Padova, 29 settembre 2008 Il modello GRID e i Modelli Digitali del terreno (DEM)

Documenti analoghi
Cartografia IGM in formato digitale

Modelli Digitali del Terreno (DTM)

Funzioni di un GIS Analisi spaziale

GEOGRAPHICAL INFORMATION SYSTEM PER L ANALISI AMBIENTALE. Nicola Gilio. Dott. Nicola Gilio

Triangolazione di Delaunay. Confronto raster GRID - TIN. Applicazioni di un TIN

Analisi Geostatistica e Modelli digitali del territorio e dell ambiente. Dissesto idrogeologico Ingegneria Naturalistica Erosioni Frane

Determinazione delle curve d invaso delle APE e prime considerazioni sui criteri per la verifica della loro corretta definizione geometrica

La rappresentazione cartografica è una forma di descrizione del territorio fondata sulla restituzione delle relazioni spaziali di elementi geografici

CORSO DI TOPOGRAFIA I

Cartografie tematiche: principi e modalità di realizzazione. Mauro Giovanni Univ. di Trieste

ArcGIS - ArcView 3- strumenti di analisi

Sistemi di Elaborazione delle Informazioni

Gestione e filtraggio di dati LiDAR in GRASS

Caratteristiche dei bacini idrografici

Cartografia Numerica

SISTEMI INFORMATIVI GEOGRAFICI IN GEO- LOGIA

ORTOFOTO ED AGGIORNAMENTO DELLA CARTOGRAFIA NUMERICA DELLA REGIONE CAMPANIA - LEVATA 2004/05

SISTEMI INFORMATIVI GEOGRAFICI (GIS)

I GIS PER I MODELLI IDROLOGICI DISTRIBUITI. Giulia Ercolani

Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci

"GIS e modelli idraulici per l aggiornamento del PAI in area urbana"

3.2. Individuazione dell area di interesse ai fini della modellistica diffusionale

Padova underground: a geoarchaeological investigation of the roots of the city

Tecnologie Multimediali a.a. 2016/2017. Docente: DOTT.SSA VALERIA FIONDA

Programma del corso. Introduzione Rappresentazione delle Informazioni Calcolo proposizionale Architettura del calcolatore Reti di calcolatori

SEMINARIO. La valutazione della pericolosità idraulica: modellazione 1D -2D

ArcGIS 10 strumenti di editing e ArcCatalog. Marco Negretti Politecnico di Milano

Analisi della sensibilità visiva del paesaggio. Analisi della visibilità del paesaggio

Sistemi GIS: metodologie e casi applicativi

Le immagini digitali

Idraulica e Idrologia: Lezione 5

v.krige - coupling GRASS GIS and R for spatial interpolation

Modelli digitali del terreno: DEM, DSM e DTM. Prodotti derivabili da un DTM:

DISPENSE su INTERPOLAZIONE DI DATI PUNTUALI E PRODUZIONE DI MAPPE ISO-VALORE

INDICE. Introduzione. 3 Capitolo 1 Cenni di geodesia

Analisi morfologiche con QGIS

Corso di Informatica modulo Informatica di Base 6 CFU. Immagini digitali: concetti di base

Rappresentazione dei numeri: il sistema di numerazione decimale

Università degli Studi Mediterranea di Reggio Calabria.

Informatica. Comunicazione & DAMS A.A. 2015/16. Dr.ssa Valeria Fionda

RILIEVI LASER SCANNING PER LA PRODUZIONE DI DEM

CODIFICA IMMAGINI IN BIANCO E NERO

S.I.B.A. Sistema Informativo Beni Ambientali Scala 1:10.000

Scuola Universitaria Professionale della Svizzera Italiana Corso di Laurea In Ingegneria Civile

Le immagini digitali

STA II ANNO: AA Ecologia e Fondamenti dei. Sistemi. Ecologici Introduzione ai. Sistemi. Informativi Geografici. Lezione del

Idraulica e Idrologia: Lezione 2

Due Tecniche a Confronto Rilievo Laser Scanner Fotogrammetria Digitale. Lavoro Eseguito da Geotec S.r.L. : Casa Grotta nella Città di Matera

Che cosa è e a cosa serve un GIS?

