORTA DELLE PERCENTUALI DI VENDITA > pie(perc, labels=marchio) Samsung Apple Lenovo Asus Acer Altri
9 2 CURTOSI E APPIATTIMENTO TABLET ESERCIZIO 2: Sui dati della tabella precedente calcolare la simmetria e l appiattimento della distribuzione delle vendite in migliaia utilizzando degli opportuni indici. MARCHIO VENDITE Apple Samsung Lenovo Asus Acer Altri
10 INDICE DI SIMMETRIA γ (gamma) DI FISHER N γ = 1 N i=1 xi μ σ 3 Se γ = 0 allora la distribuzione è simmetrica Se γ < 0 allora la distribuzione è asimmetrica negativa Se γ > 0 allora la distribuzione è asimmetrica positiva
11 γ > 0 γ = 0 γ < 0
12 CREAZIONE DI UNA FUNZIONE PER GAMMA N γ = 1 N i=1 xi μ σ 3 gamma = function(x) { m3 = mean((x-mean(x))^3) skew = m3/(sd(x)^3) skew } { = AltGr + 7 } = AltGr + 0 NO tastiera numerica
13 2 CURTOSI E APPIATTIMENTO TABLET > gamma(vendite) = # IL VALORE DELL INDICE GAMMA È PARI A C È UN ASIMMETRIA POSITIVA, LA DISTRIBUZIONE PRESENTA UNA CODA PIÙ LUNGA A DESTRA.
14 INDICE DI CURTOSI β (beta) DI PEARSON N β = 1 N i=1 xi μ σ 4 Se β = 3 allora la distribuzione è MESOCURTICA Se β < 3 allora la distribuzione è PLATICURTICA Se β > 3 allora la distribuzione è LEPTOCURTICA
15 INDICE DI CURTOSI γ 2 (gamma2) DI FISHER N xi μ 4 γ 2 = 1 N i=1 σ - 3 Se γ 2 = 0 allora la distribuzione è MESOCURTICA Se γ 2 < 0 allora la distribuzione è PLATICURTICA Se γ 2 > 0 allora la distribuzione è LEPTOCURTICA
16 INDICI DI APPIATTIMENTO (CURTOSI) Leptocurtica β > 3 γ 2 > 0 Mesocurtica β = 3 γ 2 = 0 Platicurtica β < 3 γ 2 < 0
17 CREAZIONE DI UNA FUNZIONE PER BETA N β = 1 N i=1 xi μ σ 4 beta = function(x) { m4 = mean((x-mean(x))^4) curt = m4/(sd(x)^4) curt }
18 2 CURTOSI E APPIATTIMENTO TABLET > beta(vendite) [1] # IL VALORE DELL INDICE BETA E PARI A LA DISTRIBUZIONE APPARE SCHIACCIATA, PLATICURTICA > beta(vendite)-3 [1]
19 3 STATISTICHE E BOXPLOT - AIR PASSENGERS ESERCIZIO 3: Utilizzando la base dati già presente in R relativamente al numero di passeggeri aerei fra il 1949 e il 1960 (nome del database: AirPassengers ), calcolare: Media Mediana Primo e terzo quartile Minimo e Massimo Varianza campionaria Numero di elementi del database Infine disegnare il grafico boxplot della serie storica.
20 3 STATISTICHE E BOXPLOT AIR PASSENGERS > summary(airpassengers) Min. 1st Qu. Median Mean 3rd Qu. Max > var(airpassengers) [1] > length(airpassengers) [1] 144
21 3 STATISTICHE E BOXPLOT - AIR PASSENGERS > boxplot(airpassengers)
22 SO computer ES. S.O. PC E S.O. SMARTPHONE ESERCIZIO 4: La seguente tabella riporta la distribuzione dei sistemi operativi di computer e smartphone di un campione di persone. Valutare la connessione ad un livello di significatività dell 1%. SO smartphone Windows ios Android TOTALE Windows Mac OS Linux TOTALE alpha (significatività) g.d.l. 1% 5% 1 6,64 3,84 2 9,21 5, ,35 7, ,28 9, ,09 11, ,81 12, ,48 14, ,09 15, ,67 16, ,21 18,31
23 ES. S.O. PC E S.O. SMARTPHONE > SO=matrix(c(100, 180, 320, 60, 120, 50, 50, 60, 60), nrow=3, byrow=true) > SOpc=c("Windows", "Mac OS", "Linux") > SOsmart=c("Windows", "ios", "Android") > dimnames(so)=list(sopc, SOsmart) > SO Windows ios Android Windows Mac OS Linux > mosaicplot(so)
