Open walk: Nodo di partenza diverso da quello di arrivo Close walk: Nodo di partenza coincidente con quello di arrivo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Open walk: Nodo di partenza diverso da quello di arrivo Close walk: Nodo di partenza coincidente con quello di arrivo"

Transcript

1 Connettività

2 WALK, TRAIL, PATH

3 Walk (passeggiata) Walk (passeggiata): Una passeggiata è una sequenza di nodi e link che inizia e finisce con un nodo, in cui ogni nodo è incidente allo spigolo che lo precede e allo spigolo che lo segue nella sequenza. Open walk: Nodo di partenza diverso da quello di arrivo Close walk: Nodo di partenza coincidente con quello di arrivo Nei grafi semplici è sufficiente la lista dei nodi Lunghezza della passeggiata: numero degli spigoli Length of walk= 8

4 Trail Un trail (percorso) è una passeggiata in cui tutti gli spigoli sono distinti (uno spigolo non può essere attraversato più di una volta) Un trail chiuso è detto tour o circuit

5 Path Un path (cammino) è una passeggiata dove sia i nodi sia gli spigoli sono distinti (spigoli e nodi non possono essere attraversati più di una volta) Un path chiuso è detto cycle (ciclo) La lughezza del path è il numero di spigoli che attraversa Length of path=

6 Examples Eulerian Tour Un tour che attraversa tutti gli spigoli (una sola volta) Konigsberg bridges Hamiltonian Cycle Un ciclo che visita tutti I nodi (una sola volta)

7 Königsberg A Königsberg in Prussia c è un'isola A, chiamata der Kneiphof, e il fiume che la circonda si divide in due rami, come si può vedere in figura; i rami di questo fiume sono muniti di sette ponti a, b, c, d, e, f, g. Circa questi ponti veniva posta questa domanda, si chiedeva se fosse possibile costruire un percorso in modo da transitare attraverso ciascun ponte una e una sola volta. E mi fu detto che alcuni negavano ed altri dubitavano che ciò si potesse fare, ma nessuno lo dava per certo. Da ciò io ho tratto questo problema generale: qualunque sia la configurazione e la distribuzione in rami del fiume e qualunque sia il numero dei ponti, si può scoprire se è possibile passare per ogni ponte una ed una sola volta?

8 Königsberg

9 Königsberg

10 Königsberg Eulero stabilì che un grafo composto soltanto da nodi pari, cioè ciascuno collegato a un numero pari di archi, è sempre percorribile e che si può ritornare al punto di partenza senza sovrapposizioni di percorso (circuito euleriano). Se un grafo contiene nodi pari e soltanto due nodi dispari è ancora percorribile, partendo da uno dei noti dispari per arrivare all'altro, ma non si può più ritornare al punto di partenza. Se contiene invece più di due nodi dispari, non è percorribile senza sovrapposizioni di percorso. 0

11 Distanza tra due nodi A B La distanza (distance) tra due nodi è il numero di spigoli di un cammino a lunghezza minima che li connette *Se due nodi sono disconnessi, la distanza è +. D C Nei grafi orientati il cammino deve seguire la direzione dei link. Quindi la distanza tra due nodi A e B può essere diversa da quella tra B e A. A B Un nodo i si dice raggiungibile (reachable) da un nodo j se esiste un cammino da j a i. D C Diametro (diameter) di un grafo: distanza massima tra tutte le coppie di un grafo

12 Random walk Una passeggiata in cui il nodo successivo viene scelto in modo casuale tra i vicini. Se il grafo è pesato si possono definire le probabilità in funzione del peso.

13 Connettività della network

14 Connettività Un nodo v i è connesso a un nodo v j (raggiungibile da v j ) se esiste un path tra v i e v j. Un grafo è connesso se esiste un path tra ogni sua coppia di nodi Un grafo è disconnected se non è connesso.

15 Connettività nei grafi orientati Un grafo orientato è strongly connected (fortemente connesso) se esiste un cammino orientato tra ogni coppia ordinate di vertici Esiste il cammino AB e il cammino BA Un grafo orientato è weakly connected (debolmente connesso) se esiste un cammino tra ogni coppia di vertici senza considerare l orientamento degli archi 5

16 Connettività: esempi

17 Componenti connesse Componente: sottografo tale che esista almeno un path tra ogni coppia di vertici e non esista alcun altro vertice del grafo connesso ad alcun vertice della componente. massimale Singoletto:componente connessa con un solo vertice Ogni vertice appartiene a una e una sola componente 7

18 Component In directed graphs, we have a strongly connected components when there is a path from u to v and one from v to u for every pair (u,v). The component is weakly connected if replacing directed edges with undirected edges results in a connected component.