DTM e GIS a supporto della modellazione idraulica per i piccoli bacini: il caso studio del Rio Galeria

La codifica dell informazione. Rappresentazione binaria. Rappresentazione posizionale in base 10

ArcGIS - ArcView ArcCatalog

La codifica dell informazione

Progetto Energia Alta Val di Non. David Moser Coordinatore del gruppo Sistemi Fotovoltaici

SISTEMI PER L INFORMAZIONE GEOGRAFICA OPEN SOURCE... 13

Elementi di grafica raster

Perché e come rappresentare il territorio

Modelli digitali del terreno

ELEMENTI DI FOTOGRAMMETRIA

Ing. Alessandro Putaggio

Analisi regionale delle precipitazioni intense

REGIONE EMILIA ROMAGNA

Indice della presentazione

Nuova interfaccia GRASS EPANET uno strumento integrato per la progettazione, l'analisi e la gestione di reti idrauliche

Applicazioni Gis in Campo Territoriale e Ambientale. Agripolis, 17 novembre 2010

Introduzione ad ArcView

I S.I.T. aziendali. Progetto AVIGERE Applicazione della viticoltura di precisione ad alcune aziende

Cos è il LiDAR? Light Detection And Ranging

Dipartimento di Matematica e Geoscienze Università degli Studi di Trieste

Corso di Analisi Numerica

La struttura e il contenuto del database topografico

Metodologia per la definizione della predisposizione al verificarsi di fenomeni tipo Flasch Flood nel bacino del fiume Arno

IL DATO LiDAR COME SUPPORTO ALLA PIANIFICAZIONE FORESTALE

Metodologia di implementazione del sistema per la spazializzazione dei dati meteo

Telerilevamento. Esercitazione 5. Classificazione non supervisionata. Apriamo l immagine multi spettrale relativa alla zona di Feltre che si trova in:

REGIONALIZZAZAIONE DELLE PRECIPITAZIONI: LE APPLICAZIONI

Macroattività B - Modellazione idrologica Attività B1: Regionalizzazione precipitazioni

Idraulica e idrologia: Lezione 9

Le immagini digitali. Introduzione

la velocità degli uccelli è di circa (264:60= 4.4) m/s)

Le immagini. Parametri importanti sono:

Informazione binaria: suoni, immagini, sequenze video

Esercitazione GIS n.2

Segnale analogico. Analogico vs digitale. Segnale digitale. Trasformazione da analogico a digitale

La cartografia numerica Roberto Rossi Dipartimento Territorio e Sistemi Agro-forestali Università di Padova

PARTE III. ANALISI DELLE POTENZIALITA DELLA GEOTERMIA A BASSA ENTALPIA IN PROVINCIA DI TORINO. I sistemi a circuito chiuso

Classificazione Object-Oriented

RILIEVO E RAPPRESENTAZIONE DEL TERRITORIO

ArcGIS - ArcView ArcCatalog

Applicazioni di cartografia numerica in Biogeografia

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano

CD ROM BANCHE DATI TERRITORIALI IN DISTRIBUZIONE

Il sistema ArcGis si compone di tre moduli fondamentali, parzialmente integrati in un unica interfaccia

Introduzione ai GIS. Potenzialità e limiti Software in commercio. Cartografia numerica e GIS

Rappresentazione digitale delle informazioni

Rappresentazione delle informazioni LA RAPPRESENTAZIONE DELLE INFORMAZIONI. Grandezze digitali. Grandezze analogiche

RAPPRESENTAZIONE DELLE INFORMAZIONI

Codifica dell Informazione

ArcGIS 10.3 introduzione. Marco Negretti Politecnico di Milano

DECLINAZIONE COMPETENZE SCUOLA PRIMARIA: MATEMATICA CLASSI 1 a 2 a 3 a

Transcript:

Padova, 29 settembre 2008 Il modello GRID e i Modelli Digitali del terreno (DEM) Roberto Rossi Dipartimento Territorio e Sistemi Agro-forestali Università di Padova roberto.rossi@unipd.it

