Pensiero Algoritmico. Lezione 2 16 Novembre Ripasso. Teorema di Euler. Ozalp Babaoglu Università di Bologna

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Pensiero Algoritmico. Lezione 2 16 Novembre Ripasso. Teorema di Euler. Ozalp Babaoglu Università di Bologna"

Transcript

1 Pensiero Algoritmico Lezione 16 Novembre 016 Ozalp Babaoglu Università di Bologna Ripasso Algoritmi Pensiero algoritmico Astrazione Modello Il problema di Google Street View" Sette Ponti di Königsberg Grafo Grado di un nodo, camino in un grafo, camino di Euler 1 Teorema di Euler Un grafo G connesso ha almeno un camino di Euler se e solo se contiene al massimo due nodi di grado dispari Corollario: Il problema Sette Ponti di Königsberg è irrisolvibile

2 Camino di Euler Esempio Teorema di Euler Dimostrazione (caso solo se ) Sia G=(N,E) dove N è l insieme di nodi e E è l insieme di archi Per esempio, G=({a,b,c,d,e,f,g},{(a,c),(a,b),(a,d),(a,e),(b,d),(d,e),(e,f ),(e,g),(f,g)}) a c b d c a d e f g e a b d e g f Sia u1 u ui uk un camino di Euler di k nodi Notare che un nodo può comparire più volte nel camino Se u1 uk, il primo nodo u1 e l ultimo nodo uk contribuiscono un arco ciascuno al camino Ogni nodo interno ui contribuisce due archi al camino Sia α numero di volte nodo interno ui compare nel camino Visto che tutti gli archi nel camino sono distinti, il grado di un nodo interno ui deve essere α (pari) Il grado dei nodi u1 e uk deve essere α+1 (dispari) Se u1 uk, tutti i nodi sono interni e hanno grado α (pari) Quindi, u1 u ui uk è un camino di Euler solo se il grafo contiene o zero o due nodi con grado dispari 5 6 Teorema di Euler Dimostrazione (caso se ) Algoritmo di Fleury (188) Dato un grafo G con al massimo due nodi di grado dispari, esibire una procedura (algoritmo) per costruire un camino di Euler in G Algoritmo di Fleury è in grado di costruire un camino di Euler in G a c b d Scegliere un nodo con grado dispari (un nodo qualsiasi se tutti pari) Scegliere un arco tale che sua cancellazione non sconnetta il grafo Passare al nodo nell altra estrema del arco scelto Cancellare l arco dal grafo Ripetere i tre passi precedenti finche non ci sono archi rimasti e g f d a e g f e d b a c 7 8

3 Algoritmo di Fleury Algoritmo di Fleury Dato un grafo G=(N,E) dove al massimo due nodi hanno grado dispari, costruire un camino di Euler in G Useremo un linguaggio Python-like per esprimere l algoritmo next = u dove u N e grado(u) è dispari print next while (E non vuoto): scegliere un arco (u,v) tale (is_bridge((u,v))) è falso cancellare (u,v) da E next = v print next Come realizzare is_bridge((u,v))? Idea: Sia i il numero dei nodo raggiungibili in G partendo da u Cancelliamo l arco (u,v) ottenendo un nuovo grafo G' Sia j numero dei nodo raggiungibili in G' partendo da u Se i=j, allora l arco (u,v) non è un ponte Se i j, allora l arco (u,v) è un ponte 9 10 A B C D Proprietà degli Algoritmi I J T U H G E K F L M N O S R Q P V 11 Correttezza Semplicità concettuale Efficienza (costo) Ottimalità Con analisi degli algoritmi intendiamo: dimostrare loro correttezza e quantificare loro costo in termini delle risorse impiegate (tempo, memoria) Ci limitiamo al costo temporale degli algoritmi In particolare, come cresce il costo temporale di un algoritmo e non il suo valore assoluto (secondi, minuti, ore) 1