19 Component Examples: components Strongly-connected components

20 Esercizio B A C F G E D H Quante e quali componenti fortemente connesse? Quante e quali componenti debolmente connesse? 0

21 Esercizio: soluzione Weakly connected components: every node can be reached from every other node by following links in either direction Weakly connected components A B C D E G H F Strongly connected components Each node within the component can be reached from every other node in the component by following directed links A B E D C F H G Strongly connected components B C D E A B C F G A G H F E D H

22 La matrice di adiacenza di una rete con più componenti è diagonale a blocchi Network Science: Graph Theory

23 Bridges I ponti (bridges) sono archi la cui rimozione aumenta il numero di componenti connesse

24 Breadth-First Search (BFS) La visita in ampiezza breadth-first-search (BFS) di un grafo dato un vertice sorgente s consiste nella esplorazione sistematica di tutti i vertici raggiungibili da s in modo tale da esplorare tutti i vertici che hanno distanza k prima di iniziare a visitare quelli che hanno distanza k+

25 Breadth-First Search (BFS) BFS parte da un nodo, ne visita tutti i primi vicini e quindi i vicini dei vicini

26 Breadth-First Search (BFS). Nodo sorgente: etichetta 0. Assegnare a tutti suoi vicini etichetta ed inserirli in una coda. Togliere dalla coda il primo nodo (etichetta n in generale, al primo passo). Cercare tutti i suoi vicini che non abbiano etichetta, assegnare etichetta n+ ed inserirli nella coda. Ripetere il passo finché non si visiti il nodo di destinazione o la coda sia vuota. 5. La distanza tra il nodo sorgente e quello di destinazione è l etichetta di questo ultimo

27 Calcolo delle distanze.nodo iniziale: 0 0 Network Science: Graph Theory

28 Calcolo delle distanze Distanza tra nodo 0 e nodo :.Parti dal nodo 0..Trova tutti I nodi adiacenti al nodo 0, assegna distanza e poni in una coda 0 Network Science: Graph Theory

29 Network Science: Graph Theory Network Science: Graph Theory 0 Network Science: Graph Theory Calcolo delle distanze

30 FINDING DISTANCES: BREADTH FIRST SEARCH Distance between node 0 and node :.Repeat until you find node or there are no more nodes in the queue..the distance between 0 and is the label of or, if does not have a label, infinity. 0 Network Science: Graph Theory

31 BFS per la ricerca delle componenti connesse. Si effettui una BFS con nodo iniziale random e si etichetti tutti i nodi visitati con n=. Se il numero di nodi con etichetta è uguale al numero di nodi N del grafo, il grafo è connesso, altrimenti passo. n n+. Si effettui una estrazione casuale tra i nodi non etichettati di un nodo j e lo si etichetti con n. Si effettui una BFS con nodo iniziale j e si etichetti tutti i nodi visitati con n. Si torni al passo.

32 Algoritmo di Dijkstra Ricerca del cammino a lunghezza minima e della distanza tra due nodi in grafi pesati Dijkstra s Algorithm Grafi pesati con pesi non negativi Trova il cammino minimo da un nodo fissato s a tutti gli altri nodi del grafo Restituisce I cammini minimi e la loro lunghezza

33 Algoritmo di Dijsktra Inizializzazione: N' = {u} per tutti i nodi v se v è adiacente a u 5 allora D(v) = c(u,v) 6 altrimenti D(v) = Ciclo 9 determina un w non in N' tale che D(w) sia minimo 0 aggiungi w a N' aggiorna D(v) per ciascun nodo v adiacente a w e non in N' : D(v) = min( D(v), D(w) + c(w,v) ) /* il nuovo costo verso v è il vecchio costo verso v oppure il costo del cammino minimo noto verso w più il costo da w a v */ 5 Finché N = N -

34 Esercizio 5 v w 5 u x y z

35 - 5 Algoritmo di Dijkstra: esempio passo 0 5 N' u ux uxy uxyv uxyvw uxyvwz D(v),p(v),u,u,u D(w),p(w) 5,u,x,y,y D(x),p(x),u D(y),p(y) +,x D(z),p(z) + +,y,y,y u y x w v z 5 5 Shortest paths: uv uw ux uxy uxyz

Esempi. non. orientato. orientato

Esempi. non. orientato. orientato Definizione! Un grafo G = (V,E) è costituito da un insieme di vertici V ed un insieme di archi E ciascuno dei quali connette due vertici in V detti estremi dell arco.! Un grafo è orientato quando vi è

