CORSO DI. ELETTROTECNICA II Parte Materiali e Componenti (1/2)



Documenti analoghi
tecnologia PROPRIETÀ DEI METALLI Scuola secondaria primo grado. classi prime Autore: Giuseppe FRANZÈ

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

Generatore di Forza Elettromotrice

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

Correnti e circuiti a corrente continua. La corrente elettrica

CALCOLO ELETTRICO DELLE LINEE ELETTRICHE

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA CONTINUA

I MATERIALI SCELTA DEL MATERIALE SCELTA DEL MATERIALE FUNZIONALITÀ

Corso di tecnologia Scuola media a.s PROF. NICOLA CARIDI

Elettricità e magnetismo

METALLI FERROSI GHISA ACCIAIO

1 di 3 07/06/

LA CORRENTE ELETTRICA Prof. Erasmo Modica

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

Generatore radiologico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

DEPOSIZIONE DI FILM CONDUTTIVI PER MEZZO DI SCREEN-PRINTER E REALIZZAZIONE DI PCB PROTOTIPALI. - Corso di Elettronica -

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Q t CORRENTI ELETTRICHE


I METALLI. I metalli sono materiali strutturali costituiti ciascuno da un singolo elemento. Hanno tra loro proprietà molto simili.

--- durezza --- trazione -- resilienza

MATERIALI E TECNOLOGIE ELETTRICHE

DIMENSIONAMENTO DEI CAVI

Trasportatori a nastro

METALLI E LEGHE METALLICHE AD ELEVATA RESISTIVITÀ

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza

Riscaldatori a cartuccia

- Sensori di misura della temperatura per uso industriale - Figura 1: Termocoppie Convenzionali

SENSORI E TRASDUTTORI

Proprietà meccaniche. Prove meccaniche. prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep

Le macchine elettriche

Principali parti di un fabbricato

3 PROVE MECCANICHE DEI MATERIALI METALLICI

Lezione 11 Trattamenti termici

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

I.I.S. Morea Vivarelli --- Fabriano. Disciplina: SCIENZE TECNOLOGIE APPLICATE. Modulo N. 1 _ MATERIALI DA COSTRUZIONE

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti.

Capacità di assorbire una deformazione plastica senza rompersi: alta=duttile (es. oro) bassa=fragile (es. vetro)

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA

Esperimentazioni di Fisica II. Esercitazione 3 Misure di resistività

TRATTAMENTI TERMICI IMPORTANZA DI ESEGUIRE IL TRATTAMENTO TERMICO NEL MOMENTO OPPORTUNO DEL PROCESSO DI REALIZZAZIONE DEL PEZZO

Fibra Ceramica. Catalogo generale

I.T.I.S. Magistri Cumacini. Ricavare il valore di K del conduttore con la relativa unità di misura

Michele D'Amico (premiere) 6 May 2012

Corrente elettrica. La disputa Galvani - Volta

CORRENTE ELETTRICA. φ 1

La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di

PROPRIETÀ DEI MATERIALI

Sistemi di Protezione e Coordinamento. Impianti Elettrici in BT. Qualunque linea elettrica è caratterizzata da tre caratteristiche principali:

IL TRASFORMATORE REALE

Termodinamica: legge zero e temperatura

IL TRASPORTO E LA DISTRIBUZIONE DELL ENERGIA ELETTRICA. Livelli di tensione, linee elettriche cabine di trasformazione MT/BT cavi elettrici

La corrente elettrica

Corrente ele)rica. Cariche in movimento e legge di Ohm

Collettori solari. 1. Elementi di un collettore a piastra

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto

Grandezze elettriche. Prof. Mario Angelo GIORDANO. PDF created with pdffactory trial version

Appunti sulle funi. Le Funi Carmine Napoli

I PRINCIPI DEL RISCALDAMENTO A MICROONDE

Temperatura e Calore

Università di Pisa Facoltà di Ingegneria. Leghe non ferrose. Chimica Applicata. Prof. Cristiano Nicolella

iglidur V400: Resistenza chimica e alle alte temperature

CLASSIFICAZIONE DEI MATERIALI

DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE

TECNOLOGIA DELLE RESISTENZE

Programmazione Modulare

UNIVERSITA DEGLI STUDI DI BRESCIA

Energia nelle reazioni chimiche. Lezioni d'autore di Giorgio Benedetti

Componenti elettronici. Condensatori

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Scelta e verifica dei motori elettrici per gli azionamenti di un mezzo di trazione leggera