24 ES. S.O. PC E S.O. SMARTPHONE > testchiq=chisq.test(so) > testchiq Pearson's Chi-squared test data: SO X-squared = , df = 4, p-value = 4.424e-16 # POICHE IL VALORE CALCOLATO DEL CHI-QUADRATO E , BEN SUPERIORE ALLA SOGLIA CRITICA DI 13,28 VALIDO ALL 1% PER 4 G.D.L., SI RIFIUTA L IPOTESI NULLA DI INDIPENDENZA E SI CONFERMA LA CONNESSIONE FRA I FENOMENI, OVVERO AVERE IL COMPUTER CON UN CERTO SISTEMA OPERATIVO INFLUENZA LA SCELTA DEL SISTEMA OPERATIVO DELLO SMARTPHONE. I GRADI DI LIBERTA SONO 4 PERCHE DATI DA (r-1)*(c*1)=(3-1)*(3-1) alpha (significatività) g.d.l. 1% 5% 1 6,64 3,84 2 9,21 5, ,35 7, ,28 9, ,09 11, ,81 12, ,48 14, ,09 15, ,67 16, ,21 18,31
25 ES. S.O. PC E S.O. SMARTPHONE # CALCOLIAMO IL VALORE DELLA STATISTICA V DI CRAMER > chiquadrato=testchiq$statistic > chiquadrato X-squared # IL TOTALE DI ELEMENTI PRESENTI SI OTTIENE IN QUESTO MODO: > N = sum(so) > N [1] 1000 # SI SCEGLIE IL MINORE FRA IL NUMERO DI RIGHE E DI COLONNE E SI SOTTRAE 1 > V=sqrt( chiquadrato / (N*(3-1)) ) > V X-squared # IL RISULTATO PORTA AD AFFERMARE CHE C È UNA BASSA CONNESSIONE FRA I DUE FENOMENI
26 STAGE? ES. STAGE E ASSUNZIONE (CASO NORMALE) ESERCIZIO 5 A: Si vuole verificare se esiste una relazione fra il fatto di svolgere uno stage presso un importante istituto di credito e la successiva eventuale assunzione. Sono stati così presi in considerazione 200 ragazzi così distribuiti: ASSUNZIONE? SI NO Totale SI NO Totale alpha (significatività) g.d.l. 1% 5% 1 6,64 3,84 2 9,21 5, ,35 7, ,28 9, ,09 11, ,81 12, ,48 14, ,09 15, ,67 16, ,21 18,31
27 ES. STAGE E ASSUNZIONE (CASO NORMALE) > stage_lavoro=matrix(c(80, 20, 25, 75), nrow=2, byrow=true) > stage=c("sì stage", "no stage") > lavoro=c("sì assunzione", "No assunzione") > dimnames(stage_lavoro)=list(stage, lavoro) > stage_lavoro Sì assunzione No assunzione sì stage no stage > mosaicplot(stage_lavoro)
28 ES. STAGE E ASSUNZIONE (CASO NORMALE) > testchiq=chisq.test(stage_lavoro) > testchiq Pearson's Chi-squared test with Yates' continuity correction data: stage_lavoro X-squared = , df = 1, p-value = 2.068e-14 # POICHE IL VALORE CALCOLATO DEL CHI-QUADRATO E , BEN SUPERIORE ALLA SOGLIA CRITICA DI 6.64 VALIDO ALL 1%, SI RIFIUTA L IPOTESI NULLA DI INDIPENDENZA E SI CONFERMA LA CONNESSIONE FRA I FENOMENI, OVVERO FARE UNO STAGE COMPORTA MAGGIORI PROBABILITA DI ESSERE ASSUNTI. I GRADI DI LIBERTA SONO 1 PERCHE DATI DA (r-1)*(c*1)=(2-1)*(2-1) alpha (significatività) g.d.l. 1% 5% 1 6,64 3,84 2 9,21 5, ,35 7, ,28 9, ,09 11, ,81 12, ,48 14, ,09 15, ,67 16, ,21 18,31
29 ES. STAGE E ASSUNZIONE (CASO NORMALE) # CALCOLIAMO IL VALORE DELLA STATISTICA V DI CRAMER > chiquadrato=testchiq$statistic > chiquadrato X-squared # IL TOTALE DI ELEMENTI PRESENTI SI OTTIENE IN QUESTO MODO: > N = sum(stage_lavoro) > N [1] 200 # SI SCEGLIE IL MINORE FRA IL NUMERO DI RIGHE E DI COLONNE E SI SOTTRAE 1 > V=sqrt( chiquadrato / (N*(2-1)) ) > V X-squared # IL RISULTATO PORTA AD AFFERMARE CHE C È UNA BUONA CONNESSIONE FRA I DUE FENOMENI
30 STAGE? ES. STAGE E ASSUNZIONE (CASO LIMITE 1) ESERCIZIO 5 B: Si vuole verificare se esiste una relazione fra il fatto di svolgere uno stage presso un importante istituto di credito e la successiva eventuale assunzione. Sono stati così presi in considerazione 200 ragazzi così distribuiti: ASSUNZIONE? SI NO Totale SI NO Totale alpha (significatività) g.d.l. 1% 5% 1 6,64 3,84 2 9,21 5, ,35 7, ,28 9, ,09 11, ,81 12, ,48 14, ,09 15, ,67 16, ,21 18,31
