Sintesi di Reti Combinatorie

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sintesi di Reti Combinatorie"

Transcript

1 Fondamenti di Informatica II Ingegneria Informatica e Biomedica I anno, II semestre A.A. 2005/2006 Sintesi di Reti Combinatorie Prof. Mario Cannataro Università degli Studi Magna Graecia di Catanzaro

2 Il problema della sintesi di reti combinatorie (1/3) Data una funzione combinatoria f Si vuole individuare una rete logica (a due livelli) Che implementi f Che abbia costo minimo Funzione di costo: Numero di porte A parità di numero di porte, numero di morsetti di ingresso

3 Reti Combinatorie (2/3) Una rete combinatoria è caratterizzata dal fatto che i segnali di uscita (a transitorio esaurito) dipendono unicamente dai segnali di ingresso nell istante considerato

4 Reti Combinatorie (3/3) LIVELLI RITARDO: Δ(T) input/output

5 Sintesi di reti ottime Teorema : ogni funzione logica può essere espressa con una rete combinatoria ottima a due livelli. Questo corrisponde alla possibilità, teorica, di esprimere una f in forma SP o PS

6 Richiamo sulle forme minime

7 Mappe di Karnaugh (1/2)

8 Mappe di Karnaugh (2/2) La rappresentazione tabulare degli ipercubi è detta mappa di Karnaugh. Mediante le mappe è possibile rappresentare le funzioni logiche in modo da ricavare agevolmente implicati o dualmente gli implicanti

9 Esempi di Mappe di Karnaugh (1/2) n=2 x 2 x n=3 x 3 x 1 x n=4 x 1 x 2 x 3 x

10 Esempi di Mappe di Karnaugh (2/2) n=5 x 1 x 2 x 3 x x 1 x 2 x 3 x x 5 =0 x 5 =

11 Rappresentazione di funzioni su mappe di Karnaugh Una funzione f di n variabili è rappresentata da un MK su n variabili dove un elemento di MK ha valore 1 se e solo se corrisponde ad un assegnamento di verità per il quale la funzione ha valore

12 Determinazione degli implicanti Un implicante in una MK è rappresentato da un ipercubo di 1. n=4 x 1 x 2 x 3 x

13 Determinazione degli implicati Un implicato è rappresentato da un ipercubo di 0. n=4 x 1 x 2 x 3 x

14 Implicanti primi Un implicante p è detto primo se non esiste un altro implicante p t.c. p p. In una mappa di Karnaugh un implicante primo è rappresentato da un sotto cubo non incluso in nessun sottocubo più grande. Dualmente si definiscono gli implicati primi

15 Esempio

16 Implicanti Essenziali Un implicante primo è detto essenziale se esiste almeno un vertice del sottocubo relativo che non appartiene a nessun altro implicante. Nelle MK sono quei sottocubi che hanno almeno un 1 non coperto da nessun altro sottocubo

17 Rappresentazione di funzione mediante implicanti primi (SP) Non tutti gli implicanti primi sono necessari:

18 Rappresentazione di funzione mediante implicati primi (PS)

19 Riepilogo Il procedimento finora descritto è strutturato in due passi 1) Individuazione degli implicanti (ti) primi 2) Selezione di quelli essenziali. (Ottimizzazione)

20 Sintesi della rete Una volta che siano state determinate le forme minime è possibile costruire il modello della rete sostituendo gli operatori logici con le porte corrispondenti

21 Condizioni dont care (1/3) Sono presenti nelle funzioni non completamente specificate. Esistono delle configurazioni in ingresso per le quali l uscita non è specificata. N.B. esistono funzioni non completamente specificate, NON reti incomplete

22 Condizioni dont care (2/3) Se si hanno h condizioni non completamente specificate, esistono 2 h funzioni complete che realizzano quella funzione. Possiamo infatti assegnare indifferentemente uscita 1 o 0 alle configurazioni non specificate

23 Condizioni dont care (3/3) Si attribuisce valore 1 (forme SP) a tutte le condizioni di indifferenza e si determinano gli implicanti primi Si scartano gli implicanti che coprono solo 1 corrispondenti a condizioni di indifferenza di f. Si effettua la scelta degli implicanti essenziali notando che i soli 1 della funzione specificata devono essere necessariamente coperti

24 Esempio

25 Esempio

Sintesi di una rete combinatoria

Sintesi di una rete combinatoria Mappe di Karnaugh Sintesi di una rete combinatoria Offrono uno strumento per esprimere una funzione booleana f: {0,1}n {0,1} in una forma SP o PS minima. Invece della tabella di definizione si impiegano

