I ceramici avanzati strutturali si distinguono per la limitata densità, l elevata durezza e l alto modulo elastico. Le proprietà dipendono ovviamente

Documenti analoghi
La resistenza di un materiale dal comportamento fragile va analizzata attraverso gli strumenti della meccanica della frattura.

MATERIALI CERAMICI Classificazione e caratteristiche generali

I differenti materiali differiscono per le caratteristiche meccaniche e fisiche.

PARTE PRIMA ASPETTI GENERALI Capitolo 1 STRUTTURA E PROPRIET DEI MATERIALI 1. STRUTTURA DEI MATERIALI 1.1. Macrostruttura 1.2. Microstruttura 1.3.

Produzione di titanio metallico puro.

Trattamenti di modificazione microstrutturale

MATERIALI CERAMICI. Prodotti ottenuti da materie prime inorganiche non metalliche formate a freddo e consolidate mediante cottura.

SOLUZIONE ESERCIZIO 1.1

Proprietà meccaniche. Prove meccaniche. prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep

1. RISCALDAMENTO ad una T < Ac 1

CAPITOLO 11 Materiali ceramici ESERCIZI CON SOLUZIONE SVOLTA. Problemi di conoscenza e comprensione

L acciaio pre-bonificato per stampi di piccolo spessore

I ceramici sono dunque dei materiali fragili che seguono la ben nota legge di Griffith K IC. σ =

La pressione è una grandezza fisica, definita come il rapporto tra la forza agente normalmente su una superficie e la superficie stessa.

I processi di tempra sono condotti sul manufatto finito per generare sforzi residui di compressione in superficie. Vengono sfruttate allo scopo

Problemi ad alta temperatura: Creep (scorrimento viscoso a caldo) Ossidazione

LAVORAZIONE DEI POLIMERI I processi per trasformare granuli e pastiglie in prodotti finiti sono numerosi.

Designazione delle leghe d'alluminio

CAPITOLO 50 CAP VETRI, CERAMICHE E CMC: TIPOLOGIE E TECNOLOGIE. Sinossi

Termomacchine s. r. l. Applicazione del riscaldo ad induzione alla solubilizzazione di acciai austenitici

LA ZIRCONIA. DIOSSIDO DI ZIRCONIO ZrO 2

Trattamenti termici dei metalli

Materiali ceramici. Prof. Marco Boniardi

G. M. La Vecchia Dipartimento di Ingegneria Meccanica Università di Brescia

INDICE. 1 Introduzione e panoramica. 3 proprietà dei materiali industriali. 2 materiali per applicazioni industriali. e proprietà dei prodotti

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura

Appendici. Importanti proprietà di materiali selezionati per l ingegneria. 1. Valori di densità a temperatura ambiente.

Capacità di assorbire una deformazione plastica senza rompersi: alta=duttile (es. oro) bassa=fragile (es. vetro)

LA RESISTENZA ALLA CORROSIONE

Soggetto a modifiche tecniche ed errori Retsch GmbH info@retsch.com

GTTS5: Processi produttivi innovativi. Introduzione R-0353-D0415-CI-I 1

Politecnico di Torino Dipartimento di Meccanica DAI PROVINI AI COMPONENTI

--- durezza --- trazione -- resilienza

Mtll Metallurgia Acciai e ghise

Indice. 1.1 Introduzione Sistema Internazionale delle unità di misura 4

PREPARAZIONE E CARATTERIZZAZIONE DEI VETRI COLORATI

La granulazione permette di ottenere granuli (aggregati di alcune decine di micron con DPS<1) dalle polveri. I granuli scorrono meglio della polvere,

PARAMETRI DI PROCESSO

Blade cooling Gas Turbine. Impianti per l Energia l

TRATTAMENTI TERMICI IMPORTANZA DI ESEGUIRE IL TRATTAMENTO TERMICO NEL MOMENTO OPPORTUNO DEL PROCESSO DI REALIZZAZIONE DEL PEZZO

Composizione degli acciai Conoscere bene per comprare meglio

Radiazione solare. Energia elettrica

PASTIGLIE BREMBO. PER TUTTE LE MOTO, PER TUTTI I MOTOCICLISTI.