4 Analisi del Algoritmo di Fleury Analisi del Algoritmo di Fleury Quanto tempo impiega algoritmo di Fleury su un grafo G con n nodi e m archi? Dipende Linguaggio in cui è stato programmato Computer che sta eseguendo Dimensioni del grafo G La struttura (topologia) particolare del grafo G I primi due fattori sono tecnologici (e cambieranno in futuro) Il terzo è un fattore intrinseco del algoritmo e cambierà solo cambiando le dimensioni del grafo Informatici sono interessati a capire come il tempo che impiega un algoritmo cresce con dimensioni dei dati sempre maggiori Invece del tempo, contiamo il numero di operazioni necessari per costruire il camino di Euler in un grafo con n nodi e m archi Fase init Per ogni nodo bisogna calcolare suo grado e decidere se e dispari facendo m operazioni (ogni arco viene contato due volte) Fase ciclico Ripetuto m volte Ogni ripetizione calcola is_bridge((u,v)) Si sa che is_bridge((u,v)) può essere fatto in n+m operazioni Allora, tempo totale per Fleury diventa (n+)m+m Come dobbiamo giudicare questo risultato? Fleury è un algoritmo efficiente o no? Possiamo fare meglio? 1 1 Circuito di Euler Algoritmo di Hierholzer (187) Un circuito di un grafo è una sequenza alternata di nodi e archi dove il primo e l ultimo nodi sono gli stessi Un circuito di Euler di un grafo G è un circuito che contiene ogni arco in G una e sola una volta Un grafo G connesso ha almeno un circuito di Euler se e solo se tutti nodi in G hanno grado pari Scegliere un nodo qualsiasi e costruire un circuito π Se esiste un nodo in π con archi non coperti (non incluso in qualche circuito), inizia un nuovo circuito θ partire da quel nodo Fondere circuiti π e θ, ripetere finche ci sono archi non coperti a c b d e g f d c a e d e f g e d c a e f g e d a b d a d c a b d a e f g e d 15 16

5 Analisi del Algoritmo di Hierholzer Crescita delle funzioni Quanto tempo impiega algoritmo di Hierholzer su un grafo G con n nodi e m archi? E possibile realizzare tutte le operazioni di Hierholzer facendo cm operazioni per un costante c Ricordiamo Fleury faceva (n+)m+m operazioni per lo stesso grafo In termini di m, Fleury fa c'm+m operazioni Vogliamo un metodo per caratterizzare la crescita delle funzioni per valori grandi del loro input analisi asintotica f(m) c'm+m cm 17 m m' 18 Riduzione tra problemi Riduzione tra problemi Poiché esisti un camino di Euler in G, ci devono essere due nodi u e v con grado dispari Si dice Problema P1 riduce in problema P, scritto P1 P se una soluzione al problema P può essere trasformato in una soluzione al problema P1 Camino di Euler Circuito di Euler Per calcolare il camino di Euler in G, trasforma G in un G' per poter calcolare un circuito di Euler in G' Trasforma il circuito in G' ad un camino di Euler in G 19 G v u Siccome grafo G' ha solo nodi con grado pari, possiamo usare un algoritmo (come Hierholzer) per calcolare un circuito di Euler In fine, trasformare il circuito di Euler in camino di Euler togliendo l arco (u,v) G' v u 0

6 Analisi asintotica degli algoritmi Analisi asintotica degli algoritmi Ci interessano i ritmi di crescita delle funzioni che caratterizzano i tempi di esecuzione degli algoritmi per valori grandi del loro input analisi asintotica Quale esecuzione? Caso migliore Caso peggiore Caso media Caso media di solito è difficile e richiede conoscenza della distribuzione dei valori input Caso migliore non è molto informativo Caso peggiore stabilisce un limite superiore al tempo di esecuzione 1 Analisi asintotica limite superiore Dimensione del input molto grande Esecuzione caso peggiore Definizione O-grande : f(n) è O-grande g(n), scritto O(g(n)) se e solo se per n sufficientemente grande, f(n) non supera c g(n) dove c è un costante positivo Analisi asintotica degli algoritmi Interpretazione grafica c1 g1(n) Analisi asintotica degli algoritmi Esempi c g(n) f(n) è O(1) (è anche O(n), O(n ), O(n ), O( n ), ) n + 00 è O(n) n n è O(n) log(n) + 70 è O(log(n)) 5n + n + 000log(n) + 89 è O(n ) n1 n

7 Analisi asintotica degli algoritmi Famiglie di crescita O(n!) O( n ) O(n ) O(n) O(log(n)) O(1) 5

Dai ponti di Königsberg al postino cinese

Dai ponti di Königsberg al postino cinese Dai ponti di Königsberg al postino cinese Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 2012/1 - Corso di Ricerca Operativa Università

Dettagli

Pensiero Algoritmico. Lezione 3 23 Novembre Ripasso. Anatomia di un programma. Anatomia di un programma. Ozalp Babaoglu Università di Bologna