Dettagli

Sintesi di reti sequenziali 1/2

Sintesi di reti sequenziali 1/2 Fondamenti di Informatica II Ingegneria Informatica e Biomedica I anno, II semestre A.A. 2005/2006 Sintesi di reti sequenziali 1/2 Prof. Mario Cannataro Università degli Studi Magna Graecia di Catanzaro

Dettagli

Corso di studi in Ingegneria Elettronica A.A. 2006/2007. Calcolatori Elettronici. Esercitazione n 2

Corso di studi in Ingegneria Elettronica A.A. 2006/2007. Calcolatori Elettronici. Esercitazione n 2 Corso di studi in Ingegneria Elettronica A.A. 26/27 Calcolatori Elettronici Esercitazione n 2 Codici a correzione di errore Recupero degli errori hardware tramite codifiche ridondanti Codifiche con n =

Dettagli

Minimizzazione di reti/funzioni logiche con le Mappe di Karnaugh. 12 ottobre 2015

Minimizzazione di reti/funzioni logiche con le Mappe di Karnaugh. 12 ottobre 2015 Minimizzazione di reti/funzioni logiche con le Mappe di Karnaugh ottobre 5 Punto della situazione Stiamo studiando le reti logiche costruite a partire dalle porte logiche AND, OR, NOT per progettare l

Dettagli

Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche

Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche Ing. Gestionale e delle Telecomunicazioni A.A. 27/8 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali digitali vs. segnali analogici

Dettagli

Macchine combinatorie: progettazione. Macchine combinatorie

Macchine combinatorie: progettazione. Macchine combinatorie Corso di Calcolatori Elettronici I A.A. 011-01 Macchine combinatorie: progettazione Lezione 13 Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di Ingegneria Corso di Laurea

Dettagli

Ottimizzazione delle reti combinatorie

Ottimizzazione delle reti combinatorie Ottimizzazione delle reti combinatorie Ottimizzazione delle reti combinatorie L ottimizzazione di un circuito comporta normalmente un compromesso tra: Prestazioni (ritardo di propagazione) Area (o costo)

Dettagli

Ottimizzazione delle reti combinatorie

Ottimizzazione delle reti combinatorie Ottimizzazione delle reti combinatorie Ottimizzazione delle reti combinatorie L ottimizzazione di un circuito comporta normalmente un compromesso tra: Prestazioni (ritardo di propagazione) Area (o costo)

Dettagli

Sintesi di reti combinatorie

Sintesi di reti combinatorie Sintesi di reti combinatorie Criteri e procedure di sintesi (4.1-4.7) Indice Introduzione: formulazione e parametri di valutazione Implicanti principali e coperture irridondanti Mappe di Karnaugh: procedura

Dettagli

Fondamenti di Informatica B. Esercitazione n.2

Fondamenti di Informatica B. Esercitazione n.2 Fondamenti di Informatica B Esercitazione n.2 Fondamenti di Informatica B Esercitazione n.2 Circuiti combinatori Sintesi mediante mappe di Karnaugh Mappe di Karnaugh con 5 variabili Esercitazione n.2 Mappe

Dettagli

Alee in macchine combinatorie. Le Alee

Alee in macchine combinatorie. Le Alee Corso di Calcolatori Elettronici I A.A. 200-20 Alee in macchine combinatorie Lezione 4 (seconda parte) Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di Ingegneria Corso di

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici Lezione 3 Reti Logiche: Sintesi Emiliano Casalicchio emiliano.casalicchio@uniroma2.it Esercizio1 x3 x2 x1 x0 y 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1

Dettagli

Mappe di Karnaugh. Maurizio Palesi. Maurizio Palesi 1

Mappe di Karnaugh. Maurizio Palesi. Maurizio Palesi 1 Mappe di Karnaugh Maurizio Palesi Maurizio Palesi 1 Obiettivi Trovare una espressione in forma SP o PS minima rispetto a certi criteri di costo Nella ottimizzazione delle espressioni SP (PS) a due livelli

Dettagli

Maurizio Palesi. Maurizio Palesi 1

Maurizio Palesi. Maurizio Palesi 1 Mappe di Karnaugh Maurizio Palesi Maurizio Palesi 1 Obiettivi Trovare una espressione in forma SP o PS minima rispetto a certi criteri di costo Nella ottimizzazione delle espressioni SP (PS) a due livelli