Formato Raster Il formato di dati corrisponde ad un file contenente una matrice di m righe e n colonne. Il mondo reale viene descritto attraverso un codice, corrispondente ad un attributo, che definisce le caratteristiche dell oggetto rappresentato tramite l elemento aij della matrice. La rappresentazione dei dati avviene attraverso la definizione di una griglia. L elemento della matrice sulla griglia corrisponde ad una cella o pixel. Le celle vuote vengono rappresentate tramite un valore arbitrario no data value (convenzionalmente posto pari a -9999) 2

Formato Raster Per poter georeferenziare correttamente la griglia è necessario conoscere: dimensione del pixel; posizione di un vertice della griglia (generalmente SO); numero di righe e colonne. La risoluzione del dato è inversamente proporzionale alla dimensione della cella 3

Formato Raster Il termine Raster convenzionalmente comprende anche le immagini (formati tiff, jpeg, gif, bmp, ecc ); Single Band Multiband (red, green, blue) Il termine GRID si riferisce generalmente ai soli raster tematici e continui. 4

5 Formato Raster

La matrice potrà assumere: valori codificati attraverso una tabella di corrispondenza: raster tematici (discreti) Formato Raster valori corrispondenti ad una grandezza reale (quota, temperatura, ecc ): raster continui 6

Formato Raster Raster Attribute Table Value Attribute Table (VAT) La Raster Attribute Table, viene costruita, di default, per i grid con valori interi se (una delle due condizioni è soddisfatta): il range dei valori è inferiore a 100 000; il numero di valori unici nel raster è inferiore a 500. Se il range è più grande di 100 000 ed il numero di valori unici nel raster è superiore a 500 la Raster Attribute Table non viene automaticamente costruita. Di default la dimensione della Raster Attribute Table è limitata a 65 535 valori unici. Si può aumentare questo valore dalle Options scegliendo la scheda Raster Attribute Table dalla scheda Raster. 7

Formato Raster Piramidi (file.rrd) Agevolano la visualizzazione a piccola scala Statistiche (file.aux) 8

Formato Raster Pixel Inspector tool Consente la lettura puntuale di una griglia di valori 9

Spatial Analyst Options 1 2 1. Cartella di lavoro È la cartella dove verranno salvati i file grid creati con Spatial Analyst Toolbar quando non meglio specificato (ad. es. Raster Calculator) 2. Analysis mask È una maschera che definisce la zona nella quale si realizza l analisi spaziale. Può essere uno strato vettoriale (poligono) o un grid (esclude i valori esterni e no data) 10

Spatial Analyst Options 3 4 11 3. Dimensioni della finestra del grid 4. Dimensione della cella Determinando la dimensione della cella vengono di conseguenza calcolati numero di righe e colonne

Formati raster FORMATO GRID ESRI Formato di ArcInfo Un raster corrisponde ad una cartella ASCII RASTER File con estensione.asc contenente Intestazione Matrice ASCII NCOLS xxx NROWS xxx XLLCORNER xxx YLLCORNER xxx CELLSIZE xxx NODATA_VALUE xxx row 1 row 2...... row n BINARY RASTER (FLOATING POINT RASTER) File binario (matrice) convenzionalmente con estensione.flt o grd File ASCII col medesimo nome ed estensione.hdr contenente l intestazione Il primo valore rappresenta il pixel del vertice NO,il secondo il pixel immediatamente a destra del vertice NO, l'ultimo il pixel del vertice SE La dimensione di una grid binaria in byte è pari a: [4] x [numero di righe] x [numero di colonne] 12

Facilmente esportabile/importabile con i principali software GIS Esportazione importazione formati 13

Interpolazione Uno dei problemi che più frequentemente si incontrano nell analisi spaziale dei dati (nelle elaborazioni GIS, in geomorfologia, in idrologia, in idrometeorologia, ecc ) è costituito dalla stima di una variabile, per esempio la precipitazione cumulata su un certo intervallo temporale o la quota sul livello del mare, in corrispondenza di un certo sito (stima puntuale). 14