31 ES. STAGE E ASSUNZIONE (CASO LIMITE 1) > stage_lavoro=matrix(c(100, 0, 0, 100), nrow=2, byrow=true) > dimnames(stage_lavoro)=list(stage, lavoro) > testchiq=chisq.test(stage_lavoro) > testchiq data: stage_lavoro X-squared = , df = 1, p-value < 2.2e-16 > chiquadrato=testchiq$statistic > V=sqrt( chiquadrato / (N*(2-1)) ) > V 0.99 # QUI C E LA MASSIMA CONNESSIONE, NEL SENSO CHE QUANDO UNO STUDENTE FA LO STAGE, VIENE SEMPRE ASSUNTO E VICEVERSA. IL CHI-QUADRATO E MOLTO ALTO (196.02) E DI CONSEGUENZA IL V DI CRAMER E VICINISSIMO A 1 (0.99)
32 STAGE? ES. STAGE E ASSUNZIONE (CASO LIMITE 2) ESERCIZIO 5 C: Si vuole verificare se esiste una relazione fra il fatto di svolgere uno stage presso un importante istituto di credito e la successiva eventuale assunzione. Sono stati così presi in considerazione 200 ragazzi così distribuiti: ASSUNZIONE? SI NO Totale SI NO Totale alpha (significatività) g.d.l. 1% 5% 1 6,64 3,84 2 9,21 5, ,35 7, ,28 9, ,09 11, ,81 12, ,48 14, ,09 15, ,67 16, ,21 18,31
33 ES. STAGE E ASSUNZIONE (CASO LIMITE 2) > stage_lavoro=matrix(c(50, 50, 50, 50), nrow=2, byrow=true) > dimnames(stage_lavoro)=list(stage, lavoro) > testchiq=chisq.test(stage_lavoro) > testchiq data: stage_lavoro X-squared = 0, df = 1, p-value = 1 > chiquadrato=testchiq$statistic > V=sqrt( chiquadrato / (N*(2-1)) ) > V 0 # NEL CASO DI EQUIDISTRIBUZIONE, NON C E NESSUNA CONNESSIONE, NEL SENSO CHE I DUE FENOMENI NON SEMBRANO AVERE ALCUN EFFETTO L UNO SULL ALTRO. CHE UNO STUDENTE FACCIA O MENO LO STAGE, NON SEMBRA CAMBIARE LE SUE POSSIBILITA DI ESSERE ASSUNTO. IL CHI-QUADRATO E PARI A ZERO E DI CONSEGUENZA LO E ANCHE IL V DI CRAMER.
34 REGRESSIONE LINEARE: Alpha - Beta ESERCIZIO 6: Analizzare la relazione fra i fenomeni Alpha e Beta utilizzando la regressione lineare, disegnando il grafico, calcolando i parametri della retta interpolante, i residui con grafico, il coefficiente di correlazione lineare e giudicandone la bontà di accostamento. Alpha Beta
35 ES. STUDIO RELAZIONE alpha - beta > alpha=c(120, 102, 114, 118, 140, 135) > beta=c(2000, 1555, 1650, 1742, 2218, 1921) > plot(alpha, beta) > rettaalpha=lm(beta~alpha) > abline(rettaalpha, col="blue") > segments(alpha, fitted(rettaalpha), alpha, beta, lty=2) > title(main="regressione lineare fra alpha e beta") Per scrivere la tilde ~ in Ubuntu premere: ALT GR + ì
36 ES. STUDIO RELAZIONE alpha - beta
37 ES. STUDIO RELAZIONE alpha - beta > summary (rettaalpha) Call: lm(formula = beta ~ alpha) Residuals: Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) alpha * --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 4 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 4 DF, p-value:
38 ES. STUDIO RELAZIONE alpha - beta # I PARAMETRI TROVATI SONO a= E b= QUINDI IL MODELLO TEORICO SARA : Y = *alpha # EFFETTUIAMO L ANALISI DEI RESIDUI > plot(fitted(rettaalpha), residuals(rettaalpha)) > abline(0, 0) residuals(rettaalpha) fitted(rettaalpha) L analisi dei residui conferma che questi si distribuiscono in maniera uniforme e apparentemente casuale attorno all asse zero, quindi si può confermare l ipotesi di distribuzione casuale degli stessi, con media nulla e incorrelazione.
