5. Regola delle fasi

Documenti analoghi
DIAGRAMMI DI STATO. Una singola fase ha in ogni sua parte un identico comportamento se sottoposta a sollecitazioni fisiche o chimiche

I sistemi ternari sono dei diagrammi che spiegano il processo di cristallizzazione e/o fusione di un magma costituito da 3 componenti chimiche.

Passaggi di stato. Tecnologie di Chimica Applicata

Tecnologia Meccanica Proff. Luigi Carrino Antonio Formisano Diagrammi di stato

Corso di Mineralogia

Cambiamenti di stato Regola delle fasi

Cambiamenti di stato. Equilibri tra le fasi: diagrammi di stato per un componente puro diagrammi di stato a due componenti

DIAGRAMMI DI STATO Scopo e approssimazione La temperatura e fasi Regola della leva

Variabili Chimiche: Componenti indipendenti del sistema

Domanda: Qual è la differenza fra stati di equilibrio stabile e metastabile?

Cambiamenti di stato

Un elemento o composto chimico può esistere come fasi diverse (acqua liquida, vapore d'acqua e ghiaccio, Fe α, Feγ)

Cambiamenti di stato

Corso di Tecnologia dei Materiali ed Elementi di Chimica. Docente: Dr. Giorgio Pia

Corso di Studi di Fisica Corso di Chimica

LE ROCCE. (prima parte) Lezioni d'autore. di Simona Mazziotti Tagliani

Lettura Diagrammi di stato

Per l animazione o per proseguire premere la barra spaziatrice. fine diapositiva

Introduzione allo studio delle rocce

Un sistema eterogeneo è in equilibrio quando in ogni sua parte è stato raggiunto l equilibrio:

C = componenti indipendenti; F = fasi V=C+2-F=2. V = 0 Sistema zerovariante V = 1 Sistema monovariante V = 2 Sistema bivariante

Un sistema è una porzione delimitata di materia.

Termodinamica dei solidi

I MATERIALI DELLA TERRA SOLIDA. Unità 9 Par. #6,7,8,9,10,11, 12,13

Energia di Gibbs. introduciamo una nuova funzione termodinamica così definita. energia di Gibbs ( energia libera)

Metamorfismo significa cambiamento. Le trasformazioni metamorfiche avvengono allo stato solido, generalmente in presenza di fluidi acquosi e/o

MATERIA Lo stato di aggregazione definisce la consistenza fisica delle sostanze

LA MATERIA ED I SUOI STATI

14. Transizioni di Fase_a.a. 2009/2010 TRANSIZIONI DI FASE

DIAGRAMMI DI EQUILIBRIO DEI MATERIALI E DELLE LEGHE DI INTERESSE INDUSTRIALE

Processo magmatico, genesi ed evoluzione dei magmi

Conoscere e riconoscere le rocce

PERCHÉ STUDIARE I DIAGRAMMI DI STATO

Scienza dei Materiali 1 Esercitazioni

Cristallizzazione all equilibrio:

MODELLO SCHEDA INSEGNAMENTO

GAIALAB:INCONTRIAMO L AMBIENTE IN LABORATORIO

Unità T9 - I materiali della Terra solida

Le idee della chimica

LEZIONE N. 1 PETROGRAFIA. Rocce ignee (o magmatiche)

Studio dei diagrammi di fase per sistemi a due componenti

SCIENZE. La formazione delle rocce metamorfiche. Tipi di metamorfismo. il testo:

Cristina Cavazzuti, Laura Gandola, Roberto Odone. Terra, acqua, aria

DEFINIZIONE. ROCCIA: aggregato naturale di minerali di diversa natura

ROCCE METAMORFICHE ROCCE METAMORFICHE

SEPARAZIONE DI FASE SOLUZIONI NON IDEALI *

AMBIENTE MAGMATICO ROCCE MAGMATICHE

Contenuto. Massa della crosta terrestre Minerali Come si formano I minerali Organizzazione della struttura cristallina Classificazione dei minerali

numero complessivo di variabili = c f + 2

Per un sistema isolato la somma di energia potenziale ed energia cinetica si mantiene costante.