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 12 Grafi e visite di grafi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione Un grafo G=(V,E) consiste in: - un insieme V di vertici (o nodi) - un insieme

Dettagli

Esercitazione 7. Grafi. Rappresentazione e algoritmi di visita

Esercitazione 7. Grafi. Rappresentazione e algoritmi di visita Esercitazione 7 Grafi Rappresentazione e algoritmi di visita Grafo G = (V,E) non orientato 1 1 G = (V,E) orientato 6 Rappresentazione Grafo G = (V,E) metodi standard per la rappresentazione Liste di adiacenza

Dettagli

Note per la Lezione 21 Ugo Vaccaro

Note per la Lezione 21 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 20 20 Note per la Lezione 2 Ugo Vaccaro In questa lezione introdurremo il concetto di grafo, esamineremo le loro più comuni rappresentazioni ed introdurremo i

Dettagli

Università Roma Tre - PAS Classe A048 "Matematica Applicata" - Corso di Informatica a.a. 2013/2014

Università Roma Tre - PAS Classe A048 Matematica Applicata - Corso di Informatica a.a. 2013/2014 Università Roma Tre Dipartimento di Matematica e Fisica Percorso Abilitante Speciale Classe A08 Matematica Applicata Corso di Informatica Algoritmi su Grafi Marco Liverani (liverani@mat.uniroma.it) Sommario

Dettagli

K 4 è planare? E K 3,3 e K 5 sono planari? Sì! No! (Teorema di Kuratowski) K 5. Camil Demetrescu, Irene Finocchi, Giuseppe F.

K 4 è planare? E K 3,3 e K 5 sono planari? Sì! No! (Teorema di Kuratowski) K 5. Camil Demetrescu, Irene Finocchi, Giuseppe F. K 4 è planare? Sì! E K 3,3 e K 5 sono planari? K 5 No! (Teorema di Kuratowski) 1 Un albero è un grafo bipartito? SÌ! Ma un grafo bipartito è sempre un albero?? 2 Algoritmi e Strutture Dati Capitolo 11

Dettagli

Progettazione di Algoritmi - lezione 1

Progettazione di Algoritmi - lezione 1 Progettazione di Algoritmi - lezione 1 Grafi Un grafo è una collezione di elementi con una relazione binaria tra di essi. Le situazioni che possono essere modellate dai grafi sono innumerevoli e provengono

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Introduzione ai grafi Grafi: Definizione e Algoritmi di visita Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2007/08 Introduzione ai

Dettagli

Dai ponti di Königsberg al postino cinese

Dai ponti di Königsberg al postino cinese Dai ponti di Königsberg al postino cinese Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 2012/1 - Corso di Ricerca Operativa Università

Dettagli

Teoria dei Grafi Parte I

Teoria dei Grafi Parte I Teoria dei Grafi Parte I Daniele Vigo D.E.I.S. - Università di Bologna dvigo@deis.unibo.it Teoria dei Grafi Paradigma di rappresentazione di problemi Grafo G : coppia (V,E) V = insieme di vertici E = insieme

Dettagli

Visite in Grafi BFS e DFS

Visite in Grafi BFS e DFS Visite in Grafi BFS e DFS Visita di un Grafo Obiettivo: Visitare una sola volta tutti i nodi del grafo. Es.: visitare un porzione del grafo del Web Difficoltà: Presenza di cicli: Marcare i nodi visitati

Dettagli

Teoria dei Grafi Parte I. Alberto Caprara DEIS - Università di Bologna

Teoria dei Grafi Parte I. Alberto Caprara DEIS - Università di Bologna Teoria dei Grafi Parte I Alberto Caprara DEIS - Università di Bologna acaprara@deis.unibo.it Teoria dei Grafi Paradigma di rappresentazione di problemi Grafo G : coppia (V,E) V = insieme di vertici E =

Dettagli

Grafi: definizioni, visite e applicazioni. 3 dicembre 2014

Grafi: definizioni, visite e applicazioni. 3 dicembre 2014 Grafi: definizioni, visite e applicazioni 3 dicembre 2014 Grafi (non orientati) Grafo (non orientato): G = (V, E) V = nodi (o vertici) E = archi fra coppie di nodi distinti. Modella relazioni fra coppie

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G è costituito da una coppia di insiemi (V,A) dove V è detto insieme dei nodi e A è detto insieme di archi ed è un sottinsieme di tutte

Dettagli

Grafi non orientati. Grafi (non orientati) Rappresentazione di Grafi: matrice delle adiacenze. Tipiche applicazioni di modelli basati su grafi