Pensiero Algoritmico. Lezione 3 23 Novembre Ripasso. Anatomia di un programma. Anatomia di un programma. Ozalp Babaoglu Università di Bologna Pensiero Algoritmico Lezione 3 23 Novembre 2016 Ozalp Babaoglu Università di Bologna Ripasso Definizione del problema Astrarre i dettagli, costruire un modello Costruire l algoritmo che risolve il problema

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Algoritmi e Strutture Dati. Capitolo 1 Un introduzione informale agli algoritmi

Algoritmi e Strutture Dati. Capitolo 1 Un introduzione informale agli algoritmi Algoritmi e Strutture Dati Capitolo Un introduzione informale agli algoritmi Ancora un esempio di problema e soluzioni algoritmiche: i numeri di Fibonacci verso un modello di calcolo più simile a un computer

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

Lezione 4 Ugo Vaccaro

Lezione 4 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 2017 2018 Lezione 4 Ugo Vaccaro Introduciamo ora la notazione Ω, che ci sarà utile quando vorremo valutare limitazioni inferiori al tempo di esecuzione di algoritmi

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Modelli di calcolo e metodologie di analisi Domenico Fabio Savo 1 Notazione asintotica f(n) = tempo di esecuzione / occupazione di memoria di un algoritmo su input di dimensione

Dettagli

Problemi intrattabili

Problemi intrattabili Tempo polinomiale ed esponenziale Una Tm M ha complessita in tempo T(n) se, dato un input w di lunghezza n, M si ferma dopo al massimo T (n) passi. Problemi intrattabili Ci occuperemo solo di problemi

Dettagli

Principali strumenti per lo sviluppo di algoritmi in pascal-like. concetti universali presenti in tutti i linguaggi di programmazione

Principali strumenti per lo sviluppo di algoritmi in pascal-like. concetti universali presenti in tutti i linguaggi di programmazione LABORATORIO DI PROGRAMMAZIONE Corso di laurea in matematica 12 LA COMPLESSITA COMPUTAZIONALE Marco Lapegna Dipartimento di Matematica e Applicazioni Universita degli Studi di Napoli Federico II wpage.unina.it/lapegna

Dettagli

Ordinamento di una lista: bubble-sort

Ordinamento di una lista: bubble-sort Ordinamento di una lista: bubble-sort L idea è di far galleggiare il minimo della lista nelle prima posizione Riduco la parte di lista da considerare, escludendo le prime posizioni già ordinate Ordinamento:

Dettagli

Corso di elettrotecnica Materiale didattico: i grafi

Corso di elettrotecnica Materiale didattico: i grafi Corso di elettrotecnica Materiale didattico: i grafi A. Laudani 12 ottobre 2005 I grafi costituiscono uno strumento matematico che permette di descrivere e schematizzare una grande varietà di problemi

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Tecniche di Programmazione Tecniche di progettazione e

Dettagli

Studio degli algoritmi

Studio degli algoritmi COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI Fondamenti di Informatica a.a.2006/07 Prof. V.L. Plantamura Dott.ssa A. Angelini Studio degli algoritmi Dato un problema P, le problematiche riguardano: Sintesi

Dettagli

Esercizio 1. Variabili decisionali:

Esercizio 1. Variabili decisionali: Esercizio 1 Si noti che i costi sono dati per tonnellata, mentre molti vincoli riguardano il numero di navi. Si introducono pertanto DUE tipi di variabili, uno relativo al numero di tonnellate per tipo

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Informazioni sul corso + Un introduzione informale agli algoritmi Domenico Fabio Savo 1 Domenico Fabio Savo Email: savo@dis.uniroma1.it Web: http://www.dis.uniroma1.it/~savo

Dettagli

Appunti lezione Capitolo 13 Programmazione dinamica

Appunti lezione Capitolo 13 Programmazione dinamica Appunti lezione Capitolo 13 Programmazione dinamica Alberto Montresor 12 Novembre, 2015 1 Domanda: Fattore di crescita dei numeri catalani Vogliamo dimostrare che cresce almeno come 2 n. La nostra ipotesi

Dettagli

Teoria dell Informazione II Anno Accademico Lezione 6-7

Teoria dell Informazione II Anno Accademico Lezione 6-7 Teoria dell Informazione II Anno Accademico 2017 2018 Lezione 6-7 Ugo Vaccaro ( ) 1 2 n Data una variabile casuale X = che assume valori i, con probabilità p p 1 p 2 p i, per i = 1,...,n, n vogliamo studiare

Dettagli

Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati

Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati Informatica 3 LEZIONE 10: Introduzione agli algoritmi e alle strutture dati Modulo 1: Perchè studiare algoritmi e strutture dati Modulo 2: Definizioni di base Informatica 3 Lezione 10 - Modulo 1 Perchè