PRINCIPI DI TRASMISSIONE DEL CALORE

Tesina di scienze. L Elettricità. Le forze elettriche

13.1 (a) La quantità di calore dissipata dal resistore in un intervallo di tempo di 24 h è

Proprietà elastiche dei corpi

MATRICE DELLE COMPETENZE DI SCIENZE E TECNOLIE APPLICATE INDIRIZZO DI MECCANICA, MECCATRONICA ED ENERGIA

Le materie plastiche Chimica e tecnologie chimiche

LEZIONE 5-6 ENERGIA TERMICA, TRASPORTO DEL CALORE (CONDUZIONE, CONVEZIONE) ESERCITAZIONI 2

Gestione dei segnali analogici nei sistemi di automazione industriale con PLC.

1 L'ATOMO E LA STRUTTURA DEI MATERIALI 2 PROPRIETA' CHIMICHE 3 PROPRIETA' FISICHE 4 PROPRIETA' MECCANICHE 5 PROPRIETA' TECNOLOGICHE

Temperatura e Calore

RESISTENZA DEI MATERIALI TEST

L H 2 O nelle cellule vegetali e

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA

S.U.N. Architettura Luigi Vanvitelli. CdL Archite,ura TECNOLOGIA DELL ARCHITETTURA A 2012_13 prof. S. Rinaldi. Infissi_2 INF_2

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica

L energia che consumo. Fabio Peron. Combustione. Aria di combustione. Combustione

GRAFITE ISOSTATICA PER COLATA CONTINUA. MERSEN Esperti al vostro servizio

ISPIRAZIONI CONCEPT STON AMBIENTAZIONI STRUTTURA E FUNZIONAMENTO PRODOTTO PROGETTO FUNZIONI MATERIALI

Cliccare su una o più delle seguenti tipologie di sistemi di riscaldamento ad induzione:

Correnti e circuiti a corrente continua. La corrente elettrica

Ceramica Tecnologia d eccellenza

MATERIALI. Introduzione

Classificazione della materia: Sostanze pure e miscugli

QUALITÀ E TRATTAMENTO DELL ACQUA DEL CIRCUITO CHIUSO

CENTRO TESSILE COTONIERO e ABBIGLIAMENTO S.p.A. INDUMENTI CON PROPRIETA ELETTROSTATICHE EN

Transcript:

CORSO DI ELETTROTECNICA II Parte Materiali e Componenti (1/2) Prof. Giovanni Lupò Dipartimento di Ingegneria Elettrica Università di Napoli Federico II a.a. 2011/12 I-

CLASSIFICAZIONE DEI MATERIALI METALLI MATERIE PLASTICHE MATERIALI CERAMICI 2

PRINCIPALI PROPRIETÀ ELETTRICHE E MAGNETICHE resistività (conducibilità) permeabilità magnetica permettività dielettrica rigidità dielettrica 3

PRINCIPALI PROPRIETÀ TERMICHE dilatazione termica conducibilità termica capacità termica 4

PROPRIETÀ NEL TEMPO le proprietà dei materiali non sono costanti nel tempo. possono variare, in genere in senso peggiorativo, e dare luogo a degradazione del materiale (invecchiamento). ridotta capacita del materiale di sopportare le sollecitazioni 5

MATERIALI PER I SISTEMI ELETTRICI materiali strutturali materiali conduttori materiali magnetici materiali isolanti elettrici 6

7

8

9

10

MATERIALI STRUTTURALI MATERIALI METALLICI acciaio, ferro, ghisa. bronzi, ottoni. alluminio e sue leghe materiali a basso punto di fusione per cuscinetti. MATERIALI POLIMERICI polimeri puri polimeri rinforzati con fibre polimeri caricati con polveri (macro, micro e nanometriche) materiali lubrificanti (oli e grassi) vernici e materiali di finitura e protezione isolanti termici isolanti acustici 11