Dettagli

Reti logiche: analisi, sintesi e minimizzazione. Giovedì 9 ottobre 2014

Reti logiche: analisi, sintesi e minimizzazione. Giovedì 9 ottobre 2014 Reti logiche: analisi, sintesi e minimizzazione Giovedì 9 ottobre 2014 Punto della situazione Stiamo studiando le reti logiche costruite a partire dalle porte logiche AND, OR, NOT per progettare l ALU

Dettagli

Mappe di Karnaugh G. MARSELLA UNIVERSITÀ DEL SALENTO

Mappe di Karnaugh G. MARSELLA UNIVERSITÀ DEL SALENTO Mappe di Karnaugh 1 G. MARSELLA UNIVERSITÀ DEL SALENTO Introduzione Le semplificazioni di una funzione logica possono essere effettuate mediante i teoremi dell'algebra di Boole. Esiste però un metodo molto

Dettagli

Alee in macchine combinatorie

Alee in macchine combinatorie Corso di Calcolatori Elettronici I A.A. 2010-2011 Alee in macchine combinatorie Lezione 12 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Le Alee La presenza di ritardi nei dispositivi

Dettagli

x y z F x y z F

x y z F x y z F Esercitazione di Calcolatori Elettronici Prof. Fabio Roli Corso di Laurea in Ingegneria Elettronica Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie Analisi e sintesi di reti sequenziali

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici Lezione 11 -- 19/1/2012 Reti Logiche: esercizi sulle le reti combinatorie Emiliano Casalicchio emiliano.casalicchio@uniroma2.it Argomenti della lezione Reti combinatorie Decoder,

Dettagli

circuiti combinatori Esercitazioni su Algebra Booleana: funzioni logiche di base Algebra booleana: equazioni

circuiti combinatori Esercitazioni su Algebra Booleana: funzioni logiche di base Algebra booleana: equazioni Esercitazioni su circuiti combinatori Salvatore Orlando & Marta Simeoni Algebra Booleana: funzioni logiche di base NOT (complemento): l uscita è il complemento dell ingresso A A 0 1 1 0 NAND A B (A B)

Dettagli

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Reti Sequenziali

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Reti Sequenziali Reti Logiche Prof. B. Buttarazzi A.A. 29/2 Reti Sequenziali Sommario Analisi di Reti Sequenziali Sintesi di Reti Sequenziali Esercizi 3/6/2 Corso di Reti Logiche 29/ 2 Analisi di Reti Sequenziali Passare

Dettagli

Algebra di Boole: minimizzazione di funzioni booleane

Algebra di Boole: minimizzazione di funzioni booleane Corso di Calcolatori Elettronici I A.A. 200-20 Algebra di Boole: minimizzazione di funzioni booleane Lezione 8 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Forme Ridotte p Vantaggi

Dettagli

Circuiti combinatori Sintesi mediante mappe di Karnaugh Mappe di Karnaugh con 5 variabili

Circuiti combinatori Sintesi mediante mappe di Karnaugh Mappe di Karnaugh con 5 variabili Fondamenti di Informatica B Esercitazione n.2n Fondamenti di Informatica B Circuiti combinatori Esercitazione n.2n Sintesi mediante mappe di Karnaugh Mappe di Karnaugh con 5 variabili CIRCUITI COMBINATORI:

Dettagli

Minimizzazione delle funzioni booleane tramite: prima parte

Minimizzazione delle funzioni booleane tramite: prima parte Corso di Calcolatori Elettronici I A.A. 2010-2011 Minimizzazione delle funzioni booleane tramite: prima parte Lezione 9 Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di Ingegneria

Dettagli

Richiami di Algebra di Commutazione

Richiami di Algebra di Commutazione LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n Prof. Rosario Cerbone rosario.cerbone@libero.it http://digilander.libero.it/rosario.cerbone a.a. 6-7 Richiami di Algebra di Commutazione In questa

Dettagli

Esercitazioni su circuiti combinatori

Esercitazioni su circuiti combinatori Esercitazioni su circuiti combinatori Salvatore Orlando & Marta Simeoni Arch. Elab. - S. Orlando - 1 Algebra Booleana: funzioni logiche di base OR (somma): l uscita è 1 se almeno uno degli ingressi è 1

Dettagli

Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone

Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone Il problema dell assegnamento degli stati versione del 9/1/03 Sintesi: Assegnamento degli stati La riduzione del numero

Dettagli

Tutorato di Calcolatori Elettronici Battista Biggio - Sebastiano Pomata. Corso di Laurea in Ingegneria Elettronica