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) protocolli reti IP memorizzazione compatta di

Dettagli

Soluzioni della settima esercitazione di Algoritmi 1

Soluzioni della settima esercitazione di Algoritmi 1 Soluzioni della settima esercitazione di Algoritmi 1 Beniamino Accattoli 19 dicembre 2007 1 Grafi Un grafo è non orientato se descrivendo un arco come una coppia di vertici (i,j) l ordine è ininfluente

Dettagli

Ordinamenti. Grafo : definizione. Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici

Ordinamenti. Grafo : definizione. Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici Ordinamenti 1 Vittorio Maniezzo Università di Bologna Grafo : definizione Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici Un arco a= {u,v}

Dettagli

COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI

COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI Fondamenti di Informatica a.a.200.2005/06 Prof. V.L. Plantamura Dott.ssa A. Angelini Confronto di algoritmi Uno stesso problema può essere risolto in modi diversi,

Dettagli

Problemi intrattabili, classi P e NP. Problemi intrattabili, classi P e NP

Problemi intrattabili, classi P e NP. Problemi intrattabili, classi P e NP roblemi intrattabili Ci occuperemo solo di problemi decidibili, cioe ricorsivi. Tra loro, alcuni sono detti trattabili, se si puo provare che sono risolvibili in tempo polinomiale in modo deterministico.

Dettagli

Certificati dei problemi in NP

Certificati dei problemi in NP Certificati dei problemi in NP La stringa y viene in genere denominata un certificato Un Certificato è una informazione ausiliaria che può essere utilizzata per verificare in tempo polinomiale nella dimensione

Dettagli

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa Alberi di copertura Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 0/ - Corso di Ricerca Operativa Università di Pisa / 9 Definizioni

Dettagli

Automi e Linguaggi Formali

Automi e Linguaggi Formali Automi e Linguaggi Formali Problemi intrattabili, classi P e NP A.A. 2014-2015 Alessandro Sperduti sperduti@math.unipd.it Problemi intrattabili Ci occuperemo solo di problemi decidibili, cioè ricorsivi.

Dettagli

Terzo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale

Terzo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale Terzo allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini luca@chiodini.org - l.chiodini@campus.unimib.it 22 marzo 2016 Programma 1. Lettura di un problema tratto dalle

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore Il problema del commesso viaggiatore Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 2012/13 - Corso di Ricerca Operativa Università

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

Quarto allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale

Quarto allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale Quarto allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini luca@chiodini.org - l.chiodini@campus.unimib.it 30 marzo 2017 Programma 1. Lettura e analisi di un problema 2.

Dettagli

Cammini minimi fra tutte le coppie

Cammini minimi fra tutte le coppie Capitolo 12 Cammini minimi fra tutte le coppie Consideriamo il problema dei cammini minimi fra tutte le coppie in un grafo G = (V, E, w) orientato, pesato, dove possono essere presenti archi (ma non cicli)

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi di Algoritmi Modelli di calcolo e analisi di algoritmi Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Analisi di Algoritmi Analisi

Dettagli

Ordinamenti. Vittorio Maniezzo Università di Bologna

Ordinamenti. Vittorio Maniezzo Università di Bologna Ordinamenti 1 Vittorio Maniezzo Università di Bologna Grafo : definizione Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici Un arco a= {u,v}

Dettagli

Problemi decisionali. Esempi

Problemi decisionali. Esempi Problemi decisionali La teoria della complessità computazionale è definita principalmente in termini di problemi di decisione Essendo la risposta binaria, non ci si deve preoccupare del tempo richiesto

Dettagli

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica.

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Richiami di Matematica 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Insiemi Definizioni di base Dato un insieme A: x A: elemento x appartenente

Dettagli

DISTRIBUZIONI DI OGGETTI DISTINTI

DISTRIBUZIONI DI OGGETTI DISTINTI DISTRIBUZIONI Pagina 1 DISTRIBUZIONI DI OGGETTI DISTINTI 12:09 r oggetti distinti, n scatole distinte # distribuzioni di r oggetti distinti in n scatole distinte # stringhe di lunghezza r i cui elementi

Dettagli

Esempi. non. orientato. orientato

Esempi. non. orientato. orientato Definizione! Un grafo G = (V,E) è costituito da un insieme di vertici V ed un insieme di archi E ciascuno dei quali connette due vertici in V detti estremi dell arco.! Un grafo è orientato quando vi è