MATERIALI CON FUNZIONI ELETTRICHE MATERIALI CONDUTTORI MATERIALI MAGNETICI MATERIALI ISOLANTI ELETTRICI MATERIALI SEMICONDUTTIVI 12

MATERIALI CONDUTTORI costituiscono i circuiti elettrici e gli elementi di schermo elettrostatico nei componenti elettromagnetici; nei componenti elettrostatici costituiscono le strutture equipotenziali e di schermo elettrico. 13

CONDUTTORI TRADIZIONALI rame ed alluminio argento, oro ed altri metalli nobili leghe a base alluminio e rame leghe ferrose carbonio NON TRADIZIONALI materiali crioresistivi superconduttori polimeri conduttivi conduttori a caratteristica v- i non lineare. 14

RESISTIVITA Le caratteristiche di conduzione di un materiale omogeneo ed isotropo sono in genere sintetizzate nella relazione costitutiva tra campo elettrico E e densità di corrente J: E = ηj Il coefficiente η prende il nome di resistività elettrica, il suo inverso prende il nome di conducibilità elettrica.[ Tali coefficienti possono essere costanti al variare delle grandezze di campo: in tale caso si parlerà di materiali conduttori lineari. Per i materiali metallici, la resistività è valutata in base a parametri congrui con applicazioni ordinarie, come le linee di alimentazione. Va fissata, ad esempio, una temperatura di riferimento o (in genere 293 K ossia 20 C), in quanto la resistività varia con la temperatura θ del conduttore, il cui valore a regime è dipendente a sua volta sia dalla temperatura ambiente che dalla intensità di corrente che interessa il conduttore (effetto Joule). Per i conduttori metallici la resistività aumenta linearmente con la temperatura in un ampio intervallo di valori della stessa. Si definisce resistività superficiale [conducibilità superficiale] la quantità ρs=ρ/δ [γs=γδ], ove δ è lo spessore del resistore di resistenza R di larghezza b e lunghezza L. Poichè, la resistività superficiale è numericamente pari alla resistenza di un resistore di lunghezza e larghezza unitaria (conoscendo quindi il materiale, da una opportuna misura di resistenza si può risalire allo spessore, come vien fatto normalmente per i rivestimenti o per le vernici conduttive). La resistività [conducibilità] superficiale si esprime in Ω [S]. 15

RESISTIVITA MATERIALI Resistività η -θ o =293 K [Ω mm 2 /m ] [µω m] Conduttori metallici argento 0.016 3.8 10-3 rame puro 0.016291 3.9 10-3 rame industriale 0.0178 3.9 10-3 oro 0.024 3.4 10-3 piombo 0.022 3.9 10-3 alluminio 0.028 3.7 10-3 tungsteno 0.055 4.5 10-3 ferro 0.1 coefficiente di temperatura α(θ o ) K -1 Leghe per resistori Manganina 0.45 1.5 10-5 Costantana 2 10-5 Nichel-Cromo 1.1 1 10-4 Ferro-silicio per lamierini 0.3 4 10-3 Conduttori non metallici Carbone per lampade ad arco 70 16

CONDUCIBILITÀ INTRINSECA DI ALCUNI MATERIALI MATERIALE Conducibilità intrinseca (S/m) Elementi C (diamante) < 10-16 silicio 3 x 10-4 germanio 2 Composti GaAs 10-6 InP 5 x 10 2 InAs 10 4 17

Materiali conduttori per linee elettriche Requisiti elettrici: bassa resistività, basso coefficiente di temperatura, possibilità di isolamento del conduttore. Requisiti meccanici: elevata resistenza alla trazione, comportamento "elastico", resistenza alla torsione ed al piegamento, durezza (per i contatti), resilienza. Requisiti termici: conducibilità termica elevata, coefficiente di dilatazione termica bassa; alta temperatura di fusione, saldabilità Requisiti tecnologici: malleabilità, duttilità Requisiti chimici: assenza di reazioni con altri metalli, non corrodibilità 18