Corso di tecnologia Scuola media a.s PROF. NICOLA CARIDI

La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di

PREPARAZIONE E CARATTERIZZAZIONE DEI VETRI COLORATI

IMPAX SUPREME. Acciaio per stampi bonificato

Il ruolo dei materiali metallici nelle tecniche di Additive Manufacturing (AM)

MATERIALI. Introduzione

CAPITOLO 9 Materiali metallici ESERCIZI CON SOLUZIONE SVOLTA. Problemi di conoscenza e comprensione

Il casco e le sue varianti

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1

Università di Pisa Facoltà di Ingegneria. Leghe non ferrose. Chimica Applicata. Prof. Cristiano Nicolella

MATRICE DELLE COMPETENZE DI SCIENZE E TECNOLIE APPLICATE INDIRIZZO DI MECCANICA, MECCATRONICA ED ENERGIA

BLANK PER SISTEMI CAD CAM

Capitolo 4. Superfici, tribologia, caratteristiche dimensionali e controllo qualità Pearson Paravia Bruno Mondadori S.p.A.

I materiali ceramici utilizzati nelle applicazioni automobilistiche, si collocano fra i cosiddetti CERAMICI AVANZATI.

Lezione 11 Trattamenti termici

Corrado Patriarchi 1

MATERIALI CERAMICI AVANZATI

1.3.1 SALDATURA DI ACCIAI LEGATI, ACCIAI DISSIMILI E DI COMPOSIZIONE SCONOSCIUTA

Il trattamento termico on line di tubi in acciaio inossidabile austenitico e ferritico

La mobilità degli elementi chimici

Ciclo produttivo dei materiali sinterizzati ed esempi di applicazione. D. Ornato Resp. Tecnico Tecsinter S.p.A., San Bernardo d Ivrea

Sistemi per serramenti e facciate continue in alluminio. Manuale di posa per serramenti Window & Door Installation Instructions. alsistem.

Ceramiche. Per lavorazioni efficienti e ad alta produttività delle superleghe

PUNTI ESSENZIALI LEZIONE 2

Catalogo profili per cilindri pneumatici calibrati

Proprietà meccaniche. Caratteristiche elastiche: Vetro di silicato sodicocalcico

THE SWEDISH DOCTOR BLADE

Descrizione dei Diversi Tipi di Polvere

Nitruro di Silicio (Si 3 N 4 )

Le Saldature. Corso di Tecnologie Meccaniche A.A

COVER FIX IRON 25. Tassello a battuta in polipropilene con perno in acciaio certificato su supporti A-B-C. konstruktive leidenschaft

UDDEHOLM ROYALLOY TM

Il laser come utensile per finire i manufatti realizzati mediante Additive Manufacturing

PROVA DI TRAZIONE Carico [KN] Lunghezza [mm] Stress [MPa] Deformazione

3.6 DIAGRAMMI DI TRASFORMAZIONE CON RAFFREDDAMENTO CONTINUO

SVILUPPI DEI TRATTAMENTI TERMOCHIMICI DI DIFFUSIONE DA FASE GAS MEDIANTE CARATTERIZZAZIONE SUPERFICIALE GDOES

finalizzate allo sviluppo di film sottili con proprietà antiusura e anticorrosione Federico Cartasegna Environment Park S.p.A.

La tecnologia del silicio

Misure di prevenzione primaria per la riduzione del rischio nella saldatura

Approfondimento 1: Catalizzatori per l abbattimento degli NO x

Introduzione alle tecnologie di fabbricazione Introduzione 1.1 Processi tecnologici di trasformazione 1.2 Attributi geometrici dei prodotti

TUBI DI POLIETILENE ALTA DENSITA PE 100 SCHEDA TECNICA

CAPITOLO 11 Materiali ceramici ESERCIZI CON SOLUZIONE SVOLTA. Problemi di conoscenza e comprensione

Le FAV: tipologie di utilizzo e settori di impiego [Stefano Cera Segretario generale FIVRA]

S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano

TRATTAMENTI TERMOCHIMICI DEGLI ACCIAI

a.a. 2012/2013 CORSO DI LAUREA IN INGEGNERIA CIVILE

CHAPITRE I. Les matériaux composites nanostructurés. Production, but et applications. Résumé

FILTRO A TESSUTO. Allegato n. Azienda. Punto di emissione n. Temperatura emissione (K) Altezza geometrica di emissione (m)

PRODOTTI IN GRAFITE DI CARBONIO Grafite speciale

a cura di Massimo Reboldi MATERIALI PER UTENSILI

collettori solari PlUs Di ProDotto collettori solari con telaio in alluminio per integrazione nel tetto