Dettagli

COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI

COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI Fondamenti di Informatica a.a.00.005/06 Prof. V.L. Plantamura Dott.ssa A. Angelini Classificazione degli algoritmi Tassonomia di costo: algoritmo costante: c

Dettagli

Laboratorio Algoritmi 2016

Laboratorio Algoritmi 2016 Laboratorio Algoritmi 2016 Lunedì 10:30 13:30 Aula 2 in via Saldini. Ricevimento: inviare e-mail a frasca@di.unimi.it. 44 ore (9 CFU) Linguaggio di programmazione: C Esame : progetto Sito del corso http://frasca.di.unimi.it/algm16/algm.html

Dettagli

COMPITO DI RICERCA OPERATIVA APPELLO DEL 07/04/04

COMPITO DI RICERCA OPERATIVA APPELLO DEL 07/04/04 COMPITO DI RICERCA OPERATIVA APPELLO DEL 07/04/04 Esercizio 1 1)Dato il seguente problema di PL: max 2x 1 x 2 x 1 + x 2 2 x 1 + 2x 2 7 x 1 + x 2 1 x 1, x 2 0 trasformarlo in forma standard (2 punti) 2)

Dettagli

Analisi e implementazione dell algoritmo di Dijkstra (Parte 1)

Analisi e implementazione dell algoritmo di Dijkstra (Parte 1) Analisi e implementazione dell algoritmo di Dijkstra (Parte 1) Algoritmicamente August 1, 2009 http://algoritmicamente.wordpress.com/ 1 Concetti fondamentali Definizione 1 Un grafo è un insieme di vertici

Dettagli

MATEMATICA E SOCIETÀ La matematica: è un opinione?

MATEMATICA E SOCIETÀ La matematica: è un opinione? MATEMATICA E SOCIETÀ La matematica: è un opinione? F. Ceragioli, B. Franci, L. Zino DISMA, POLITO 13-14 Giugno, 2017 Il linguaggio matematico [dalla presentazione del prof. Rondoni] intrinseca imprevedibilità

Dettagli

Esercizi su ABR. Prof. E. Fachini - Intr. Alg.!1

Esercizi su ABR. Prof. E. Fachini - Intr. Alg.!1 Esercizi su ABR Confronto proprietà ABR e Max-Heap. Proprietà del cammino radice-foglia individuato da una ricerca. Fusione di due ABR. Il successivo calcolato dalla radice Costruzione di un ABR bilanciato

Dettagli

Algoritmi e Strutture Dati. Capitolo 11 Grafi e visite di grafi

Algoritmi e Strutture Dati. Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati Capitolo 11 Grafi e visite di grafi grafi, teoria dei grafi, problemi su grafi Origini storiche Nel 1736, il matematico Eulero, affrontò l annoso problema dei 7 ponti di Königsberg

Dettagli

Complementi ed Esercizi di Informatica Teorica II

Complementi ed Esercizi di Informatica Teorica II Complementi ed Esercizi di Informatica Teorica II Vincenzo Bonifaci 14 febbraio 2008 1 Problemi in nc 1.1 Le classi nc k Ricordiamo che con nc k si indica la classe dei linguaggi decidibili da una famiglia

Dettagli

2.3.3 Cammini ottimi nei grafi senza circuiti

2.3.3 Cammini ottimi nei grafi senza circuiti .. Cammini ottimi nei grafi senza circuiti Sia un grafo G = (N, A) orientato senza circuiti e una funzione di costo che assegna un valore c ij R ad ogni arco (i, j) A circuito Proprietà I nodi di un grafo

Dettagli

5.4.5 Struttura dell algoritmo ed esempi

5.4.5 Struttura dell algoritmo ed esempi CAPITOLO 5. IL METODO DEL SIMPLESSO 6 5.4.5 Struttura dell algoritmo ed esempi Come abbiamo già ampiamente osservato, la fase II del metodo del simplesso, a partire da una soluzione di base ammissibile,

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Note per la Lezione 21 Ugo Vaccaro

Note per la Lezione 21 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 20 20 Note per la Lezione 2 Ugo Vaccaro In questa lezione introdurremo il concetto di grafo, esamineremo le loro più comuni rappresentazioni ed introdurremo i

Dettagli

Cammini minimi. Damiano Macedonio

Cammini minimi. Damiano Macedonio Cammini minimi Damiano Macedonio mace@unive.it Copyright 2010 2012, Moreno Marzolla, Università di Bologna, Italy (http://www.moreno.marzolla.name/teaching/asd2011b/) Modifications Copyright c 2015, Damiano

Dettagli

Complessità computazionale

Complessità computazionale Università Roma Tre Dipartimento di Matematica e Fisica Percorso Abilitante Speciale Classe A048 Matematica Applicata Corso di Informatica Complessità computazionale Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

G è 2-colorabile se ogni nodo può essere colorato di bianco o di nero in modo che nodi connessi da archi siano colorati con colori distinti.