Materiali per resistori Per ottenere valori di resistività relativamente elevati con materiali metallici o comunque ad elevate prestazioni, si devono considerare significative impurità e/o deformazioni del reticolo cristallino. Possiamo distinguere due casi: a) mescola di più cristalli di atomi diversi; b) cristalli formati con atomi diversi (leghe). Nel caso a), detta η 1 la resistività del metallo base e η 2 la resistività del metallo intruso di concentrazione cz, la resistività equivalente può essere scritta come: ( 1 ) ( ) η = η c + η c = η + η η c eq 1 z 2 z 1 2 1 z Come si nota, la resistività è proporzionale alla concentrazione di impurità. Nel caso b), si hanno notevoli variazioni dei valori di resistività. Nel caso di leghe a due componenti, i più alti valori di resistività si hanno per proporzioni quasi uguali delle due componenti. Per le leghe risulta verificata la seguente η α η α regola di MATTHIESEN metallo metallo = lega lega ossia risulta costante, al variare della concentrazione, il prodotto della resistività per il coefficiente di temperatura, per cui le leghe presentano resistività assai meno sensibile alla temperatura rispetto al metallo puro. 19

EFFETTO DELLE IMPURITÀ 20

Progetto di resistori: a) stufa (1/2) Va assegnata la potenza P [P=1000 W] e la tensione nominale Vn [Vn=250 V]. Va scelto il materiale [filo di Ni-Cr, η293k= 1.10 µωm, α=0.00025 K -1, Ø=d] Indicando con θ1 la temperatura di regime, la resistenza del conduttore dovrà essere 2 l V Rθ = η( θ1) = [ = 62,5 Ω] 1 π 2 d P 4 A regime, questa potenza viene tutta irradiata verso l ambiente a temperatura θ 0, quindi P P = k( θ1 θ0 ) π d l d l = kπ θ θ ( ) Si hanno quindi due relazioni tra diametro e lunghezza (a caldo) del filo. A parità di diametro, la lunghezza del filo è inversamente proporzionale al salto termico 1 0 21

Progetto di resistori: a) stufa (2/2) Assumendo che la temperatura ambiente sia θ 0=0 C, che la temperatura di lavoro θ1 sia 600 C ed W il coefficiente di trasmissione sia pari a k = 100, si ha 2 m K P 1000 3 2 d l = = 5,3 10 m kπ θ θ 100 600π π R d l = 4 η θ ( ) ( ) η( θ ) 1 2 1 0 π R d 4 1 3 5,3 10 3 d = 3 3 5,3 10 η π R 4 ( θ ) 1 = 3 13610 4 0,5mm 3 5,3 10 l = 10,5m 3 0.5*10 Si può in alternativa far riferimento ai carichi termici specifici Ps, cioè ai massimi valori di potenza dissipabile da un conduttore per unità di superficie. Per i conduttori di diametro pari a 0.5 mm, i carichi specifici dipendono dalla temperatura di lavoro: θ 1 ( C) 700 800 900 1000 1100 1200 Ps (W/cm 2 ) 6 9 12 17 22 30 Si può aumentare la superficie laterale (a parità di massa conduttrice) utilizzando conduttori a nastro o sbarre 22

Progetto di resistori: b) forno (1/2) Nel caso di un forno alimentato alla tensione V occorre valutare l energia necessaria per riscaldare un dato oggetto di massa m e di calore specifico cs dalla temperatura ambiente θ ad una temperatura finale θ 1. L energia strettamente necessaria per riscaldare l oggetto 0 è pari a W V 2 = Pforno t = t = m cs R( θ1) ( θ θ ) L energia che bisogna fornire sarà superiore perché occorrerrà considerare che il forno stesso dovrà portarsi alla temperatura θ 1 o leggermente superiore, tenendo ossia conto delle perdite W* di vario tipo che portano ad un rendimento W W η = Pforno = W + W * η t Il rendimento dipende dall intervallo di tempo di riscaldamento. All aumentare di tale intervallo aumentano le perdite. Occorre quindi limitare tale intervallo, con conseguente aumento della potenza. 1 0 23