39 ES. STUDIO RELAZIONE alpha - beta # CALCOLIAMO IL COEFFICIENTE DI CORRELAZIONE LINEARE: > R=cor(alpha, beta) > R [1] # C E UNA FORTE RELAZIONE LINEARE DIRETTA FRA LE DUE VARIABILI # CALCOLIAMO IL COEFFICIENTE DI DETERMINAZIONE FACENDO IL QUADRATO DI R PER GIUDICARE LA BONTA DI ACCOSTAMENTO: > R2=R^2 > R2 [1] # IL MODELLO TEORICO USATO SI ADATTA ABBASTANZA BENE AI VALORI OSSERVATI
40 ESERCIZIO 7 Si ipotizzi di estrarre una carta da un mazzo regolare di 52 e di voler verificare quante volte su 100 tentativi viene selezionata una figura di Fiori. Utilizzare una opportuna variabile aleatoria e rappresentarla graficamente.
41 LA FUNZIONE dbinom(k, n, p) # CREO IL VETTORE DEI k > k=c(0:100) # CALCOLO LE PROBABILITA DELLA BINOMIALE CON LA FUNZIONE dbinom > fiori=dbinom(k, 100, 13/52) > fiori [1] e e e e e-08
42 # DISEGNO IL GRAFICO > barplot(fiori, names.arg=k)
43 ESERCIZIO 7a Sui dati dell esercizio precedente, calcolare la probabilità di selezionare una carta di Cuori un numero di volte pari o inferiore a 25 su 100 lanci.
44 LA FUNZIONE pbinom # CALCOLO LA PROBABILITÀ DI OTTENERE CUORI UN NUMERO DI VOLTE COMPRESO FRA 0 E 25 > cuori25p=pbinom(25, 100, 13/52) > cuori25p [1]
45 ESERCIZIO 7b Sui dati dell esercizio precedente, calcolare: La probabilità di ottenere Quadri un numero di volte maggiore di 40 La probabilità di ottenere Picche un numero di volte compreso fra 20 e 30 La probabilità di ottenere una carta appartenente ai segni rossi (Cuori o Quadri) 50 volte
46 ESERCIZIO 7b # CALCOLO LA PROBABILITÀ DI OTTENERE QUADRI PIU DI 40 VOLTE > 1-pbinom(40, 100, 13/52) [1] # OPPURE: pbinom(40, 100, 13/52, lower.tail=false) [1]
47 ESERCIZIO 7b # CALCOLO LA PROBABILITÀ DI OTTENERE PICCHE FRA 20 E 30 VOLTE > picche30p = pbinom(30, 100, 13/52) > picche19p = pbinom(19, 100, 13/52) > picche_da_20_a_30 = picche30p - picche19p > picche_da_20_a_30 [1] # LA PROBABILITA E DEL 79,66824%
48 ESERCIZIO 7b # CALCOLO LA PROBABILITÀ DI OTTENERE UN SEGNO ROSSO 50 VOLTE > rosso50=dbinom(50, 100, 26/52) [1]
49 ESERCIZIO 7c Sulla distribuzione di probabilità precedente relativa all estrazione di una carta di Fiori da un mazzo di 52 carte, calcolare: Il valore mediano Il primo e il terzo quartile Il valore corrispondente al 70% della distribuzione
50 ESERCIZIO 7c # CALCOLO IL VALORE MEDIANO > fiori_mediana=qbinom(0.5, 100, 13/52) > fiori [1] 25
51 ESERCIZIO 7c # CALCOLO IL PRIMO E IL TERZO QUARTILE > fiori_1quart=qbinom(0.25, 100, 13/52) > fiori_1quart [1] 22 > fiori_3quart=qbinom(0.75, 100, 13/52) > fiori_3quart [1] 28
52 ESERCIZIO 7c # CALCOLO IL VALORE CORRISPONDENTE AL 70% DELLA DISTRIBUZIONE > fiori_70p=qbinom(0.70, 100, 13/52) > fiori_70p [1] 27
53 ESERCIZIO 8 Ipotizziamo di avere dei dati distribuiti come una normale con media 40 cm e deviazione standard 7 cm (si consiglia asse delle X da 0 a 90). Disegnare il grafico e calcolare: probabilità x=60 probabilità di x 55 probabilità di x > 30
54 ESERCIZIO 8 # CREO INNANZITUTTO L ASSE DELLE X > x=seq(0, 90, 0.01) # CREO LA DISTRIBUZIONE NORMALE > normale=dnorm(x, 40, 7) # CREO IL GRAFICO > plot(x, normale, type = "l", xlab="x", ylab = "densità di probabilità")
55 ESERCIZIO 8
56 ESERCIZIO 8 # PER CONOSCERE LA PROBABILITA DI x = 60: > dnorm(60, 40, 7) [1]
57 ESERCIZIO 8 # PER CONOSCERE LA PROBABILITA DI x 55: > pnorm(55, 40, 7) [1]
58 ESERCIZIO 8 # PER CONOSCERE LA PROBABILITA DI x > 30: > pnorm(30, 40, 7, lower.tail=false) [1]
59 ESERCIZIO 8a Sui dati dell esercizio precedente calcolare: probabilità fra 42 e 52 il valore mediano il primo e il terzo quartile
60 ESERCIZIO 8a # PER CONOSCERE LA PROBABILITA FRA 42 E 52 CM: > pnorm(52, 40, 7, lower.tail=true) - pnorm(42, 40, 7, lower.tail=true) [1]
61 ESERCIZIO 8a # LA MEDIANA E : > qnorm(0.5, 40, 7) [1] 40 # IL PRIMO QUARTILE CORRISPONDE AL 25% DELLA DISTRIBUZIONE: > qnorm(0.25, 40, 7) [1] # IL TERZO QUARTILE CORRISPONDE AL 75% DELLA DISTRIBUZIONE: > qnorm(0.75, 40, 7) [1]