Tutorato di Calcolatori Elettronici Battista Biggio - Sebastiano Pomata. Corso di Laurea in Ingegneria Elettronica Tutorato di Calcolatori Elettronici Battista Biggio - Sebastiano Pomata Corso di Laurea in Ingegneria Elettronica Mappe di Karnaugh Reti Logiche Latch e Flip-Flop Reti Sequenziali Tutorato di Calcolatori

Dettagli

Il livello logico digitale

Il livello logico digitale Il livello logico digitale prima parte Introduzione Circuiti combinatori (o reti combinatorie) Il valore dell uscita in un determinato istante dipende unicamente dal valore degli ingressi in quello stesso

Dettagli

Reti logiche: analisi, sintesi e minimizzazione Esercitazione. Venerdì 9 ottobre 2015

Reti logiche: analisi, sintesi e minimizzazione Esercitazione. Venerdì 9 ottobre 2015 Reti logiche: analisi, sintesi e minimizzazione Esercitazione Venerdì 9 ottobre 05 Punto della situazione Stiamo studiando le reti logiche costruite a partire dalle porte logiche AND, OR, NOT per progettare

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici Lezione 2 Reti Logiche: Sintesi Emiliano Casalicchio emiliano.casalicchio@uniroma2.it Argomenti della lezione q Reti combinatorie Sintesi, Mappe Karnaugh Esercizi 2 Sintesi di reti

Dettagli

Algebra di commutazione

Algebra di commutazione Algebra di commutazione Algebra booleana: introduzione Per descrivere i dispositivi digitali è necessario avere: Un modello che permette di rappresentare insiemi di numeri binari Le funzioni che li mettono

Dettagli

UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A

UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A anno accademico 2006-2007 prof. Stefano CASELLI prof. William FORNACIARI Prova di recupero del 21 dicembre 2006 ozza soluzioni

Dettagli

Algebra di Boole: mappe di Karnaugh e funzioni NAND e NOR

Algebra di Boole: mappe di Karnaugh e funzioni NAND e NOR Corso di Calcolatori Elettronici I A.A. 2010-2011 Algebra di Boole: mappe di Karnaugh e funzioni NAND e NOR Lezione 7 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Funzioni Equivalenza

Dettagli

Algebra di commutazione

Algebra di commutazione Algebra di commutazione Calcolatori Elettronici 1 Algebra booleana: introduzione Per descrivere i dispositivi digitali è necessario avere: Un modello che permette di rappresentare insiemi di numeri binari

Dettagli

Reti Logiche Combinatorie

Reti Logiche Combinatorie Testo di riferimento: [Congiu] - 2.4 (pagg. 37 57) Reti Logiche Combinatorie 00.b Analisi Minimizzazione booleana Sintesi Rete logica combinatoria: definizione 2 Una rete logica combinatoria èuna rete

Dettagli

Metodo di Quine e MC-Cluskey 2/2 Prof. Mario Cannataro Università degli Studi Magna Graecia di Catanzaro

Metodo di Quine e MC-Cluskey 2/2 Prof. Mario Cannataro Università degli Studi Magna Graecia di Catanzaro Fondamenti di Informatica II Ingegneria Informatica e Biomedica I anno, II semestre A.A. 2005/2006 Metodo di Quine e MC-Cluskey 2/2 Prof. Mario Cannataro Università degli Studi Magna Graecia di Catanzaro

Dettagli

Fondamenti dell Informatica Algebra di Boole. Prof.ssa Enrica Gentile

Fondamenti dell Informatica Algebra di Boole. Prof.ssa Enrica Gentile Fondamenti dell Informatica Algebra di Boole Prof.ssa Enrica Gentile Algebra di Boole Si basa su tre operazioni logiche: AND (*) OR (+) NOT (!) Gli operandi possono avere solo due valori: Vero () Falso

Dettagli

Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (!

Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (! Fondamenti di Informatica Algebra di Boole Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a. 2-22 Algebra di Boole Si basa su tre operazioni logiche: AND (*) OR () NOT (!) Gli operandi

Dettagli

Sintesi di reti sequenziali

Sintesi di reti sequenziali Sintesi di reti sequenziali Fondamenti di Informatica II Università Magna Graecia di Catanzaro Prof. Mario Cannataro Reti Combinatorie vs Reti Sequenziali Reti Combinatorie: l utilizzo è limitato alla

Dettagli

Minimizzazione di funzioni booleane: espansione e copertura. Ottimizzazione di funzioni combinatorie: espansione (1/3)

Minimizzazione di funzioni booleane: espansione e copertura. Ottimizzazione di funzioni combinatorie: espansione (1/3) Corso di Calcolatori Elettronici I A.A. 0-0 Minimizzazione di funzioni booleane: espansione e copertura Lezione 0 Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di Ingegneria

Dettagli

Minimizzazione di funzioni booleane:

Minimizzazione di funzioni booleane: Corso di Calcolatori Elettronici I A.A. 202-203 Minimizzazione di funzioni booleane: espansione e copertura Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria

Dettagli

Sintesi di Reti Combinatorie Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Karnaugh. Mariagiovanna Sami a.a.