ESSICCAZIONE E COTTURA DI PIASTRELLE CERAMICHE

Mole da taglio e da sbavo Unifix

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA

CEMENTI PROVVISORI & DEFINITIVI

NOTA TECNICA : Metallurgia di base degli acciai speciali da costruzione

Transcript:

I ceramici avanzati strutturali si distinguono per la limitata densità, l elevata durezza e l alto modulo elastico. Le proprietà dipendono ovviamente dalla microstruttura e, in particolare, dalla porosità, quindi dal processo produttivo. Fattore limitante di tutti questi materiali è la tenacità a frattura. Infatti, pur essendo molto forti i legami, all apice dei difetti sono assenti tutti i fenomeni dissipativi che potrebbero evitare la propagazione della frattura. 1

La resistenza meccanica dipende dalla dimensione della grana cristallina. La dimensione dei difetti è infatti paragonabile a quella dei grani cristallini. Quindi all aumentare della grana cristallina diminuisce la resistenza. Per l allumina si raggiungono resistenze anche di 500-600 MPa se la grana cristallina è inferiore ai 2 µm. L allumina può essere prodotta in diversi modi: per sinterizzazione con fase liquida (usando addittivi che formano un liquido a base di silice che poi diventa vetro a bordo grano). In questo caso il prodotto ha una purezza variabile dall 80 al 99%; per sinterizzazione in fase solida o per hot-pressing usando polveri sostanzialmente pure (al limite drogate con 100-200 ppm di MgO per limitare la crescita dei grani). 2

Il limite di temperatura per l allumina pura è attorno ai 1200 C. A temperature superiori prevalgono fenomeni di rilassamento della fase vetrosa, creep e scorrimento plastico. 3

Il nitruro di silicio può essere prodotto in diversi modi: per sinterizzazione con fase liquida (usando miscele di ossidi che formano un liquido a base di silice, allumina o ittria che poi diventa vetro a bordo grano). In questo caso il prodotto ha una purezza variabile dal 90 al 99%; per hot-pressing, usando polveri sostanzialmente pure; per reaction bonding, partendo da polveri di silicio e fttee sinterizzare in atmosfera di NH 3 ; il prodotto presenta sempre silicio residuo. 4

La produzione di nitruro di silicio può avvenire a temperature relativamente basse mediante reaction bonding (per sinterizzazione con presenza di fase liquida si debbono in genere superare i 1800 C). 5

Anche il carburo di silicio può essere prodotto per reaction bonding; nel caso di infiltrazione in fase gas resta una certa porosità e silicio, nel caso di utilizzo di silicio liquido (infiltrato per capillarità) resta silicio metallico. Le tecniche di reaction bonding sono utilizzate anche per la produzione di compositi SiC/SiC o C/SiC. 6

Nei materiali ceramici (così come nel vetro) la resistenza meccanica a frattura è molto inferiore rispetto a quella teorica. Come sappiamo questo è associato all assenza di deformazioni plastiche all apice dei difetti ovvero a limitati valori di K C. Per aumentare la resistenza meccanica possono essere controllati i difetti durante la fabbricazione o i processi di finitura (per esempio con la lucidatura) oppure si può pensare di migliorare la microstruttura del materiale rendendolo meno suscettibile ai difetti stessi. 7

Nei materiali in cui K C è una costante la resistenza (σ f ) è definita direttamente dalla dimensione del difetto. Al carico cui corrisponde K=K C si ha rottura catastrofica. La resistenza è quindi tanto dispersa quanto diversi sono i difetti presenti. Se in un materiale K C è una funzione crescente con c si può avere crescita stabile dei difetti almeno in un certo intervallo; in altre parole la crescita dei difetti aumenta solo se aumento il carico esterno. In questo caso, nell intervallo considerato, la resistenza è indipendente dalla dimensione dei difetto. Si parla allora di effetto curva R o curva T. 8

Sono possibili diversi meccanismi di tenacizzazione. Essi fanno riferimento o alla zona di processo (davanti all apice della cricca) o alla zona di bridging (lungo le superfici della cricca). Nel primo caso il materiale deve manifestare un indebolimento frontale al crescere del carico e una deformazione residua in fase di scarico. Nel secondo caso devono essere presenti strutture che tengono saldate le superfici della cricca tra di loro (come per esempio whisker ossia particelle monocristalline dello spessore di qualche micron, ma anche particelle duttili). 9