Grafi non orientati. Grafi (non orientati) Rappresentazione di Grafi: matrice delle adiacenze. Tipiche applicazioni di modelli basati su grafi Grafi non orientati Grafi (non orientati) Notazione. G = (V, E) V = nodi (o vertici). E = archi (o lati) tra coppie di nodi. Modella relazioni definite tra coppie di oggetti. aglia di un grafo: numero

Dettagli

INFORMATICA AA Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali»

INFORMATICA AA Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali» Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali» AA 2010-2011 INFORMATICA Prof. Giorgio Poletti giorgio.poletti@unife.it Grafi

Dettagli

Cammini Minimi. Algoritmo di Dijkstra. Cammino in un grafo

Cammini Minimi. Algoritmo di Dijkstra. Cammino in un grafo Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

Cammini Minimi. Algoritmo di Dijkstra

Cammini Minimi. Algoritmo di Dijkstra Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

Graphs: Cycles. Tecniche di Programmazione A.A. 2012/2013

Graphs: Cycles. Tecniche di Programmazione A.A. 2012/2013 Graphs: Cycles Tecniche di Programmazione Summary Definitions Algorithms 2 Definitions Graphs: Cycles Cycle A cycle of a graph, sometimes also called a circuit, is a subset of the edge set of that forms

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani (liverani@mat.uniroma.it)

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G é costituito da una coppia di insiemi (V,A) dove V é detto insieme dei nodi e A é detto insieme di archi ed é un sottinsieme di tutte

Dettagli

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici);

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici); Algoritmi e Strutture di Dati II 2 Grafi diretti Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove V è u n i n s i e m e d i nodi (o vertici); E µ V V è u n i n s i e m e d i archi. Denotiamo

Dettagli

Visite in Grafi BFS e DFS. PDF created with FinePrint pdffactory trial version

Visite in Grafi BFS e DFS. PDF created with FinePrint pdffactory trial version Visite in Grafi BFS e DFS Visita di un Grafo 8Obiettivo: 4Visitare una sola volta tutti i nodi del grafo. 4Es.: visitare un porzione del grafo del Web 8Difficoltà : 4Presenza di cicli: Marcare i nodi visitati

Dettagli

Problema del cammino minimo

Problema del cammino minimo Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento

Dettagli

Soluzioni della settima esercitazione di Algoritmi 1

Soluzioni della settima esercitazione di Algoritmi 1 Soluzioni della settima esercitazione di Algoritmi 1 Beniamino Accattoli 19 dicembre 2007 1 Grafi Un grafo è non orientato se descrivendo un arco come una coppia di vertici (i,j) l ordine è ininfluente

Dettagli

Graf. Progettazione di Algoritmi a.a Matricole congrue a 1. Docente: Annalisa De Bonis. Grafi non direzionati

Graf. Progettazione di Algoritmi a.a Matricole congrue a 1. Docente: Annalisa De Bonis. Grafi non direzionati Graf Progettazione di Algoritmi a.a. 2017-18 Matricole congrue a 1 Docente: Annalisa De Bonis 1 Grafi non direzionati Grafi non direzionati. G = (V, E) V = insieme nodi. E = insieme archi. Esprime le relazioni

Dettagli

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi!

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! G R A F I 1 GRAFI Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! 2 cip: cip: Pallogrammi Pallogrammi GRAFI: cosa sono I grafi sono una struttura matematica fondamentale: servono

Dettagli

Teoria dei Grafi Concetti fondamentali

Teoria dei Grafi Concetti fondamentali Teoria dei Grafi Concetti fondamentali I grafi sono un mezzo per rappresentare relazioni binarie. Ad esempio: due città connesse da una strada due calcolatori connessi in una rete telematica due persone

Dettagli

Algoritmi e Strutture Dati. Capitolo 11 Grafi e visite di grafi

Algoritmi e Strutture Dati. Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati Capitolo 11 Grafi e visite di grafi grafi, teoria dei grafi, problemi su grafi Origini storiche Nel 1736, il matematico Eulero, affrontò l annoso problema dei 7 ponti di Königsberg

Dettagli

Grafi: definizioni e visite

Grafi: definizioni e visite Grafi: definizioni e visite Grafi (non orientati) Grafo (non orientato): G = (V, E) V = nodi (o vertici) E = archi fra coppie di nodi distinti. Modella relazioni fra coppie di oggetti. Parametri della

Dettagli

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Richiami di Teoria dei Grafi Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Teoria dei grafi La Teoria dei Grafi costituisce, al pari della Programmazione Matematica, un corpo