Sintesi di Reti Combinatorie Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Karnaugh. Mariagiovanna Sami a.a. Sintesi di Reti Combinatorie Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Karnaugh Mariagiovanna Sami a.a. 2007-2008 2008 livelli: Introduzione Le reti combinatorie mostrano in ogni istante

Dettagli

Minimizzazione del costo di reti livelli a 2 livelli tramite mappe di Karnaugh. Mappe di Karnaugh. Sommario. Sommario. M. Favalli

Minimizzazione del costo di reti livelli a 2 livelli tramite mappe di Karnaugh. Mappe di Karnaugh. Sommario. Sommario. M. Favalli Sommario Minimiaione del costo di reti livelli a 2 livelli tramite mappe di Karnaugh Rappresentaione grafica di funioni M. Favalli Engineering Department in Ferrara 2 Mappe di Karnaugh 3 Copertura 4 Funioni

Dettagli

Algebra di Boole: mappe di Karnaugh

Algebra di Boole: mappe di Karnaugh Corso di Calcolatori Elettronici I Algebra di Boole: mappe di Karnaugh Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione

Dettagli

Algebra e circuiti elettronici

Algebra e circuiti elettronici Algebra e circuiti elettronici I computer operano con segnali elettrici con valori di potenziale discreti Sono considerati significativi soltanto due potenziali (high/ low); i potenziali intermedi, che

Dettagli

Sintesi di Reti Combinatorie

Sintesi di Reti Combinatorie Sintesi di Reti Combinatorie Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Quine-McCluskey per reti a più uscite Mariagiovanna Sami Corso di Reti Logiche B 08 Sintesi a due livelli Reti

Dettagli

Corso di Calcolatori Elettronici I

Corso di Calcolatori Elettronici I Corso di Calcolatori Elettronici I Algebra di Boole: minimizzazione di funzioni booleane Roberto Canonico Università degli Studi di Napoli Federico II A.A. 2014-2015 Roberto Canonico Corso di Calcolatori

Dettagli

Sintesi di reti combinatorie a due livelli: Introduzione (2)

Sintesi di reti combinatorie a due livelli: Introduzione (2) Sintesi di Reti ombinatorie Ottimizzazione di Reti ombinatorie a Due Livelli: Metodo di Karnaugh Introduzione Metodo di Karnaugh per reti completamente specificate Le condizioni di indifferenza Metodo

Dettagli

Algebra di commutazione

Algebra di commutazione Algebra di commutazione E un caso particolare di algebra booleana. B = Dominio Op1 = AND Vale 1 solo se entrambi gli operandi sono 1 Op2 = OR Vale 0 se entrambi I termini sono zero, altrimenti 1 Op3 =

Dettagli

Sintesi di Reti Combinatorie Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Karnaugh

Sintesi di Reti Combinatorie Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Karnaugh Sintesi di Reti Combinatorie Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Karnaugh Introduzione Metodo di Karnaugh per reti completamente specificate Le condizioni di indifferenza Metodo

Dettagli

Tutorato di Calcolatori Elettronici. Corso di laurea in Ingegneria Biomedica Elettrica, Elettronica e Informatica

Tutorato di Calcolatori Elettronici. Corso di laurea in Ingegneria Biomedica Elettrica, Elettronica e Informatica Tutorato di Ing. Roberto Casula Ing. Rita Delussu casula.roberto103@hotmail.it rita.delussu2016@gmail.com Corso di laurea in Ingegneria Biomedica Elettrica, Elettronica e Informatica Progettare un riconoscitore

Dettagli

Sintesi di Reti Combinatorie Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Quine. Metodo di Quine-McCluskey per più funzioni

Sintesi di Reti Combinatorie Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Quine. Metodo di Quine-McCluskey per più funzioni Sintesi di Reti Combinatorie Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Quine ne-mccluskey Metodo di Quine-McCluskey per più funzioni Nel caso di funzioni a più uscite una prima soluzione

Dettagli

Algebra di commutazione

Algebra di commutazione Algebra di commutazione Algebra Booleana - Introduzione Per descrivere i dispositivi digitali è necessario avere Un modello che permetta di rappresentare insiemi di numeri binari; Le funzioni che li mettano