62 ESERCIZIO 9 IL NUMERO MEDIO DI ORE DEDICATE ALLO SPORT OGNI MESE RILEVATE PER UN ANNO SU UN CAMPIONE DI 10 PERSONE E RISULTATO PARI AL SEGUENTE VETTORE: sport=c(12, 15, 9, 3, 10, 12, 8, 25, 7, 8) 1) VERIFICARE L IPOTESI CHE IL NUMERO MEDIO DI ORE DI SPORT SIA PARI A 11 (AL LIVELLO DI CONFIDENZA DEL 99%). 2) INDICARE ANCHE L INTERVALLO DI CONFIDENZA PER LA MEDIA.
63 ESERCIZIO 9 > t.test(sport, mu=11, alternative="two.sided", conf.level=0.99) One Sample t-test data: sport t = , df = 9, p-value = alternative hypothesis: true mean is not equal to percent confidence interval: sample estimates: mean of x 10.9
64 ESERCIZIO 9 # 1) POICHE IL LIVELLO DI SIGNIFICATIVITA (0.01) E MINORE DEL P-VALUE CALCOLATO (0.9587) SI ACCETTA L IPOTESI NULLA # 2) L INTERVALLO DI CONFIDENZA PER LA MEDIA E COMPRESO FRA E
LABORATORIO DI PROBABILITA E STATISTICA
UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi 2 SIMMETRIA, APPIATTIMENTO E MISURA DELLA CONNESSIONE NELLE TABELLE A DOPPIA ENTRATA INDICI DI SIMMETRIA INDICE
LABORATORIO DI PROBABILITA E STATISTICA
LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi 3 LA REGRESSIONE LINEARE ES. STUDIO RELAZIONE ALTEZZA - PESO Soggetto Altezza Peso A 174 75 B 166 63 C 173 70 D 171 71 E 168 68 F 167 68 G 165
LABORATORIO DI PROBABILITA E STATISTICA
UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi Corso di laurea in Informatica e Bioinformatica 6 VARIABILI ALEATORIE CONTINUE z LA VARIABILE NORMALE Esempio
Analisi grafica residui in R. Da output grafico analisi regressionelm1.csv Vedi dispensa. peso-statura
Analisi grafica residui in R Da output grafico analisi regressionelm1.csv Vedi dispensa peso-statura 1) Il plot in alto a sinistra mostra gli errori residui contro i loro valori stimati. I residui devono
REGRESSIONE lineare e CORRELAZIONE. Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori
REGRESSIONE lineare e CORRELAZIONE Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori Y X La NATURA e la FORZA della relazione tra variabili si studiano con la REGRESSIONE
Esercizio 1 GRAFICO 1. X e Y sono indipendenti. X e Y non sono correlate. La correlazione tra X e Y è <1. X e Y sono perfettamente correlate
Esercizio 1 Osservare il grafico 1 riportato in figura che mette in relazione una variabile dipendente Y ed una variabile indipendente X e rispondere alle seguenti domande. 400 300 200 GRAFICO 1 100 0
Test per la correlazione lineare
10 Test per la correlazione lineare Istituzioni di Matematica e Statistica 2015/16 E. Priola 1 Introduzione alla correlazione lineare Problema: In base ai dati che abbiamo possiamo dire che c è una qualche
STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA
STATISTICA DESCRITTIVA Elementi di statistica medica STATISTICA DESCRITTIVA È quella branca della statistica che ha il fine di descrivere un fenomeno. Deve quindi sintetizzare tramite pochi valori(indici
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi
Sintesi dei dati in una tabella. Misure di variabilità (cap. 4) Misure di forma (cap. 5) Statistica descrittiva (cap. 6)
Sintesi dei dati in una tabella Misure di variabilità (cap. 4) Misure di forma (cap. 5) Statistica descrittiva (cap. 6) Sintesi dei dati Spesso si vuole effettuare una sintesi dei dati per ottenere indici
Prova di Laboratorio di Probabilità e Statistica - Soluzione traccia A
Prova di Laboratorio di Probabilità e Statistica - Soluzione traccia A 17 luglio 2015 ################### ESERCIZIO 1 ################### # CREO I VETTORI E LA TABELLA marca=c("hp", "Lenovo", "Apple")
Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione
Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2010/2011 Statistica Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza
Teoria e tecniche dei test. Concetti di base
Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi
Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione
Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2011/2012 Statistica Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate.