Dettagli

Algoritmi e Strutture Dati Grafi. Daniele Loiacono

Algoritmi e Strutture Dati Grafi. Daniele Loiacono lgoritmi e Strutture ati Grafi Riferimenti 2 Questo materiale è tratto dalle trasparenze del corso lgoritmi e Strutture ati del prof. lberto Montresor dell Università di Trento. (http://www.dit.unitn.it/~montreso/asd/index.shtml)

Dettagli

Analisi e implementazione dell algoritmo di Dijkstra (Parte 1)

Analisi e implementazione dell algoritmo di Dijkstra (Parte 1) Analisi e implementazione dell algoritmo di Dijkstra (Parte 1) Algoritmicamente August 1, 2009 http://algoritmicamente.wordpress.com/ 1 Concetti fondamentali Definizione 1 Un grafo è un insieme di vertici

Dettagli

Esercitazione 6 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016

Esercitazione 6 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016 Esercitazione 6 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016 Tong Liu April 14, 2016 Elementi Fondamentali Rappresentazione n = V numero di vertici (nodi) m = E numero di archi Matrice di adiacenza:

Dettagli

Grafi: visite. Una breve presentazione. F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Grafi: visite. Una breve presentazione. F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill) Grafi: visite Una breve presentazione Visite di grafi Scopo e tipi di visita Una visita (o attraversamento) di un grafo G permette di esaminare i nodi e gli archi di G in modo sistematico Problema di base

Dettagli

Grafi. V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)}

Grafi. V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)} Grafi Grafo orientato (o diretto) = (V,E) V = nodi o vertici - E = archi (edges) V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)} archi uscenti da un nodo x: (x, y) archi incidenti su un nodo

Dettagli

Informatica 3. LEZIONE 24: Grafi. Modulo 1: Rappresentazione e implementazione di grafi Modulo 2: Attraversamento di un grafo

Informatica 3. LEZIONE 24: Grafi. Modulo 1: Rappresentazione e implementazione di grafi Modulo 2: Attraversamento di un grafo Informatica 3 LEZIONE 24: Grafi Modulo 1: Rappresentazione e implementazione di grafi Modulo 2: Attraversamento di un grafo Informatica 3 Lezione 24 - Modulo 1 Rappresentazione e implementazione di grafi

Dettagli

Algoritmi e Strutture dati Mod B. Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*)

Algoritmi e Strutture dati Mod B. Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*) Algoritmi e Strutture dati Mod B Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*) Grafi: Percorsi minimi Un percorso minimo in un grafo G= grafo pesato orientato, con funzione di

Dettagli

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 3 Cammini minimi: algoritmo di Dijkstra Cammini minimi in grafi: cammini minimi a singola sorgente (senza pesi negativi) Cammini minimi in grafi pesati Sia G=(V,E,w)

Dettagli

Cammini minimi. Damiano Macedonio

Cammini minimi. Damiano Macedonio Cammini minimi Damiano Macedonio mace@unive.it Copyright 2010 2012, Moreno Marzolla, Università di Bologna, Italy (http://www.moreno.marzolla.name/teaching/asd2011b/) Modifications Copyright c 2015, Damiano

Dettagli

Introduzione. Il routing permette la comunicazione tra due nodi differenti anche se non sono collegati direttamente

Introduzione. Il routing permette la comunicazione tra due nodi differenti anche se non sono collegati direttamente Routing Introduzione Il livello 3 della pila ethernet ha il compito di muovere i pacchetti dalla sorgente attraversando più sistemi Il livello di network deve quindi: Scegliere di volta in volta il cammino

Dettagli

uscente entrante adiacente Figure B.2 (a) (b) (c) incident from leaves incident to enters incident on adjacent degree isolated

uscente entrante adiacente Figure B.2 (a) (b) (c) incident from leaves incident to enters incident on adjacent degree isolated Grafi Si dice grafo un insieme di nodi legati "a due a due" da archi direzionati (o no) I grafi sono strutture dati di fondamentale importanza in informatica Vi sono centinaia di problemi computazionali

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioni di Ricerca Operativa Estratto per la parte di programmazione lineare e ottimizzazione sui grafi Corso di Metodi di Ottimizzazione per l'ingegneria della Sicurezza Laurea Magistrale in Ingegneria

Dettagli

COMPLEMENTI DI SHORTEST-PATH. ASD Fabrizio d'amore

COMPLEMENTI DI SHORTEST-PATH. ASD Fabrizio d'amore COMPLEMENTI DI SHORTEST-PATH ASD 2016-17 Fabrizio d'amore problemi di shortest-path (SP) grafo di riferimento G=(V,E) semplice/orientato pesato pesi non negativi pesi arbitrari, ma no cicli a peso negativo