Interpolazione Un altro problema di stima frequentemente incontrato, e collegato al precedente, è rappresentato dal problema di stima di un valore medio areale della variabile in corrispondenza di una certa superficie (p. es., la stima della precipitazione media areale, cumulata su un assegnato intervallo temporale, riferita ad un certo bacino idrografico) (stima areale). Tali problemi di stima si risolvono generalmente tramite interpolazione spaziale di dati disponibili presso altri siti, dove esistono le misure della variabile in questione. 15

Ciascun punto quotato ha un influenza nel processo di interpolazione che diminuisce con la distanza dalla cella. I punti più vicini alla cella in esame saranno pesati di più nell attribuzione della quota rispetto a quelli più lontani. Un parametro di potenza controlla l azione di pesatura (al crescere del valore diminuisce l influenza dei punti più distanti). Due procedure: Media pesata sull inverso della distanza IDW (Inverse Distance Weighted) Nearest Neighbors: viene utilizzato un determinato numero N di punti. Il valore di N è fissato come parametro; Fixed Radium: vengono utilizzati tutti i punti ricadenti ad una distanza (dal centro della cella) minore del valore fissato come parametro. 16 In ArcGIS: Estensione Spatial Analyst, Interpolate to Raster, Inverse Distance Weighted

z-value Esempio di applicazione dell IDW z-value IDW Power 1 Power 2 17 Distance Distance

Tecniche SPLINE Le funzioni spline impongono due condizioni al processo di interpolazione: a) che la superficie interpolante passi il più vicino possibile ai punti di input, b) che la superficie interpolante abbia la minima curvatura (condizione ottenuta minimizzando la somma cumulata dei quadrati della derivata seconda della superficie rispetto a ciascun punto di input). Esistono due principali tecniche di minimizzazione della curvatura: Regularized: include la derivata terza nella tecnica di minimizzazione della curvatura; valori più elevati (da 0 a 0.5) del parametro di peso (denominato t in letteratura) portano a superfici più regolari (tra i due è il metodo che porta alle superfici meno accidentate); Tension: include la derivata prima nella Spline tecnica di minimizzazione della curvatura; il parametro di peso (f) regola il processo di minimizzazione: valori alti irrigidiscono la superficie fino a farla passare esattamente per i punti di input. Distance 18 In ArcGIS: Estensione Spatial Analyst, Interpolate to Raster, Spline z-value

KRIGING Z(s i ) = the measured value at the i th location i = unknown weight for the meas.value at the i th location s 0 = the prediction location N = the number of measured values Il metodo assume che la variazione della quota sia un fenomeno statisticamente omogeneo sulla superficie (autocorrelazione). Sulla base dei rapporti spaziali e delle differenze di quota di un certo numero di punti di input, costruisce una funzione (semivariogramma) che viene utilizzata per la costruzione della superficie interpolante. Si tratta di un metodo non deterministico. Può fornire anche una misura della bontà della stima 19 In ArcGIS: Estensione Spatial Analyst, Interpolate to Raster, Kriging

Superfici polinomiali interpolanti Prevede la definizione, a partire dai punti quotati disponibili, di una superficie interpolante che viene ricondotta ad un piano (z= ax+by+c) calcolato generalmente con il metodo dei minimi quadrati. Viene utilizzato un certo numero di punti ricercati nello spazio occupato da un quadrato di celle (kernel) con lato dispari (1x1, 3x3, 5x5), che risulta funzione della densità locale dei punti. Più grande è il campo di ricerca, minore è la variabilità della quota locale in quanto più elevato è il numero di punti comuni a due successive interpolazioni. La quota di ciascuna cella viene ricavata dall algoritmo di calcolo sul piano relativo alla cella stessa, in corrispondenza dell asse verticale della cella stessa. 20 In ArcGIS: ArcToolbox, Spatial Analyst Tools, Interpolation, Trend