3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17
C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica
UNIVERSITÀ DEGLI STUDI DI PERUGIA
SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale
Statistica. Esercitazione 14. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice. Verifica di ipotesi
Esercitazione 14 Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () 1 / 14 Ex.1: Verifica Ipotesi sulla media (varianza nota) Le funi prodotte da un certo macchinario hanno una
FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 21/09/2011
FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 1/9/11 ESERCIZIO 1 (+3++3) La seguente tabella riporta la distribuzione di frequenza dei valori di emoglobina nel sangue (espressi
Carta di credito standard. Carta di credito business. Esercitazione 12 maggio 2016
Esercitazione 12 maggio 2016 ESERCIZIO 1 Si supponga che in un sondaggio di opinione su un campione di clienti, che utilizzano una carta di credito di tipo standard (Std) o di tipo business (Bsn), si siano
Introduzione alla Regressione Logistica
Introduzione alla Regressione Logistica Contenuto regressione lineare semplice e multipla regressione logistica lineare semplice La funzione logistica Stima dei parametri Interpretazione dei coefficienti
Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12)
Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 011-1) REGRESSIONE LINEARE SEMPLICE OPEN STATISTICA 8.44 Per 8 settimanali, appartenenti alla medesima fascia di prezzo e presenti in edicola
DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI.
Corso di Laurea Specialistica in Biologia Sanitaria, Universita' di Padova C.I. di Metodi statistici per la Biologia, Informatica e Laboratorio di Informatica (Mod. B) Docente: Dr. Stefania Bortoluzzi
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /
esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;
Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno
lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1
lezione n. 6 (a cura di Gaia Montanucci) METODO MASSIMA VEROSIMIGLIANZA PER STIMARE β 0 E β 1 Distribuzione sui termini di errore ε i ε i ~ N (0, σ 2 ) ne consegue : ogni y i ha ancora distribuzione normale,
A1. La curva normale (o di Gauss)
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 202/203 lezione n. 8 dell aprile 203 - di Massimo Cristallo - A. La curva normale (o di Gauss) La curva
Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25
Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 1 Outline () Statistica 2 / 1 La curtosi La curtosi è la caratteristica della forma della distribuzione
Esercitazione: La distribuzione NORMALE
Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle
Capitolo 6. La distribuzione normale
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri
Proprietà della varianza
Proprietà della varianza Proprietà della varianza Proprietà della varianza Proprietà della varianza Intermezzo: ma perché dovremmo darci la pena di studiare come calcolare la varianza nel caso di somme,
1/55. Statistica descrittiva
1/55 Statistica descrittiva Organizzare e rappresentare i dati I dati vanno raccolti, analizzati ed elaborati con le tecniche appropriate (organizzazione dei dati). I dati vanno poi interpretati e valutati
Variabili aleatorie Parte I
Variabili aleatorie Parte I Variabili aleatorie Scalari - Definizione Funzioni di distribuzione di una VA Funzioni densità di probabilità di una VA Indici di posizione di una distribuzione Indici di dispersione
Validazione dei modelli Strumenti quantitativi per la gestione
Validazione dei modelli Strumenti quantitativi per la gestione Emanuele Taufer Validazione dei modelli Il data set Auto I dati Il problema analizzato Validation set approach Diagramma a dispersione Test
Esercitazione di Statistica Indici di associazione
Esercitazione di Statistica Indici di associazione 28/10/2015 La relazione tra caratteri Indipendenza logica Quando si suppone che tra due caratteri non ci sia alcuna relazione di causa-effetto. Indipendenza
Statistica Applicata all edilizia: il modello di regressione
Statistica Applicata all edilizia: il modello di regressione E-mail: [email protected] 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione
STATISTICA DESCRITTIVA (variabili quantitative)
STATISTICA DESCRITTIVA (variabili quantitative) PRIMO ESEMPIO: Concentrazione di un elemento chimico in una roccia. File di lavoro di STATVIEW Cliccando sul tasto del pane control si ottiene il cosiddetto