Argomenti trattati. Introduzione. Solidification. Fasi della solidificazione Nucleazione energia omogenea ed eterogenea. Crescita uniforme dendritica

I minerali e le rocce

La regola delle fasi secondo Gibbs e secondo Duhem

L equilibrio chimico. Se una reazione è reversibile, al suo termine i reagenti non sono del tutto consumati

Processi di weathering

CROSTA MANTELLO NUCLEO suddivisa in MARGINI DIVERGENTI

Materia. Tutto ciò che occupa spazio e ha massa

Deviazioni dall idealità: equilibri liquido-liquido. Termodinamica dell Ingegneria Chimica

STRUTTURA DELLA MATERIA. Prof.ssa PATRIZIA GALLUCCI

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

Per le animazioni utilizzare la barra spaziatrice; per muoversi all interno della rappresentazione utilizzare i pulsanti e/o le parole calde.

Capitolo 4 Rocce: riconoscimento, proprietà tecniche, utilizzi

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener

Energia di Gibbs. Questa equazione può essere espressa più semplicemente riferendosi ad una nuova funzione di stato così definita

Fase. P = 1 liquidi completamente miscibili 1 < P n liquidi parzialmente miscibili. P = n 1 < P n solidi parzialmente miscibili (soluzioni solide)

Classificazione delle rocce. Gola di Su Gorroppu (NU)

Minerali. cristallo. abito cristallino. composizione chimica definita. disposizione regolare degli atomi:

LE ROCCE. Dott.ssa geol. Annalisa Antonelli

Le rocce rocce rocce

Termodinamica degli stati: superficie caratteristica e piani termodinamici

Diagrammi di equilibrio delle leghe non ferrose

Cosa studia la chimica?

Sostanza pura. Il termine sostanza indica il tipo di materia di cui è fatto un corpo.

ESERCIZI ESERCIZI. 1) L equazione di stato valida per i gas perfetti è: a. PV = costante b. PV = nrt c. PV = znrt d. RT = npv Soluzione

PROGRAMMA DEL CORSO DI CHIMICA FISICA 1 CON LABORATORIO a.a

Stati di aggregazione della materia, la pressione e i fluidi in quiete

ITI CANNIZZARO CATANIA

Diagrammi di fase. Limite di solubilità Fasi Microstruttura Equilibrio di fase

LICEO SCIENTIFICO STATALE R. CACCIOPPOLI ANNO SCOLASTICO 2012/13 CLASSE III G PROGRAMMA DI SCIENZE PROF.SSA ANGELOZZI ROBERTA CHIMICA

La miscelazione di due componenti è accompagnata da una variazione di energia libera. La variazione di entropia è legata all entropia dei singoli

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener

LE ROCCE. (seconda parte) Lezioni d'autore. di Simona Mazziotti Tagliani

4. Descrivere il fenomeno della fatica.

Eventuale post-riscaldamento se la necessitàdi deumidificazione ha comportato una diminuzione eccessiva di temperatura

UN PERCORSO SULLA REGOLA DELLE FASI PER I SISTEMI BINARI UTILIZZANDO I SENSORI DI TEMPERATURA

Capitolo secondo. TRASFORMAZIONI IN CONDIZIONI D EQUILIBRIO: diagrammi di stato e diagramma Fe-C

Materia. Tutto ciò che occupa spazio e ha massa

ROCCE E MINERALI nativi composti mineralogia minerale roccia struttura del reticolo cristallino

Per rocce si intendono aggregati di minerali La maggior parte delle rocce è formata da minerali diversi; ;più raramente le rocce sono formate da un