Dettagli

ALFABETIZZAZIONE INFORMATICA

ALFABETIZZAZIONE INFORMATICA Laurea in ilosofia a.a. 2008-2009 LTIZZZION INORMTI Ogni problema che ho risolto è diventato una regola che in seguito è servita a risolvere altri problemi. (René escartes, artesio iscorso sul metodo )

Dettagli

Strutture dati per rappresentare grafi

Strutture dati per rappresentare grafi lgoritmi e strutture dati amil emetrescu, Irene inocchi, iuseppe. Italiano Strutture dati per rappresentare grafi opyright 2004 - The Mcraw - Hill ompanies, srl lgoritmi e strutture dati amil emetrescu,

Dettagli

Algoritmi e Strutture di Dati II 2. Visite di grafi

Algoritmi e Strutture di Dati II 2. Visite di grafi Algoritmi e Strutture di Dati II 2 Visite di grafi Gli algoritmi di visita di un grafo hanno come obiettivo l esploraione di tutti i nodi e gli archi del grafo. Vi sono due modi principali per esplorare

Dettagli

Per ognuno dei seguenti sottografi dire se è uno spanning tree o se no perché.

Per ognuno dei seguenti sottografi dire se è uno spanning tree o se no perché. esercizi-routing-v3.doc Esercizio Rappresentare graficamente la rete corrispondente alla seguente tabella delle adiacenze. v v v3 v4 v 3 5 5 v 0 0 v3 0 v4 Esercizio Definire la tabella delle adiacenze

Dettagli

Esercizi Union-Find e su Grafi. Ugo Vaccaro

Esercizi Union-Find e su Grafi. Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 0 07 Esercizi Union-Find e su Grafi. Ugo Vaccaro. Esercizio: Scrivere pseudocodice per Make-Set, Union, e Find-Set usando la rappresentazione attraverso liste

Dettagli

Richiami di matematica discreta: grafi e alberi. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Richiami di matematica discreta: grafi e alberi. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Richiami di matematica discreta: grafi e alberi Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Grafi Definizione: G = (V,E) V: insieme finito di vertici E: insieme finito di archi,

Dettagli

Sommario della lezione

Sommario della lezione Sommario della lezione Introduzione ai grafi Definizioni, applicazioni,... Rappresentazioni comuni di grafi Esplorazione di grafi Università degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro

Dettagli

Routing. Forwarding e routing

Routing. Forwarding e routing Routing E necessario stabilire un percorso quando host sorgente e destinazione non appartengono alla stessa rete Router di default si occupa di instradare il traffico all esterno della rete Router sorgente:

Dettagli

Terzo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale

Terzo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale Terzo allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini luca@chiodini.org - l.chiodini@campus.unimib.it 22 marzo 2016 Programma 1. Lettura di un problema tratto dalle

Dettagli

Algoritmi e Strutture Dati. Capitolo 11 Visite di grafi

Algoritmi e Strutture Dati. Capitolo 11 Visite di grafi lgoritmi e Strutture ati apitolo Visite di grafi Strutture dati per rappresentare grafi rafi non diretti Quanto spazio? a b c d a b c d a 0 a b d c b 0 0 b c a c 0 c a d b d 0 0 d c a Matrice di adiacenza

Dettagli

Quarto allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale

Quarto allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale Quarto allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini luca@chiodini.org - l.chiodini@campus.unimib.it 30 marzo 2017 Programma 1. Lettura e analisi di un problema 2.

Dettagli

Reti Complesse Biologiche

Reti Complesse Biologiche Reti Complesse Biologiche Corso di Modelli di Sistemi Biologici II Università di Roma Sapienza Anno Accademico 2008/2009 Fabrizio De Vico Fallani, PhD Dipartimento di Fisiologia Umana e Farmacologia fabrizio.devicofallani@uniroma1.it

Dettagli

Note per la Lezione 22 Ugo Vaccaro

Note per la Lezione 22 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 0 09 Note per la Lezione Ugo Vaccaro Nella lezione scorsa abbiamo introdotto la vista in ampiezza di grafi. Essenzialmente, esso è un metodo per esplorare in

Dettagli

Sommario della lezione

Sommario della lezione Sommario della lezione Introduzione ai grafi Definizioni, applicazioni,... Rappresentazioni comuni di grafi Esplorazione di grafi Università degli Studi di Salerno Corso di Progettazione di Algoritmi Prof.