Esame di Statistica A-Di Prof. M. Romanazzi
1 Università di Venezia Esame di Statistica A-Di Prof. M. Romanazzi 22 Gennaio 2016 Cognome e Nome..................................... N. Matricola.......... Valutazione Il punteggio massimo teorico di
Vedi: Probabilità e cenni di statistica
Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità
Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza
Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza 3 maggio 2005 Esercizio 1 Consideriamo l esempio del libro di testo Annette
Distribuzioni di probabilità
Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione
Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII
Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII Un breve richiamo sul test t-student Siano A exp (a 1, a 2.a n ) e B exp (b 1, b 2.b m ) due set di dati i cui
Il Corso di Fisica per Scienze Biologiche
Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: [email protected] Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/
Test di ipotesi su due campioni
2/0/20 Test di ipotesi su due campioni Confronto tra due popolazioni Popolazioni effettive: unità statistiche realmente esistenti. Esempio: Confronto tra forze lavoro di due regioni. Popolazioni ipotetiche:
Analisi descrittiva: calcolando medie campionarie, varianze campionarie e deviazioni standard campionarie otteniamo i dati:
Obiettivi: Esplicitare la correlazione esistente tra l altezza di un individuo adulto e la lunghezza del suo piede e del suo avambraccio. Idea del progetto: Il progetto nasce dall idea di acquistare scarpe
STATISTICA ESERCITAZIONE 9
STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione
LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)
LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) Allo scopo di interpolare un istogramma di un carattere statistico X con una funzione continua (di densità), si può far ricorso nell analisi statistica alla
Applicazioni statistiche e utilizzo del package statistico Spss - 7
Applicazioni statistiche e utilizzo del package statistico Spss - 7 CISI 27 gennaio 2005 [email protected] Illustrare le principali statistiche mono e bivariate. Valutare quando è opportuno
Verifica delle ipotesi: Binomiale
Verifica delle ipotesi: Binomiale Esercizio Nel collegio elettorale di una città, alle ultime elezioni il candidato A ha ottenuto il 4% delle preferenze mentre il candidato B il 6%. Nella nuova tornata
MISURE DI SINTESI 54
MISURE DI SINTESI 54 MISURE DESCRITTIVE DI SINTESI 1. MISURE DI TENDENZA CENTRALE 2. MISURE DI VARIABILITÀ 30 0 µ Le due distribuzioni hanno uguale tendenza centrale, ma diversa variabilità. 30 0 Le due
Università di Padova
Università di Padova Dipartimento di Tecnica e Gestione dei sistemi industriali Corso di Laurea Specialistica in Ingegneria Civile Elaborato di analisi statistica a.a. 5-6 Prof. L. Salmaso Dott. L. Corain
Esercitazione 8 del corso di Statistica 2
Esercitazione 8 del corso di Statistica Prof. Domenico Vistocco Dott.ssa Paola Costantini 6 Giugno 8 Decisione vera falsa è respinta Errore di I tipo Decisione corretta non è respinta Probabilità α Decisione
V.C. RETTANGOLARE o UNIFORME
V.C. RETTANGOLARE o UNIFORME La v.c. continua RETTANGOLARE o UNIFORME descrive il modello probabilistico dell equiprobabilità. [ a b] X, con densità di probabilità associata: P( x) 1 b a con P(x) costante.
Distribuzioni campionarie
1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari
Esame di Statistica Seconda Prova Parziale Cognome Nome Matricola
ESERCIZI 1) La seguente tabella riporta il numero di autovetture X vendute nel mese di dicembre 2005 dai 6 concessionari di una casa automobilistica presenti nella provincia di Milano: Auto vendute 18
(5 sin x + 4 cos x)dx [9]
FACOLTÀ DI SCIENZE MM. FF. NN. CORSO DI LAUREA IN SCIENZE NATURALI II Modulo di Matematica con elementi di statistica. Esercitazioni A.A. 009.00. Tutor: Mauro Soro, [email protected] Integrali definiti Risolvere
Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva
Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.
Esercizi di Calcolo delle Probabilità
Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato
Esercitazione 4 del corso di Statistica 2 Prof. Domenico Vistocco
Esercitazione 4 del corso di Statistica 2 Prof. Domenico Vistocco Alfonso Iodice D Enza May 23, 2007 1 Esercizio Si consideri un mazzo di carte francesi di 2 carte e si supponga di stare giocando a poker.