Progetto di resistori: b) forno (2/2) Assumendo che l oggetto sia un cilindro di rame (m=2000 kg, C=390 J/kgK), la temperatura finale sia 700 C, il tempo di riscaldamento sia 3h; in queste condizioni è presumibile un rendimento pari a 0.8. L energia W vale 2 V W = P t t = m cs θ1 θ0 R θ ( ) = 2000 390 700 = 545MJ kwh forno 152 ( 1) La potenza richiesta vale W 152 P forno = = = 63. 5kW η t 0.8 3 La resistenza (a caldo) vale 3.95 Ω. Se si usa un filo di lega Ni-Cr, la resistività a caldo vale 1.32 µωm; confrontando la tabella dei carichi specifici si ricava necessaria una superficie di 44 m 2 ; utilizzando un conduttore a sezione circolare di diametro 7.5 mm, si trova che la lunghezza deve essere di 133 m 24

Progetto di linee e cavi Transitorio termico In ogni intervallo di tempo infinitesimo, vi sarà una produzione di calore per effetto Joule, un riscaldamento del conduttore ed un irraggiamento verso l esterno attraverso la superficie laterale del conduttore Q R( θ ) I ( θ ) η d π 4 Joule 2 I 2 = Q 2 int dθ = csm + k dt dt + k + Q irr ( θ θ ) π d l d 4 ( θ θ ) π d dt = c π δ dθ Al regime termico corrisponde la temperatura η ( θ ) 2 1 θ = θ + 1 0 0 3 2 d kπ 4 Nel caso dei cavi coassiali, la temperatura θ1 del conduttore centrale (anima) sarà fissata ragionevolmente più bassa della della temperatura di transizione del dielettrico; il basso valore del coefficiente k di trasmissione termica limita la portata dei cavi (massima intensità di corrente I), a meno di non voler aumentare il diamentro del conduttore centrale. 1 1 0 I s 2 CdL Ing. Elettrica - Materiali e Tecnologie Elettriche 2009/10 -III- 25

LEGGE DI JOULE IN FORMA LOCALE. Le perdite per unità di volume possono essere così espresse: p = J. E = ηj 2 = σe 2 = EJ Le perdite per unità di massa valgono quindi: p 1 = ηj 2 /δ dove δ è la densità del materiale. 26

PORTATE E DENSITÀ DI CORRENTE PER UN CAVO BIPOLARE CON POSA IN ARIA LIBERA Sezione Portata Densità di corrente mm 2 A A/mm 2 1,5 24 16 2,5 33 13,2 4 45 11,4 6 58 9,7 10 80 8 16 107 6,7 25 142 5,7 27

Portata I di un cavo in funzione della sezione S. 160 140 120 100 I (A) 80 60 40 20 0 0 10 20 30 S (mm 2 ) 28

Densità di corrente J in un cavo in funzione della sezione S. J (A/mm 2 ) 18 16 14 12 10 8 6 4 2 0 0 10 20 30 S (mm 2 ) 29

PORTATA DI CORRENTE PER CAVI ISOLATI IN GOMMA (G7 - G10) - temperatura di esercizio del conduttore 90 C - temperatura ambiente per posa in aria: 30 C - temperatura del terreno per posa interrata: 20 C - resistività termica del terreno: 100 C cm/w Posa in aria entro tubi o cassette - o cassette appoggiati al muro Posa in aria libera, cavi appoggiati al muro o sospesi a fune portante Posa direttamente interrata Sezione 3 cavi unipolari 1 cavo tripolare 3 cavi unipolari 1 cavo unipolare 3 cavi unipolari 1 cavo tripolare mm² A A A A A A 1,5 19,5 19,5 24 23 30 28,5 2,5 26 26 33 32 41 38 4 35 35 45 42 53 49 6 46 44 58 54 67 61 10 63 60 80 75 89 81 16 85 80 107 100 115 104 25 112 105 135 127 149 133 35 138 128 169 157 179 159 50 168 154 207 192 210 188 70 213 194 268 246 260 230 95 268 233 327 298 315 275 120 310 268 383 346 360 312 150 350 300 444 399 405 345 185 392 340 510 456 455 390 240 461 398 607 538 530 460 300 530 455 703 621 585 520 CdL Ing. Elettrica - Materiali e Tecnologie Elettriche 2009/10 -III- 30 400 605-823 - - -