INTRODUZIONE ALLA MINERALOGIA

LE PROPRIETA DELLA MATERIA

GAIALAB:INCONTRIAMO L AMBIENTE IN LABORATORIO

Principi della Termodinamica

Transcript:

5. Regola delle fasi

Regola delle fasi di Gibbs V = C-f+v V = varianza (o numero dei gradi di libertà) = numero di fattori che possono variare indipendentemente senza modificare il numero di fasi presenti nel sistema C= componenti chimici indipendenti numero minimo di sostante chimiche sufficienti per individuare tutte le fasi presenti nel sistema nelle condizioni fisiche di studio f = numero delle fasi mineralogiche; fase = porzione chimicamente omogenea di un sistema eterogeneo, e meccanicamente separabile dal resto del sistema v = fattori di equilibrio, cioè il numero di parametri fisici ambientali che possono influenzare l equilibrio; nei processi petrogenetici sono dati da pressione e temperatura

v = pressione e temperatura = 2 V = C-f+v Questa regola governa tutti i processi chimici e quindi quelli petrogenetici (sedimentario chimico, magmatico e metamorfico) composizione mineralogica = l elenco delle fasi mineralogiche che costituiscono la roccia nel suo insieme associazione mineralogica = paragenesi l insieme dei minerali che si formano per effetto di una medesima reazione chimica, a meno delle fasi volatili; essa rappresenta un entità geneticamente unitaria, teoricamente prodotto di equilibrio. La definizione della paragenesi delle rocce richiede un attento studio microscopico e microstrutturale, per individuare eventuali diversi stadi o momenti della storia genetica delle rocce stesse

Regola mineralogica delle fasi o regola delle fasi di Goldschmidt Goldschmidt (1911): studio di aureole di contatto di corpi magmatici intrusivi dell area di Oslo relazione tra composizione chimica delle rocce e associazioni mineralogiche il numero delle fasi non variava entro certi intervalli di P e T ogni processo metamorfico avviene in condizioni almeno divarianti V = C F + 2 2 F C Il numero delle fasi è piccolo e non può superare il numero dei componenti del sistema - vale per tutti i processi petrogenetici chimici - spiega perché tutte le rocce di origine chimica (sedimentarie chimiche, magmatiche e metamorfiche) sono costituite da poche fasi mineralogiche

Componenti chimici determinanti Le rocce sono per la maggior parte formate da un numero molto elevato di componenti chimici. Per utilizzare la regola delle fasi per studi petrogenetici, bisogna ridurre il numero dei componenti chimici componenti determinati: la cui presenza risulta indispensabile per descrivere il dato sistema roccia. Korzhinskii (1959) suggerisce di: a) non considerare i componenti: - accessori: formano una specifica fase e non entrano in nessun altra, - in tracce: non aumentano il numero delle fasi del sistema), - in eccesso: formano una fase cristallina propria e che nel contempo sono presenti anche nelle altre fasi del sistema stesso; b) considerare uno solo fra i componenti chimici di fasi isomorfe. Il numero di componenti determinanti C è pertanto piccolo numero di fasi che forma le rocce di origine chimica è basso (4 nel granito, 2 o 3 nei basalti).

Sistema ad un componente Per valori di T e P qualsiasi (V = 2), potremo avere solo una fase stabile 2 < (C f + 2) SiO 2 f =1

Regola delle fasi e processo magmatico Il processo di cristallizzazione magmatica prevede cha da un magma di specifica composizione X cristallizzino, a determinate condizioni di pressione (P = costante) e per diminuzione di temperatura, un certo numero di fasi cristalline F. V = C F + 1 P = costante le variabili indipendenti sono ridotte a due, e sono composizione e temperatura (pressione costante).