Intervalli di confidenza
Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
STATISTICA: esercizi svolti sulle VARIABILI CASUALI
STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri
Esercitazione 8 maggio 2014
Esercitazione 8 maggio 2014 Esercizio 2 dal tema d esame del 13.01.2014 (parte II). L età media di n gruppo di 10 studenti che hanno appena conseguito la laurea triennale è di 22 anni. a) Costruire un
Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva
Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di
Note sulla probabilità
Note sulla probabilità Maurizio Loreti Dipartimento di Fisica Università degli Studi di Padova Anno Accademico 2002 03 1 La distribuzione del χ 2 0.6 0.5 N=1 N=2 N=3 N=5 N=10 0.4 0.3 0.2 0.1 0 0 5 10 15
i dati escludono vi sia una relazione tra variabile indipendente e variabile dipendente (rispettivamente
TEST DI AUTOVALUTAZIONE - SETTIMANA 6 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia Parte A. La retta di regressione.2
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
Test d ipotesi sulla media
Test d ipotesi sulla media Monica Marabelli 4 Dicembre 2015 Riassumendo l esercitazione precedente Nella lezione precedente abbiamo visto che la media campionaria puó essere un buon stimatore del valore
INDICATORI DI TENDENZA CENTRALE
INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo è indice che riassume o descrive i dati e dipende
ESERCIZI DI RIEPILOGO 1
ESERCIZI DI RIEPILOGO 1 ESERCIZIO 1 La tabella seguente contiene la distribuzione di frequenza della variabile X = età (misurata in anni) per un campione casuale di bambini: x i 4.6 8 3.2 3 5.4 6 2.6 2
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 2 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1.1
Facoltà di Economia - Università di Pavia Simulazione Prova Scritta di Statistica Sociale 19 dicembre 2012
Facoltà di Economia - Università di Pavia Simulazione Prova Scritta di Statistica Sociale 19 dicembre 01 Esercizio 1. Con riferimento a due variabili dicotomiche X e Y (con valori possibili 0 o 1) si definisca
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 13-Il t-test per campioni indipendenti vers. 1.1 (12 novembre 2014) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di
Capitolo 11 Test chi-quadro
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corsi di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.
Distribuzioni e inferenza statistica
Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione
DISTRIBUZIONI DI PROBABILITA
DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate
Schema lezione 5 Intervalli di confidenza
Schema lezione 5 Intervalli di confidenza Non centrerò quella barca, ne sono convinto al 95% COMPRENDERE: Significato di intervallo di confidenza Uso degli stimatori come quantità di pivot per stime intervallari
ESERCIZIO 1. Confrontare, analiticamente e graficamente, la forma e la variabilità delle due distribuzioni. Commentare i risultati ottenuti.
ESERCIZIO 1 Una società di ricerche di mercato ha svolto un indagine per conoscere il reddito mensile dalle famiglie residenti nelle regioni Lazio e Campania. I dati in Euro sono riportati nelle due tabelle
Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza
Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 16/06/2016 NOME: COGNOME: MATRICOLA: Esercizio 1 Cinque lettere
DISTRIBUZIONI DI PROBABILITA
DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente
Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa
Esercizi Svolti Esercizio 1 Per una certa linea urbana di autobus sono state effettuate una serie di rilevazioni sui tempi di attesa ad una determinata fermata; la corrispondente distribuzione di frequenza
INDICATORI DI TENDENZA CENTRALE
INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo indice che riassume o descrive i dati e dipende dalla
ISTOGRAMMI E DISTRIBUZIONI:
ISTOGRAMMI E DISTRIBUZIONI: i 3 4 5 6 7 8 9 0 i 0. 8.5 3 0 9.5 7 9.8 8.6 8. bin (=.) 5-7. 7.-9.4 n k 3 n k 6 5 n=0 =. 9.4-.6 5 4.6-3.8 3 Numero di misure nell intervallo 0 0 4 6 8 0 4 6 8 30 ISTOGRAMMI
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative
ESERCIZI SVOLTI Giuliano Bonollo - Michele Bonollo
ESERCIZI SVOLTI Giuliano Bonollo - Michele Bonollo 1 La seguente tabella riporta le frequenze relative riguardanti gli studenti di un università e gli esiti dell esame da essi sostenuto. Qual è la percentuale
Capitolo 3 Sintesi e descrizione dei dati quantitativi
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 3 Sintesi e descrizione dei dati quantitativi Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e tecnologie Alimentari" Unità
IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA
Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale
STATISTICHE DESCRITTIVE Parte II
STATISTICHE DESCRITTIVE Parte II INDICI DI DISPERSIONE Introduzione agli Indici di Dispersione Gamma Differenza Interquartilica Varianza Deviazione Standard Coefficiente di Variazione introduzione Una