Dettagli

Sintesi di reti combinatorie a due livelli: Sintesi di reti combinatorie a due livelli:

Sintesi di reti combinatorie a due livelli: Sintesi di reti combinatorie a due livelli: Introduzione Sintesi di Reti ombinatorie Ottimizzazione di Reti ombinatorie a Due Livelli: Metodo di Karnaugh Introduzione Metodo di Karnaugh per reti completamente specificate Le condizioni di indifferenza

Dettagli

Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer

Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer Corso di Calcolatori Elettronici I A.A. 2011-2012 Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer Lezione 12 Prof. Antonio Pescapè Università degli Studi di Napoli Federico II Facoltà

Dettagli

RETI COMBINATORIE. Algebra booleana: logica binaria (a due stati) A è una variabile booleana: A=1 oppure A=0

RETI COMBINATORIE. Algebra booleana: logica binaria (a due stati) A è una variabile booleana: A=1 oppure A=0 RETI COMBINATORIE. 1 Algebra booleana: logica binaria (a due stati) A è una variabile booleana: A=1 oppure A=0 Funzioni logiche elementari per l algebra Booleana: AND, OR, NOT 2 Logica positiva: livello

Dettagli

I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP)

I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimento al testo:

Dettagli

Sintesi di reti combinatorie. Motivazioni. Sommario. Funzioni Espressioni

Sintesi di reti combinatorie. Motivazioni. Sommario. Funzioni Espressioni 1 Teorema di espansione di Shannon (Boole) Sintesi di reti combinatorie Funzioni Espressioni 2 Forme canoniche 3 Metriche per il costo di una rete 4 Forme normali Motivazioni Si deve trovare una metodologia

Dettagli

Algebra & Circuiti Elettronici. Algebra booleana e circuiti logici. Blocco logico. Tabelle di Verità e Algebra Booleana

Algebra & Circuiti Elettronici. Algebra booleana e circuiti logici. Blocco logico. Tabelle di Verità e Algebra Booleana lgebra & Circuiti Elettronici lgebra booleana e circuiti logici Salvatore Orlando I computer operano con segnali elettrici con valori di potenziale discreti sono considerati significativi soltanto due

Dettagli

Tecniche di semplificazione. Circuiti digitali notevoli

Tecniche di semplificazione. Circuiti digitali notevoli Architettura degli Elaboratori e delle Reti Lezione 5 Tecniche di semplificazione Circuiti digitali notevoli F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano A.A.

Dettagli

I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP)

I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) Prof. Alberto Borghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimento al testo: Sezione C.3;

Dettagli

I circuiti digitali: dalle funzioni logiche ai circuiti

I circuiti digitali: dalle funzioni logiche ai circuiti Architettura dei calcolatori e delle Reti Lezione 4 I circuiti digitali: dalle funzioni logiche ai circuiti Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi

Dettagli

Esercizi svolti Y Z. 1. Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate con porte elementari AND, OR, NOT.

Esercizi svolti Y Z. 1. Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate con porte elementari AND, OR, NOT. Esercizi svolti 1. Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate con porte elementari ND, OR, NOT. a) F= b) F= F= 2. Date le seguenti funzioni logiche ricavare le

Dettagli

Minimizzazione di funzioni booleane

Minimizzazione di funzioni booleane Corso di Calcolatori Elettronici I Minimizzazione di funzioni booleane Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione

Dettagli

Algebra & Circuiti Elettronici. Tabelle di Verità. Algebra booleana e circuiti logici. Blocco logico

Algebra & Circuiti Elettronici. Tabelle di Verità. Algebra booleana e circuiti logici. Blocco logico lgebra booleana e circuiti logici Salvatore Orlando rch. Elab. - S. Orlando locco logico loccho logico circuito elettronico con linee (fili) in input e output possiamo associare variabili logiche con le

Dettagli

Algebra di Boole: mappe di Karnaugh

Algebra di Boole: mappe di Karnaugh Corso di Calcolatori Elettronici I A.A. 2012-2013 Algebra di Boole: mappe di Karnaugh Pro. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie

Dettagli

Algebra di Commutazione

Algebra di Commutazione Algebra di Commutazione Maurizio Palesi Maurizio Palesi 1 Algebra Booleana - Introduzione Per descrivere i dispositivi digitali è necessario avere Un modello che permette di rappresentare insiemi di numeri

Dettagli

UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A

UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A anno accademico 2006-2007 prof. Stefano CASELLI prof. William FORNACIARI I compitino del 16 novembre 2006 Bozza soluzioni del