Sistemi a due componenti (binari) C = 2 - curva del liquidus: separa il campo di stabilità della sola fase liquida; - curva del solidus: separa il campo si stabilità della fase solida; - percorso di cristallizzazione: segmento verticale che collega, attraversando i vari campi, il punto rappresentativo del liquidus iniziale con il V = C F + 1 solido finale avente la stessa composizione F = 1 V = 2 (T X) F = 2 (liquido + solido) V = 1 (X) F = 1 V = 2 (T X) Sistemi a due componenti totalmente miscibili allo stato liquido e solido

- eutettico (E): punto dove termina la cristallizzazione di tutti i fusi rappresenta il minimo della curva del liquidus e la sua unica intersezione con quella del solidus; in un sistema a due fasi all eutettico coesistono due fasi solide e una liquida: punto è invariante (V = C F +1 = 2 3 + 1 = 0) non è possibile cambiare nessuna variabile intensiva senza variare il numero delle fasi; V = C F + 1 F = 1 V = 2 (T X) F = 2 (liquido + solido) V = 1 (X) F = 2 (liquido + solido) V = 1 (T) F = 3 V = 0 F = 2 V = 1 (T) Sistemi a due componenti miscibili allo stato liquido e immiscibili allo stato solido

V = C F + 1 F = 1 V = 2 (T X) F = 2 (liquido + solido) V = 1 (X) F = 2 (liquido + solido) V = 1 (T) F = 3 V = 0 F = 2 V = 1 (T) Sistemi a due componenti con componente intermedio a fusione congruente

- peritettico (P): punto di reazione in sistemi a due componenti che formano un composto a fusione incongruente, cioè di un composto la sua fusione determina la formazione di V = C F + 1 un fuso a composizione diversa + un solido di composizione diversa e più alto fondente; F = 1 V = 2 (T X) F = 2 (liquido + solido) V = 1 (X) F = 2 (liquido + solido) V = 1 (T) F = 3 V = 0 F = 2 V = 1 (T) Sistemi a due componenti con composto intermedio a fusione incongruente

-minimo (m): punto di più bassa temperatura presente all intersezione tra la curva del liquidus e quella del solidus; in corrispondenza di tale punto terminano la cristallizzazione solo fusi di composizione iniziale Xm, - solvus: curva eventualmente presente nel campo del solido che individua in esso zone di immiscibilità allo stato solido delle fasi; nel campo del solvus si ha smistamento subsolidus delle fasi; V = C F + 1 m F = 1 V = 2 (T X) F = 2 (liquido + solido) V = 1 (X) F = 2 (liquido + solido) V = 1 (T) F = 3 V = 0 F = 1 V = 2 (T X) F = 2 V = 1 (T) Sistemi a due componenti miscibili allo stato liquido e immiscibili allo stato solido

Sistemi a tre componenti (ternari) C = 3 Formati da tre sistemi binari. Possono essere rappresentati tridimensionalmente (per valori di pressione costante) da un solido, la cui base triangolare contiene le tre composizioni, i cui tre lati costituiscono i sistemi binari, e la cui altezza rappresenta la temperatura

Visto che una rappresentazione tridimensionale risulta complessa, questi sistemi vengono rappresentati considerando solo i triangoli di base sui quali vengono proiettate, ortogonalmente, le temperature (isoterme).

- superficie del liquidus: al di sopra della quale esiste solo la fase liquida; lungo esse coesistono fase liquida e fase solida, sono divarianti (V = C F + 1 = 3 2 + 1 = 2) - linee cotettiche: che separano le varie superfici del liquidus e uniscono gli eutettici dei sistemi binari (e1, e2, e3) con il minimo eutettico ternario (E); lungo tali linee si ha la cristallizzazione contemporanea di due delle fasi del sistema e la presenza di liquido; sono univarianti (V = 3 3 + 1 = 2); - minimo eutettico o eutettico ternario (E): punto in corrispondenza del quale cristallizzano contemporaneamente le tre fasi cristalline; esso è invariante (V = 3 4 + 1 = 0); - punto di reazione (R): punto di coesistenza tra liquido e fase solida che cade all esterno del triangolo di compatibilità delle fasi solide coesistenti; esso è invariante (V = 3 4 + 1 = 0); - superficie del solidus: superficie passante per l eutettico ternario, sotto la quel non si trova mai il fuso.