CRITERI DI DIMENSIONAMENTO DI UN CONDUTTORE FATTORI ELETTRICI: valore della resistenza o della caduta di tensione ammissibili. corrente nominale. tensione nominale FATTORI TERMICI massima temperatura ammissibile. caratteristiche di dissipazione del calore dell isolamento elettrico. temperatura ambiente FATTORI MECCANICI PROCESSI CHIMICI CdL Ing. Elettrica - Materiali e Tecnologie Elettriche 2009/10 -III- 31

CdL Ing. Elettrica - Materiali e Tecnologie Elettriche 2009/10 -III- 32

CdL Ing. Elettrica - Materiali e Tecnologie Elettriche 2009/10 -III- 33

CdL Ing. Elettrica - Materiali e Tecnologie Elettriche 2009/10 -III- 34

MATERIALI CERAMICI notevole durezza resistenza agli agenti corrosivi ambientali refrattarietà alle alte temperature (assenza di reazioni chimiche) fragilità (rottura brusca, senza snervamento) combinazione di materiali metallici e non metallici (gli ioni metallici (positivi) e quelli non metallici (negativi) stabiliscono un legame forte che ne spiega la fragilità, l inerzia chimica e la durezza) impronta carico applicato superficie 35

MATERIALI CERAMICI PER USO ELETTRICO Materiali tradizionali Caolino (argilla, feldspato) allumina Al 2 O 3 Muscovite (mica bianca) Materiali innovativi - ossidi di titanio e calcio - ferroelettrici (ossidi di bario e titanio) Materiali avanzati (preceramici) 36

MATERIALI PER ISOLAMENTO ELETTRICO. hanno la funzione di separare parti a potenziale elettrico diverso e di costituire nei componenti elettrostatici i volumi dove si stabilisce il campo elettrico - ISOLAMENTI GASSOSI aria SF 6 azoto miscele - VUOTO - ISOLAMENTI LIQUIDI oli minerali oli di sintesi oli siliconici esteri organici gas liquidi (es. azoto) - ISOLAMENTI SOLIDI 37

ISOLAMENTI SOLIDI POLIMERI TERMOPLASTICI POLIMERI TERMOINDURENTI CARTA NATURALE E DI SINTESI ISOLAMENTI INORGANICI MATERIALI COMPOSITI 38

ISOLATORI IN MICA 39

40

ISOLATORI CERAMICI 41

42

43

PASSANTE (Bushing) 44

45

46

Isolamenti in carta per trasformatori Film di carta (tipo Kraft) Cartoni per l isolamento di un avvolgimento 47

Isolatori passanti in alta tensione Isolatori passanti per 145 kv Isolatori passanti per 380 kv 48

Trasformatori isolati in carta olio Isolamento in carta di un trasformatore trifase - 1986 (prima dell impregnazione con olio) Inserimento della parte attiva isolata in carta nella cassa dell olio trasformatore da 8 MVA - 1922 CdL Ing. Elettrica - Materiali e Tecnologie Elettriche 2009/10 -X- 49

Smalto per isolamenti (glaze) -Silicio - Ossidi metallici -Ossidi di stagno e zirconio - aggiunta di semiconduttori 50

Sottostazioni all aperto isolamento fre le fasi isolamento verso terra 51

Incendio Trasformatore vasca di contenimento dell olio 52

53

MATERIALI FERROMAGNETICI costituiscono i circuiti magnetici e gli elementi di schermatura magnetica nei componenti elettromagnetici FERRO e Leghe FERRO-CARBONIO materiali massicci materiali laminati: cristallini tradizionali a cristalli orientati Amorfi ALTRI MATERIALI materiali per magneti permanenti leghe speciali ferriti (materiali ferrimagnetici) polimeri caricati 54

-- Fine CET_Materiali e Componenti CdL Ing. Elettrica - Materiali e Tecnologie Elettriche 2009/10 -V- 55