Dettagli

Routing IP. IP routing

Routing IP. IP routing Routing IP IP routing IP routing (inoltro IP): meccanismo per la scelta del percorso in Internet attraverso il quale inviare i datagram IP routing effettuato dai router (scelgono il percorso) Routing diretto

Dettagli

Problema: attraversamento di un grafo. Definizione del problema

Problema: attraversamento di un grafo. Definizione del problema Problema: attraversamento di un grafo Visita: attenzione alle soluzioni facili Definizione del problema Prendere ispirazione dalla visita degli alberi Dato un grafo =(V, ) ed un vertice r di V (detto sorgente

Dettagli

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso Minimum Spanning Tree Albero di copertura (Spanning Tree): un albero di copertura

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 13 Cammini minimi: Algoritmo di Dijkstra (*) (ACM in grafi diretti e non diretti senza archi di peso negativo) Punto della situazione Algoritmo basato sull ordinamento

Dettagli

Routing: approccio tradizionale. Routing: approccio SDN

Routing: approccio tradizionale. Routing: approccio SDN Routing: approccio tradizionale Gli algoritmi di routing in ogni router interagiscono per il calcolo delle tabelle di inoltro Routing Algorithm control plane data plane Routing: approccio SDN Un controller

Dettagli

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità Visite Grafi Sommario Rappresentazione dei grafi Visita in ampiezza Visita in profondità Ordinamento topologico Visita in ampiezza La visita in ampiezza breadth-first-search (BFS) di un grafo dato un vertice

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Prof. Aniello Murano Grafi: Implementazione ed operazioni di base Corso di Laurea Codice insegnamento Email docente Anno accademico Laboratorio di Algoritmi e

Dettagli

Grafi: visita generica

Grafi: visita generica .. Grafi: visita generica Una presentazione alternativa (con ulteriori dettagli) Algoritmi di visita Scopo: visitare tutti i vertici di un grafo (si osservi che per poter visitare un vertice occorre prima

Dettagli

PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Il costo di cammino minimo da un vertice u ad un vertice v è definito nel seguente modo:

PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Il costo di cammino minimo da un vertice u ad un vertice v è definito nel seguente modo: PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Sia G = (V,E) un grafo orientato ai cui archi è associato un costo W(u,v). Il costo di un cammino p = (v 1,v 2,...,v k ) è la somma dei costi degli archi

Dettagli

ALBERI ORIENTATI. Definizione: Albero orientato = rooted tree = grafo orientato con le seguenti proprietà: - ha un nodo fissato, detto radice (r);

ALBERI ORIENTATI. Definizione: Albero orientato = rooted tree = grafo orientato con le seguenti proprietà: - ha un nodo fissato, detto radice (r); ALBERI ORIENTATI Pagina 1 ALBERI ORIENTATI 15:05 Definizione: Albero orientato = rooted tree = grafo orientato con le seguenti proprietà: - ha un nodo fissato, detto radice (r); - per ogni nodo v, esiste

Dettagli

Esercizi proposti 10

Esercizi proposti 10 Esercizi proposti 10 In questo gruppo di esercizi assumiamo, dove non sia specificato diversamente, di rappresentare i grafi mediante liste di archi, con il tipo di dati così dichiarato: type a graph =

Dettagli

Algoritmi Avanzati Soluzioni dello scritto del 2 febbraio 2004 (appello straordinario)

Algoritmi Avanzati Soluzioni dello scritto del 2 febbraio 2004 (appello straordinario) Algoritmi Avanzati Soluzioni dello scritto del febbraio 004 (appello straordinario) 1. Tengo nascosto nel taschino della giacca un grafo misterioso di 7 nodi. Vi dico solo che listando le valenze (= numero

Dettagli

Sommario della lezione

Sommario della lezione Università degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 204/5 p. /5 Sommario della lezione Introduzione ai grafi Definizioni, applicazioni,... Rappresentazioni comuni di grafi

Dettagli

G è 2-colorabile se ogni nodo può essere colorato di bianco o di nero in modo che nodi connessi da archi siano colorati con colori distinti.

G è 2-colorabile se ogni nodo può essere colorato di bianco o di nero in modo che nodi connessi da archi siano colorati con colori distinti. Grafi Grafi bipartiti Un grafo non orientato G è bipartito se l insieme dei nodi può essere partizionato in due sottoinsiemi disgiunti tali che nessun arco del grafo connette due nodi appartenenti allo

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore Il problema del commesso viaggiatore Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 2012/13 - Corso di Ricerca Operativa Università

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Cammini minimi Definizioni Sia G = (V,E) un grafo orientato pesato sugli archi. Il costo di un cammino π = è dato da: Un cammino minimo tra una coppia di

Dettagli

INFORMATICA AA Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali»

INFORMATICA AA Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali» Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali» AA 010-011 INFORMATICA Prof. Giorgio Poletti giorgio.poletti@unife.it Grafi