C sopra della curva del liquidus F = 1 V = 3 1 + 1 = 3 (T X1 X2) sulla curva del liquidus F = 2 V = 3 2 + 1 = 2 (T X) sulla curva cotettica F = 3 V = 3 3 + 1 = 1 (T) A B all eutettico ternario E F = 4 V = 3 4 + 1 = 0

Regola delle fasi e processo metamorfico a) Sistemi aperti e sistemi chiusi Durante i processi metamorfici i sistemi chimici che rappresentano le rocce possono subire cambiamenti chimici dovuti all apporto o alla rimozione di materiale chimico ad opera dell ambiente esterno sistemi chimici aperti: la composizione della fase fluida è controllata dall esterno sistemi chimici chiusi: la composizione della fase fluida è controllata dall interno del sistema La definizione del tipi di sistema presente al momento della formazione della roccia risulta determinante nella valutazione dei componenti che hanno contribuito alla cristallizzazione delle fasi mineralogiche e pertanto alla corretta applicazione della regola delle fasi.

Sistema chiuso nei campi fase solida + fluida F = 2, V = 3 2 + 1 = 2 (T Xgas) X gas A + fluido lungo le linee 2 fasi solide + fluida F = 3, V = 3 3 + 1 = 1 (Xgas) aumenta Xgas B + fluido C + fluido punto triplo 3 fasi solide + fase fluida F = 4 V = 3 4 + 1 = 0 A e B si trasformano in C Solo quando la fase B si è consumata, allora aumenta Xgas

Sistema aperto nei campi fase solida + fluida F = 2, V = 3 2 + 1 = 2 (T Xgas) In realtà Xgas resta costante campo univariante V = 1 (T) X gas A + fluido lungo le linee 2 fasi solide + fluida F = 3 V = 3 3 + 1 = 1 Xgas viene allontanato invarianza V = 0 fin tanto che tutto a non si è trasformata in B C + fluido B + fluido

b) Associazioni mineralogiche limitanti e non limitanti Fasi mineralogiche soluzioni solide: vengono rappresentate nei diagrammi ternari da segmenti o aree, a seconda che la sostituzione interessi due o tre dei componenti rappresentati nel sistema

- associazioni mineralogiche a 3 fasi (F = 3) divarianti (V = 3 3 + 2 = 2) scelti P e T, il sistema, per una data composizione, sarà completamente definito, le soluzioni solide hanno composizione fissa - associazioni mineralogiche a 2 fasi (F = 2) trivarianti (V = 3 2 + 2 = 3 ) gradi di libertà sono: pressione, temperatura, composizione delle fasi soluzioni solide Fissato il contenuto di uno dei tre componenti di una delle due fasi soluzioni solida, è possibile avere la composizione completa di entrambe le soluzioni solide. - associazioni mineralogiche a 1 fase (F = 1) tertravarianti (V = 3 1 + 2 = 4 ) gradi di libertà sono: pressione, temperatura, tenore di due componenti

Generalizzando a sistemi più complessi (C=n) si possono individuare le seguenti situazioni: - F = C : le associazioni sono divarianti, a valori di T e P fissati; le composizioni delle fasi soluzioni solide sono fisse, indipendenti dalla varia composizione delle rocce; si può dire pertanto che queste associazioni limitano la variabilità della composizione delle fasi soluzioni solide; in questo senso le associazioni con F = C sono chiamate associazioni limitanti ; - F < C : le associazioni sono almeno trivarianti; la composizione delle fasi soluzione solida dipende dalla composizione chimica della roccia, quindi queste associazioni non pongono alcun limite alla c omposizione delle fasi soluzione solida vengono definite associazioni non limitanti.