Un tipico meccanismo di tenacizzazione è quello detto del transformation toughening tipico per la zirconia. L ossido di zirconio, nella forma pura, esiste in tre forme allotropiche (a seconda della temperatura). La trasformazione t-m (ossia il passaggio dalla cella tetragonale a quella monoclina) è di tipo martensitico ed è accompagnata da aumento di volume e distorsione tangenziale. La temperatura M s (martensite start) decresce in presenza di ossidi stabilizzanti (in soluzione solida) o di sforzi di compressione; diminuisce inoltre quando la grana cristallina è limitata. In certe condizioni (per esempio mediante un raffreddamento veloce) è perciò possibile ottenere una fase t metastabile a temperatura ambiente (evitando la trasformazione t-m e quindi l aumento di volume). 10

Nel sistema zirconia-ittria (fra i più comuni) è possibile ottenere (agendo sulla temperatura di trattamento e la composizione delle polveri) la PSZ o la TZP. In tutti e due i casi è presente fase t metastabile (nella PSZ è immersa nei grani c). 11

La figura riporta il diagramma sforzo - deformazione della PSZ (simile a quello della TZP). L applicazione di un carico di trazione superiore a sc causa la trasformazione t-m con aumento di volume e riduzione dello sforzo. Lo scarico causa ovviamente la presenza di sforzi di compressione. Questo è ciò che avviene all apice dei difetti. Si genera quindi una zona trasformata meno carica rispetto al resto del materiale. Si parla quindi di effetto schermante sulla cricca. All aumentare del carico la cricca può avanzare ma lascia dietro di sé una zona in compressione che tende a tener chiusa la cricca. 12

Il fenomeno causa un aumento della tenacità a frattura che può arrivare anche a valori di 20 MPa m 0.5 (da circa 3-4 MPa m 0.5 della fase c). I sistemi più usati fanno riferimento alla PSZ o a compositi allumina-zirconia. Gli impieghi sono diversificati e vanno dai componenti meccanici, agli utensili, agli impianti biomedicali. 13

La presenza di particelle duttili in un ceramico può causare tenacizzazione per bridging. Le particelle duttili possono (arrivando a snervamento a cavallo della cricca in propagazione) assorbire un aliquota di energia tale da causare aumento della tenacità a frattura anche dell ordine di 25 MPa m 0.5. 14

La presenza di fibre o whisker (fibre monocristalline di qualche micron di diametro) può assicurare un fenomeno di tenacizzazione per bridging. Le fibre fungono quindi da aggancio residuo tra le facce della cricca (con questo metodo riesco anche a decuplicare la K c di un materiale). La tenacizzazione è legata a diversi fattori: - l energia assorbita dalle fibre prima di rompersi; - l energia associata alla differente dilatazione termica tra fibre e matrice (la propagazione della frattura può cedere energia in quanto rilassa gli sforzi tensili); - l energia assorbita nella propagazione della cricca lungo l interfaccia fibramatrice; - l energia assorbita nel pull-out (sfilamento) delle fibre dalla matrice. L ultimo aspetto è particolarmente critico: dipende molto dalla resistenza dell interfaccia e dal coefficiente di attrito e fa distinguere tra compositi realmente tenaci e non. La tenacizzazione può essere anche molto elevata, persino dell ordine dei 30 MPa m 0.5. 15

L indebolimento dell interfaccia è realizzato mediante strati porosi (C, SiC) o con materiale a struttura lamellare (monazite). 16

17

La tenacizzazione può essere anche molto elevata, persino dell ordine dei 30 MPa m 0.5. 18

Ceramici monofasici possono presentare fenomeni di tenacizzazione quando sono presenti grani di grosse dimensioni o, meglio, di forma allungata. L incastro reciproco dei grani in fase di frattura genera un effetto di bridging che può portare ad un incremento della tenacità a frattura anche di 5 MPa m 0.5. Condizione necessaria è una frattura transgranulare. Per esempio, per un allumina a grana fine (dell ordine dei micron) K c = 4 MPa m 0.5 ; per un allumina a grana grossolana (dell ordine delle decine di micron) K c = 8 MPa m0.5. Va comunque ricordato che l ingrossamento dei grani è in genere associato a una diminuzione della resistenza meccanica. Va perciò trovato un compromesso tra tenacità a frattura e resistenza. Diventa importante qui il controllo eventuale della crescita dei grani (magari abnorme) in fase di sinterizzazione. 19