Dettagli

ANALISI E PROGETTO DI CIRCUITI SEQUENZIALI

ANALISI E PROGETTO DI CIRCUITI SEQUENZIALI ANALISI E PROGETTO DI CIRCUITI SEQUENZIALI 1 Classificazione dei circuiti logici Un circuito è detto combinatorio se le sue uscite (O i ) sono determinate univocamente dagli ingressi (I i ) In pratica

Dettagli

Sintesi di una funzione logica con le mappe di Karnaugh

Sintesi di una funzione logica con le mappe di Karnaugh Sintesi di una funzione logica con le mappe di Karnaugh Assegnata una funzione logica, la mappa di Karnaugh corrispondente non è altro che una rappresentazione grafica della tabella della verità della

Dettagli

4 Reti combinatorie. 4.1 Introduzione. Contenuto

4 Reti combinatorie. 4.1 Introduzione. Contenuto 4 Reti combinatorie Contenuto 4. Introduzione 4.2 Formalizzazione della specifica 4.3 Sintesi 4.4 Minimizzazione esatta 4.5 Minimizzazione euristica di reti a due livelli 4.6 Minimizzazione euristica di

Dettagli

Sistemi Combinatori & Mappe di Karnaugh

Sistemi Combinatori & Mappe di Karnaugh Sistemi Combinatori & Mappe di Karnaugh AB E=0 F=0 E=1 F=0 00 01 11 10 AB 00 01 11 10 00 1 0 0 0 00 0 0 0 0 01 0 0 0 0 01 0 0 0 0 11 0 0 1 0 11 0 0 1 0 10 0 0 0 1 10 0 0 0 1 AB 00 01 11 10 AB 00 01 11

Dettagli

Dispensa di Informatica I.5

Dispensa di Informatica I.5 LE MACCHINE COMBINATORIE La capacità elaborativa del calcolatore risiede nel processore; il processore è in grado di eseguire un set di azioni elaborative elementari più o meno complesse Le istruzioni

Dettagli

Algebra di commutazione. Reti combinatorie

Algebra di commutazione. Reti combinatorie lgebra di commutazione Reti combinatorie Corso CSO prof. C. Silvano lgebra di oole L algebra di oole (dal suo inventore, il matematico inglese George oole, 1815-1864) 86 serve e a descrivere e e le operazioni

Dettagli

Algebra di Boole X Y Z V. Algebra di Boole

Algebra di Boole X Y Z V. Algebra di Boole L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole che

Dettagli

Reti Combinatorie: sintesi

Reti Combinatorie: sintesi Reti Combinatorie: sintesi Sintesi di reti combinatorie Una rete combinatoria realizza una funzione di commutazione Data una tabella di verità è possibile ricavare più espressioni equivalenti che la rappresentano.

Dettagli

RETI COMBINATORIE. Algebra booleana: logica binaria (a due stati) A è una variabile booleana: A=1 oppure A=0

RETI COMBINATORIE. Algebra booleana: logica binaria (a due stati) A è una variabile booleana: A=1 oppure A=0 RETI COMBINATORIE. Algebra booleana: logica binaria (a due stati) A è una variabile booleana: A= oppure A= Funzioni logiche elementari per l algebra Booleana: AND, OR, NOT 2 Logica positiva: livello di

Dettagli

Esercitazioni di Reti Logiche. Lezione 3

Esercitazioni di Reti Logiche. Lezione 3 Esercitazioni di Reti Logiche Lezione 3 Semplificazione & Porte NAND/NOR Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Semplificazione con l uso delle mappe di Karnaugh a 3 variabili a 4 variabili

Dettagli

Algebra di Commutazione

Algebra di Commutazione Algebra di Commutazione Maurizio Palesi Maurizio Palesi 1 Algebra Booleana - Introduzione Per descrivere i dispositivi digitali è necessario avere: Un modello che permette di rappresentare insiemi di numeri

Dettagli

UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A

UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A anno accademico 2005-2006 prof. Stefano CASELLI prof. William FORNACIARI I compitino del 11 novembre 2005 Bozza soluzioni del

Dettagli

Il Livello Logico-Digitale

Il Livello Logico-Digitale Il Livello Logico-Digitale Reti Combinatorie Sommario Il segnale binario. lgebra di oole e funzioni logiche. Porte logiche. nalisi di circuiti combinatori. Sintesi di circuiti combinatori. Sintesi con