Topo To Raster ANUDEM (Hutchinson 1988) Metodo di interpolazione studiato appositamente per modellare la morfometria. Si tratta di una tecnica di interpolazione iterativa, alle differenze finite, che cerca di conciliare l accuratezza dei metodi locali (IDW) e la continuità dei metodi più globali (Spline e Kriging). http://cres.anu.edu.au/outputs/anudem.php ArcGIS Help: The interpolation procedure has been designed to take advantage of the types of input data commonly available and the known characteristics of elevation surfaces. This method uses an iterative finite difference interpolation technique. It is optimized to have the computational efficiency of local interpolation methods, such as inverse distance weighted (IDW) interpolation, without losing the surface continuity of global interpolation methods, such as Kriging and Spline. It is essentially a discretized thin plate spline technique (Wahba, 1990), for which the roughness penalty has been modified to allow the fitted DEM to follow abrupt changes in terrain, such as streams and ridges. 21 In ArcGIS: ArcToolbox, Spatial Analyst Tools, Interpolation, Topo to Raster

MODELLI NUMERICI DELL ELEVAZIONE (DEM) Superficie della terra Modello ideale Rappresentazione discreta - DEM fenomeno continuo infiniti punti approssimazione DEM rappresentazione digitale di una superficie topografica espressa come punti (x,y e z) organizzati nei seguenti modelli : Modello per punti o celle Modello per linee Modello per aree (TIN) 22

MODELLI NUMERICI DELL ELEVAZIONE (DEM) 23 Modello per celle o per punti terreno descritto da punti di una griglia (grid - raster) quota costante in ogni cella celle di dimensione costante spesso frutto di interpolazioni su punti dispersi, curve di livello, profili l accuratezza dipendente dalla dimensione della cella Modello per linee linee che collegano punti della stessa quota (come curve di livello per mappe convenzionali), accuratezza dipendente dagli incrementi di quota tra linee successive linee che collegano punti con quota diversa (profili del terreno), l accuratezza dipendente dalla distanza tra linee adiacenti Modello per aree (TIN) sequenza di aree triangolari con vertici in punti di quota nota inclinazione del piano costante per ogni triangolo dimensione triangolo inversa a variabilità del terreno più efficiente del raster in aree con grande variabilità

Il modello TIN (Triangular Irregular Network) Si tratta di una struttura di dati che definisce un insieme di triangoli contigui (non sovrapposti) che variano in dimensione e forma 24

Triangolazione di Delauney - I triangoli che ne risultano hanno la caratteristica di essere il più possibile equiangoli (massimizzazione del più piccolo tra gli angoli interni del triangolo) - Una circonferenza passante per i tre vertici di un triangolo non contiene nessun altro vertice della triangolazione Si No 25

da cartografia numerica Origine dei dati per costruire DEM estrazione di finestre di informazione conversioni di formato uso di algoritmi per interpolare quote dalle curve di livello da conversione di curve di livello stampate su mappe digitalizzazione scansione delle matrici utilizzate per la stampa delle mappe (vettorializzazione ed editing del raster) uso di algoritmi per interpolare quote dalle curve di livello da rilievo topografico in campo da rilievi con GPS da fotogrammetria con sistemi manuali o automatici rilevamento di punti su curve di livello o profili uso di interpolatori per la creazione di una griglia regolare problemi di estrazione dell informazione in zone oscurate da rilievi laser-scanner: LIDAR (LIght Detection And Ranging) 26

LIDAR (Llght Detection And Ranging) Il sistema laser altimetrico LIDAR, è costituito generalmente da un laser operante nell infrarosso vicino (λ= 1063 nm) che invia impulsi di luce alla frequenza di 33 KHz. Gli impulsi laser vengono diretti verso uno specchio oscillante che riflette gli stessi in senso ortogonale alla direzione di avanzamento dell aeromobile dove l intero sistema è alloggiato. La scansione del terreno deriva dalla combinazione dei due movimenti: il movimento di oscillazione dello specchio e il movimento di avanzamento dell aeromobile. Il raggio laser una volta colpito il suolo viene riflesso e parte dell energia incidente sul terreno ritorna verso lo specchio che convoglia il segnale luminoso ad un sistema di rilevamento che determina il tempo di ritorno dell impulso. Dal tempo impiegato dalla luce a percorrere il tragitto relativo (emissione riflessione ricezione) si determina la distanza fra lo specchio ed il punto di riflessione al suolo. Il tipo di dati ottenibili da un rilievo laser altimetrico è costituito generalmente da files di punti quotati, in formato ASCII 27