Dettagli

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso Grafi Un grafo è una struttura definita come un insieme di nodi (o vertici) che

Dettagli

Grafi (orientati): cammini minimi

Grafi (orientati): cammini minimi Grafi (orientati): cammini minimi Una breve presentazione Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Un cammino minimo tra

Dettagli

Grafi Stessa distanza

Grafi Stessa distanza Grafi Stessa distanza In un grafo orientato G, dati due nodi s e v, si dice che: v è raggiungibile da s se esiste un cammino da s a v; la distanza di v da s è la lunghezza del più breve cammino da s a

Dettagli

Corso di elettrotecnica Materiale didattico: i grafi

Corso di elettrotecnica Materiale didattico: i grafi Corso di elettrotecnica Materiale didattico: i grafi A. Laudani 12 ottobre 2005 I grafi costituiscono uno strumento matematico che permette di descrivere e schematizzare una grande varietà di problemi

Dettagli

Minimo albero di copertura

Minimo albero di copertura apitolo 0 Minimo albero di copertura efinizione 0.. ato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottoinsieme T E tale che il sottografo (V, T ) è un albero libero.

Dettagli

Informatica e Interazione Uomo-Macchina

Informatica e Interazione Uomo-Macchina Informatica e Interazione Uomo-Macchina Società dell Informazione e WEB 2.0 SUPPORO DI 3 CREDII AL SEORE INF/01 «LINGUE E LEERAURE SRANIERE» «L errore nasce sempre dalla tendenza dell uomo a dedurre la

Dettagli

Ottimizzazione Combinatoria Proprietà dei Grafi. Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Proprietà dei Grafi. Ottimizzazione Combinatoria Ottimizzazione Combinatoria Ottimizzazione Combinatoria Proprietà dei Grafi ANTONIO SASSANO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Laurea in Ingegneria Gestionale

Dettagli

Introduzione ai Grafi: Implementazione e operazioni di base

Introduzione ai Grafi: Implementazione e operazioni di base Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ 1 Introduzione ai Grafi: Implementazione e operazioni di base 2 1 Informazione Generali (1)

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

B.1 I grafi: notazione e nomenclatura

B.1 I grafi: notazione e nomenclatura Appendice B Grafi e Reti In questa appendice richiamiamo i principali concetti relativi a grafi e reti; descriviamo inoltre alcune classi di strutture dati che possono essere utilizzate per implementare

Dettagli

3.1 Basic Definitions and Applications. Chapter 3. Graphs. Undirected Graphs. Grafi Diretti. Undirected graph. G = (V, E) Grafo diretto.

3.1 Basic Definitions and Applications. Chapter 3. Graphs. Undirected Graphs. Grafi Diretti. Undirected graph. G = (V, E) Grafo diretto. Chapter 3 3.1 Basic Definitions and Applications Graphs 1 Undirected Graphs Grafi Diretti Undirected graph. G = (V, E)! V = nodi (anche vertici).! E = archi tra coppie di nodi.! Modella relazioni tra coppie

Dettagli

Laboratorio di Algoritmi

Laboratorio di Algoritmi Laboratorio di Algoritmi Corso di Laurea in Matematica Roberto Cordone DI - Università degli Studi di Milano Lezioni: Martedì 8.30-10.30 in aula 3 Mercoledì 10.30-12.30 in Aula 2 Giovedì 8.30-10.30 in

Dettagli

Soluzioni per gli esercizi di Teoria dei grafi.

Soluzioni per gli esercizi di Teoria dei grafi. M. Barlotti Soluzioni per gli Esercizi di Teoria dei grafi v.!.3 Pag. 1 Soluzioni per gli esercizi di Teoria dei grafi. Esercizio 1 Un grafo connesso Z è disegnato nel piano senza sovrapposizione di lati

Dettagli

Grafi, Social Network e Ricerca su Web Prof. Maurizio Naldi

Grafi, Social Network e Ricerca su Web Prof. Maurizio Naldi Grafi, Social Network e Ricerca su Web Prof. Maurizio Naldi Teoria dei Grafi È uno strumento indispensabile per l analisi di reti e, quindi, di social network.... è fondamentale anche per capire come funziona

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

Teoria dei Grafi Elementi di base della Teoria dei Grafi

Teoria dei Grafi Elementi di base della Teoria dei Grafi L. Pallottino, Sistemi Robotici Distribuiti - Versione del 4 Marzo 2015 42 Teoria dei Grafi Elementi di base della Teoria dei Grafi Definizione 1. Un grafo G = (V, E) è composto da un insieme finito di

Dettagli