G è 2-colorabile se ogni nodo può essere colorato di bianco o di nero in modo che nodi connessi da archi siano colorati con colori distinti. Grafi Grafi bipartiti Un grafo non orientato G è bipartito se l insieme dei nodi può essere partizionato in due sottoinsiemi disgiunti tali che nessun arco del grafo connette due nodi appartenenti allo

Dettagli

FONDAMENTI DI INFORMATICA

FONDAMENTI DI INFORMATICA Università degli Studi di Cagliari Corsi di Laurea in Ingegneria Chimica e Ingegneria Meccanica FONDAMENTI DI INFORMATICA http://people.unica.it/gianlucamarcialis A.A. 2018/2019 Docente: Gian Luca Marcialis

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Minimo albero ricoprente Domenico Fabio Savo 1 Albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un

Dettagli

Partizioni intere. =! i# P. Es: Dato {38, 17, 52, 61, 21, 88, 25} possiamo rispondere positivamente al quesito poiché

Partizioni intere. =! i# P. Es: Dato {38, 17, 52, 61, 21, 88, 25} possiamo rispondere positivamente al quesito poiché Partizioni intere PARTIZIONAMENTO: Dato un insieme di n interi non negativi rappresentati in binario, trovare un sottoinsieme P! {1,2,..., n } tale che! i"p a i =! i# P a i Es: Dato {38, 17, 52, 61, 21,

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari L. De Giovanni G. Zambelli 1 Problema dell assegnamento Sia dato un grafo non orientato bipartito

Dettagli

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44;

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; 1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; c 24 = 15; c 25 = 12; c 34 = 32; c 35 = 55; c 45 = 24 Si calcoli l ottimo duale (formulazione

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 1 Un introduzione informale agli algoritmi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione informale di algoritmo Insieme di istruzioni, definite

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi Asintotica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Un graduale processo di astrazione Passo 1: abbiamo ignorato il costo effettivo

Dettagli

Nozioni di base (II Parte)

Nozioni di base (II Parte) Nozioni di base (II Parte) 1 Ricorsione [GTG14, Par. 5.1-5.4 and 13.1] Algoritmo Ricorsivo: algoritmo che invoca se stesso (su istanze sempre più piccole) sfruttando la nozione di induzione. La soluzione

Dettagli

Gli heap. Sommario. Algoritmi e Programmazione Avanzata. Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino

Gli heap. Sommario. Algoritmi e Programmazione Avanzata. Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino Gli heap Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino 1 a.a. 2001/2002 Sommario Gli heap L algoritmo Heapsort Le code con priorità. 2 a.a. 2001/2002 Politecnico

Dettagli

Teoria della Calcolabilità!

Teoria della Calcolabilità! Teoria della Calcolabilità Si occupa delle questioni fondamentali circa la potenza e le limitazioni dei sistemi di calcolo. L'origine risale alla prima metà del ventesimo secolo, quando i logici matematici

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi di algoritmi Maria Rita Di Berardini 2, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino 2 Polo di Scienze Università di Camerino ad Ascoli Piceno Parte I Analisi

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Minimo albero ricoprente Fabio Patrizi 1 Albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un albero;

Dettagli

Algoritmi Euristici. Corso di Laurea in Informatica e Corso di Laurea in Matematica. Roberto Cordone DI - Università degli Studi di Milano

Algoritmi Euristici. Corso di Laurea in Informatica e Corso di Laurea in Matematica. Roberto Cordone DI - Università degli Studi di Milano Algoritmi Euristici Corso di Laurea in Informatica e Corso di Laurea in Matematica Roberto Cordone DI - Università degli Studi di Milano Lezioni: Martedì 14.30-16.30 in Aula Omega Venerdì 14.30-16.30 in

Dettagli

Notazioni asintotiche. Martedì 30 settembre 2014

Notazioni asintotiche. Martedì 30 settembre 2014 Notazioni asintotiche Martedì 30 settembre 2014 Punto della situazione Cos è un algoritmo Tempo di esecuzione T(n) Analisi di algoritmi: analisi asintotica di T(n) Argomento di oggi: Notazioni asintotiche:

Dettagli

Proprietà dei linguaggi non contestuali

Proprietà dei linguaggi non contestuali Proprietà dei linguaggi non contestuali Argomenti della lezione Pumping lemma per i linguaggi non contestuali Proprietà di chiusura Argomenti della lezione Grammatiche non contestuali in forma ridotta

Dettagli

Gli algoritmi e la loro complessità

Gli algoritmi e la loro complessità Gli algoritmi e la loro complessità Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Algoritmo Un algoritmo è una procedura di calcolo (eventualmente composta da un certo numero di passi)

Dettagli

Algoritmi e Strutture di Dati I 1. Algoritmi e Strutture di Dati I Massimo Franceschet

Algoritmi e Strutture di Dati I 1. Algoritmi e Strutture di Dati I Massimo Franceschet Algoritmi e Strutture di Dati I 1 Algoritmi e Strutture di Dati I Massimo Franceschet Algoritmi e Strutture di Dati I 2 Problemi Un problema specifica in termini generali una relazione che intercorrere

Dettagli

CENTRALITA nella RETE

CENTRALITA nella RETE CENTRALITA nella RETE Nozione di Centralità Nozione introdotta dai sociologi nel dopoguerra (Bavelas 1948) L ipotesi è che la centralità strutturale sia un elemento in grado di motivare l importanza di

Dettagli

Algoritmi di ricerca. Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati.

Algoritmi di ricerca. Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati. E. Calabrese: Fondamenti di Informatica Algoritmi-1 Algoritmi di ricerca Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati. Per esempio: - cercare

Dettagli

Appunti di informatica. Lezione 8 anno accademico Mario Verdicchio

Appunti di informatica. Lezione 8 anno accademico Mario Verdicchio Appunti di informatica Lezione 8 anno accademico 2016-2017 Mario Verdicchio Il ciclo FOR Molto spesso in un programma bisogna ripetere un operazione per un numero prefissato di volte Si tratta di un iterazione

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli

Introduzione agli algoritmi Prova di esame del 19/9/2016 Prof.sse E. Fachini - R. Petreschi. Parte prima

Introduzione agli algoritmi Prova di esame del 19/9/2016 Prof.sse E. Fachini - R. Petreschi. Parte prima Introduzione agli algoritmi Prova di esame del 19/9/2016 Prof.sse E. Fachini - R. Petreschi Parte prima 1) Si dimostri il teorema sulla limitazione inferiore per il tempo asintotico di esecuzione nel caso

Dettagli

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine RISOLUZIONE IN LOGICA PROPOSIZIONALE Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine 1. Risoluzione Definitione 1.1. Un letterale l è una variabile proposizionale (letterale

Dettagli

1) Codici convoluzionali. 2) Circuito codificatore. 3) Diagramma a stati e a traliccio. 4) Distanza libera. 5) Algoritmo di Viterbi

1) Codici convoluzionali. 2) Circuito codificatore. 3) Diagramma a stati e a traliccio. 4) Distanza libera. 5) Algoritmo di Viterbi Argomenti della Lezione 1) Codici convoluzionali 2) Circuito codificatore 3) Diagramma a stati e a traliccio 4) Distanza libera 5) Algoritmo di Viterbi 1 Codici convoluzionali I codici convoluzionali sono

Dettagli

Implementazione di dizionari

Implementazione di dizionari Implementazione di dizionari Problema del dizionario dinamico Scegliere una struttura dati in cui memorizzare dei record con un campo key e alcuni altri campi in cui sono memorizzati i dati associati alla

Dettagli

Pumping lemma per i linguaggi Context-free

Pumping lemma per i linguaggi Context-free Pumping lemma per i linguaggi Context-free Sia L un linguaggio context-free. E possibile determinare una costante k, dipendente da L, tale che qualunque stringa z! L con z > k si può esprimere come z=

Dettagli

Definizione FONDAMENTI DI INFORMATICA. Esempio di algoritmo: determinare il maggiore di due numeri interi x, y. Proprietà degli algoritmi

Definizione FONDAMENTI DI INFORMATICA. Esempio di algoritmo: determinare il maggiore di due numeri interi x, y. Proprietà degli algoritmi Università degli Studi di Cagliari Corsi di Laurea in Ingegneria Chimica e Ingegneria Meccanica FONDAMENTI DI INFORMATICA http://www.diee.unica.it/~marcialis/fi A.A. 201/2017 Docente: Gian Luca Marcialis

Dettagli

Sui Linguaggi Regolari: Teorema di Kleene - Pumping Lemm

Sui Linguaggi Regolari: Teorema di Kleene - Pumping Lemm Sui Linguaggi Regolari: Teorema di Kleene - Pumping Lemma N.Fanizzi - V.Carofiglio 6 aprile 2016 1 Teorema di Kleene 2 3 o 1 o 3 o 8 Teorema di Kleene Vale la seguente equivalenza: L 3 L FSL L REG Dimostrazione.