Vantaggi LiDAR (Tarolli, 2006) Capacità di effettuare rilievi topografici ad elevatissimo dettaglio e conseguente aumento della qualità rispetto alle consuete tecniche di rilievo. Mediante il rilievo LiDAR non solo si è in grado di rilevare il profilo altimetrico della superficie terrestre ma anche quasi tutte le forme di vegetazione, dalle specie erbacee alle foreste di alto fusto (0.5m < h < 50m), e costruzioni come strade, ponti, case, agglomerati urbani (DSM) Risoluzione spaziale di altissimo dettaglio delle superfici Possibilità di produrre una nuova generazione di DEM ad elevato dettaglio (< 1m) Capacità di rilevare elementi infrastrutturali (edifici, strade, ponti) Capacità di rilevare lo spessore della coltre vegetativa 28

Applicazioni (Tarolli, 2006) 1. NUOVI RILIEVI DELLE ELEVAZIONI AD ELEVATISSIMO DETTAGLIO 2. ANALISI E CLASSIFICAZIONE DELLA MORFOLOGIA FLUVIALE ATTRAVERSO IL PROFILO DELLE PENDENZE LUNGO LA DIREZIONE DEI PRINCIPALI TORRENTI CONSIDERATI 3. MAPPARE AD ELEVATISSIMO DETTAGLIO LE AREE DI ESONDAZIONE, O PIU PROBABILI ALL ESONDAZIONE DEI PRINCIPALI E POTENZIALMENTE DANNOSI CORSI D ACQUA ITALIANI 4. MAPPARE MEDIANTE APPOSITI ALGORITMI LE STRADE FORESTALI CON DIRETTE IMPLICAZIONI SULLA PIANIFICAZIONE DI INTERVENTI DI MANUTENZIONE, OPERE IDRAULICO-FORESTALI, PROCESSI DI ESBOSCO E PROGETTI DI GRU A CAVO 5. MAPPARE E CLASSIFICARE, MEDIANTE RILIEVO E CLASSIFICAZIONE DELLA VEGETAZIONE IN BASE ALL ALTEZZA, L USO DEL SUOLO: AREA A PASCOLO, AREA AD ARBUSTI, AREA IN ROCCIA, AREA A FORESTA DI ALTO FUSTO, AREA A COLTIVAZIONI AGRONOMICHE, AREA URBANA (COSTRUZIONI), AREA DESTINATA A PISTE DA SCI 6. MAPPARE E CLASSIFICARE LA VEGETAZIONE IN BASE ALLA SUA ALTEZZA, QUANTIFICARE LA BIOMASSA DELLE FORESTE 29

Calcolo della pendenza (Horn) La pendenza viene calcolata localmente per ciascuna singola cella del grid sulla matrice altimetrica attraverso il calcolo ottenuto utilizzando un kernel di 3x3 celle a d g b e h c f i 1 2 2 2 ( Z X ) ( Z Y ) tan θ = δ / δ + δ / δ ( ) = ( + + ) ( + + ) δ z / δ x a 2d g c 2 f i 8δ x e ( ) = ( + + ) ( + + ) δ z / δ y a 2b c g 2h i 8δ y e 30

Calcolo dell hillshade e dell esposizione ASPECT (Esposizione) L esposizione è calcolata come la direzione della massima pendenza aspect = 57.29578 * atan2 ([δz/δy], -[δz/δx]) if aspect < 0 cell = 90.0 - aspect else if aspect > 90.0 cell = 360.0 - aspect + 90.0 else cell = 90.0 - aspect HILLSHADE (ombreggiatura) Hillshade = 255.0 * ( ( cos(zenith_rad) * cos(slope_rad) ) + ( sin(zenith_rad) * sin(slope_rad) * cos(azimuth_rad - Aspect_rad) ) ) 31