Dettagli

Sintesi di Reti Logiche Combinatorie

Sintesi di Reti Logiche Combinatorie Corso di Laurea in Informatica Sintesi di Reti Logiche Combinatorie Architettura dei Calcolatori Prof. Andrea Marongiu andrea.marongiu@unimore.it Anno accademico 28/9 Forma canonica La più immediata forma

Dettagli

Costruzione di. circuiti combinatori

Costruzione di. circuiti combinatori Costruzione di circuiti combinatori Algebra Booleana: funzioni logiche di base OR (somma): l uscita è 1 se almeno uno degli ingressi è 1 A B (A + B) 0 0 0 0 1 1 1 0 1 1 1 1 AND (prodotto): l uscita è 1

Dettagli

Caratteristiche Area/Ritardo

Caratteristiche Area/Ritardo Caratteristiche Area/Ritardo Maurizio Palesi Maurizio Palesi 1 Motivazioni L ottimizzazione di un circuito comporta normalmente un compromesso tra: Prestazioni (ritardo di propagazione) Area (o costo)

Dettagli

Ottimizzazione di funzioni combinatorie

Ottimizzazione di funzioni combinatorie Ottimizzazione di funzioni combinatorie Per ottimizzazione di una funzione si intende la sua trasformazione, attraverso passi successivi, con lo scopo di ottenere un espressione equivalente ma migliore

Dettagli

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 5

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 5 LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 5 Prof. Rosario Cerbone rosario.cerbone@libero.it a.a. 2005-2006 Ottimizzazione di circuiti combinatori In questa lezione vengono riassunti i concetti

Dettagli

Ottimizzazione di circuiti combinatori

Ottimizzazione di circuiti combinatori LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 3 Prof. Rosario Cerbone rosario.cerbone@libero.it http://digilander.libero.it/rosario.cerbone a.a. 27-28 Ottimizzazione di circuiti combinatori In

Dettagli

Algebra di commutazione

Algebra di commutazione Algebra di commutazione Calcolatori Elettronici 1 Algebra booleana Operazione: una operazione op sull'insieme S={s1,s2,...} è una funzione op : SxS S che da SxS (S cartesiano S) porta in S. Calcolatori

Dettagli

2.6 Riflessione conclusiva su descrizione e sintesi delle reti logiche

2.6 Riflessione conclusiva su descrizione e sintesi delle reti logiche 2.6 Riflessione conclusiva su descrizione e sintesi delle reti logiche Abbiamo visto vari tipi di reti logiche: quelle combinatorie, sia semplici (pochi ingressi ed uscite) sia complesse (e.g., quelle

Dettagli

Fondamenti di informatica II 1. Sintesi di reti logiche sequenziali

Fondamenti di informatica II 1. Sintesi di reti logiche sequenziali Titolo lezione Fondamenti di informatica II 1 Sintesi di reti logiche sequenziali Reti combinatorie e sequenziali Fondamenti di informatica II 2 Due sono le tipologie di reti logiche che studiamo Reti

Dettagli

Soluzioniagliesercizi Capitolo 2 Soluzione 2.1. Soluzione 2.2. Soluzione 2.3. Soluzione 2.4.

Soluzioniagliesercizi Capitolo 2 Soluzione 2.1. Soluzione 2.2. Soluzione 2.3. Soluzione 2.4. I Soluzioni agli esercizi apitolo 2 Soluzione 2.. Partendo dall espressione a destra dell uguale si applica ripetutamente il teorema di e Morgan ed infine la proprietà distributiva. Soluzione 2.2. cb +

Dettagli

Metodo di Quine-McCluskey. Algoritmo. Sommario. Sommario. M. Favalli

Metodo di Quine-McCluskey. Algoritmo. Sommario. Sommario. M. Favalli Sommario Metodo di Quine-McCluskey M. Favalli Engineering Department in Ferrara 2 3 Sommario (ENDIF) Reti logiche / 46 Algoritmo (ENDIF) Reti logiche 2 / 46 2 3 Metodo esatto per la sintesi di reti a 2

Dettagli

05EKL-Progetto di Circuiti Digitali. Richiami di Reti Logiche

05EKL-Progetto di Circuiti Digitali. Richiami di Reti Logiche 5EKL-Progetto di Circuiti Digitali Tutore: Federico Quaglio federico.quaglio@polito.it -564 44 (44) Richiami di Reti Logiche Tutoraggio # Sommario Richiami di algebra booleana Mappe di Karnaugh Coperture

Dettagli

Algebra di Boole. Modulo 2. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)

Algebra di Boole. Modulo 2. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Algebra di Boole Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Algebra di Boole L algebra di Boole o della commutazione è lo strumento

Dettagli