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino I conigli di Fibonacci Ricerca Binaria L isola dei conigli Leonardo da

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di PS-Probabilità P.Baldi Tutorato 9, 19 maggio 11 Corso di Laurea in Matematica Esercizio 1 a) Volendo modellizzare l evoluzione della disoccupazione in un certo ambito

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) diffusione di messaggi segreti memorizzazione

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014 A Ricerca Operativa 1 Seconda prova intermedia Un tifoso di calcio in partenza da Roma vuole raggiungere Rio De Janeiro per la finale del mondiale spendendo il meno possibile. Sono date le seguenti disponibilità

Dettagli

Appendice B. Algoritmi e Complessità

Appendice B. Algoritmi e Complessità Appendice B Algoritmi e Complessità 1. Introduzione Un algoritmo A è una procedura passo-passo per risolvere un problema P. Un problema P è caratterizzato dall insieme I delle sue istanze. L algoritmo

Dettagli

Algoritmi di ordinamento

Algoritmi di ordinamento Algoritmi di ordinamento! Selection Sort! Quick Sort! Lower bound alla complessità degli algoritmi di ordinamento Ordinamento 1 Selection Sort SelectionSort(dati[]) { for (i=0; idati.length-1; i++) { min

Dettagli

Grafi, Social Network e Ricerca su Web Prof. Maurizio Naldi

Grafi, Social Network e Ricerca su Web Prof. Maurizio Naldi Grafi, Social Network e Ricerca su Web Prof. Maurizio Naldi Teoria dei Grafi È uno strumento indispensabile per l analisi di reti e, quindi, di social network.... è fondamentale anche per capire come funziona

Dettagli

Aniello Murano Classe dei problemi NP. Nella lezione precedente abbiamo visto alcuni problemi che ammettono soluzione polinomiale

Aniello Murano Classe dei problemi NP. Nella lezione precedente abbiamo visto alcuni problemi che ammettono soluzione polinomiale Aniello Murano Classe dei problemi NP 13 Lezione n. Parole chiave: Classe NP Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009 Introduzione alla lezione Nella lezione

Dettagli

Definizione FONDAMENTI DI INFORMATICA. Proprietà degli algoritmi. Esempio di algoritmo: determinare il maggiore di due numeri interi x, y

Definizione FONDAMENTI DI INFORMATICA. Proprietà degli algoritmi. Esempio di algoritmo: determinare il maggiore di due numeri interi x, y Università degli Studi di Cagliari Corsi di Laurea in Ingegneria Chimica e Ingegneria Meccanica FONDAMENTI DI INFORMATICA http://www.diee.unica.it/~marcialis/fi A.A. 2017/2018 Docente: Gian Luca Marcialis

Dettagli

Cammini Minimi. Algoritmo di Dijkstra. Cammino in un grafo

Cammini Minimi. Algoritmo di Dijkstra. Cammino in un grafo Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

Esercizi per il corso di Algoritmi, anno accademico 2011/12

Esercizi per il corso di Algoritmi, anno accademico 2011/12 Esercizi per il corso di Algoritmi, anno accademico 2011/12 Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, nè in C++, etc. ). Di tutti gli

Dettagli

Cammini Minimi. Algoritmo di Dijkstra

Cammini Minimi. Algoritmo di Dijkstra Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia 7 giugno 0 Nome: Cognome: Matricola: Orale /06/0 ore aula N Orale 0/07/0 ore aula N

Dettagli

Corso di Perfezionamento

Corso di Perfezionamento Programmazione Dinamica 1 1 Dipartimento di Matematica e Informatica Università di Camerino 15 febbraio 2009 Tecniche di Programmazione Tecniche di progettazione di algoritmi: 1 Divide et Impera 2 Programmazione

Dettagli

Grafi (non orientati e connessi): minimo albero ricoprente

Grafi (non orientati e connessi): minimo albero ricoprente .. Grafi (non orientati e connessi): minimo albero ricoprente Una presentazione alternativa (con ulteriori dettagli) Problema: calcolo del minimo albero di copertura (M.S.T.) Dato un grafo pesato non orientato

Dettagli