Bioinformatica. Grafi. a.a Francesca Cordero. Grafi Bioinformatica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Bioinformatica. Grafi. a.a Francesca Cordero. Grafi Bioinformatica"

Transcript

1

2 Introduzione

3 cknowledgement Lucidi da. Horváth,. emetrescu et al, lgoritmi e strutture dati, McGraw-Hill 3

4 efinizione: che cosa sono i grafi? definizione astratta: un grafo G = (V,) consiste in un insieme V di vertici (nodi) un insieme di coppie di vertici (archi, spigoli): ogni arco connette due vertici V rappresenta un insieme di oggetti rappresenta relazione tra questi oggetti due tipi di grafi: orientati non orientati (non diretti) 4

5 sempi sempio I: V = {persone che vivono in Italia}, = {coppie di persone che si sono strette la mano} sempio II: V = {persone che vivono in Italia}, = {(x,y) tale che x ha inviato una mail a y} 5

6 Terminologia relazione simmetrica (coppie non ordinate) grafo non orientato (esempio I) V = {,,,,, } = {(,), (,), (,), (,), (,), (,)} (,) e (,) denotano lo stesso arco 6

7 Terminologia relazione non simmetrica (coppie ordinate) grafo orientato (esempio II) V = {,,,,, } = {(,), (,), (,), (,), (,), (,), (,)} (,) e (,) denotano due archi diversi 7

8 Terminologia in un grafo orientato, un arco (x,y) è incidente da x in y (,) è incidente da a (,) è incidente da in (,) è incidente da in 8

9 Terminologia un vertice x si dice adiacente a y se e solo se (y,x) è adiacente ad è adiacente a, a e ad è adiacente a e viceversa non è adiacente a non è adiacente ad alcun vertice 9

10 Terminologia in un grafo non orientato, la relazione di adiecenza è simmetrica è adiacente ad e viceversa è adiacente a e viceversa non è adiacente ad alcun vertice 10

11 in un grafo non orientato: efinizioni: grado il grado di un vertice è il numero di archi che da esso si dipartono in un grafo orientato: il grado entrante (uscente) di un vertice è il numero di archi incidenti in (da) esso il grado di un vertice è la somma del suo grado entrante e del suo grado uscente 11

12 efinizioni: peso associamo ad ogni arco un peso grafo pesato: (G,W) dove G è un grafo W è la funzione peso: W : R dove R è l insieme dei numeri reali W((,)) = 3,W((,)) = 2.3,W((,)) = 12

13 sia G = (V,) un grafo efinizioni: sottografo un sottografo di G è un grafo H = (V, ) tale che V V e poichè H è un grafo, deve valere che V V V = {,,,}, = {(,), (,), (,)} 13

14 efinizioni: cammino in grafo non orientato sia G = (V,) un grafo un cammino nel grafo G è una sequenza di vertici v 1,v 2,...,v n tale che (v i,v i+1 ) per 1 i < n la lunghezza del cammino è il numero totale di passaggi ad un vertice al altro (uno in meno del numero di vertici) ,,,,,, è un cammino nel G di lunghezza 6 14

15 efinizioni: cammino in grafo orientato sia G = (V,) un grafo orientato un cammino nel grafo G è una sequenza di vertici v 1,v 2,...,v n tale che (v i,v i+1 ) per 1 i < n ,,,,, è un cammino nel G,,,,, non è un cammino nel G 15

16 efinizioni: cammino in grafo non orientato un cammino è un cammino semplice se tutti suoi vertici sono distinti (compaiono una sola volta nella sequenza) eccetto al più il primo e l ultimo che possono essere lo stesso ,,,,,, è un cammino non semplice,,,, è un cammino semplice 16

17 efinizioni: raggiungibilità se esiste un cammino p tra i vertici x e y, si dice che y è raggiungibile da x (x y ) è raggiungibile da e viceversa in un grafo non orientato la relazione di raggiungibilità è simmetrica 17

18 efinizioni: raggiungibilità se esiste un cammino p tra i vertici x e y, si dice che y è raggiungibile da x (x y ) è raggiungibile da ma non è raggiungibile da in un grafo orientato la relazione di raggiungibilità non è simmetrica 18

19 efinizioni: grafo connesso se G è un grafo non orientato, definiamo G connesso se esiste un cammino da ogni vertice ad ogni altro vertice questo grafo è connesso 19

20 efinizioni: grafo connesso se G è un grafo non orientato, definiamo G connesso se esiste un cammino da ogni vertice ad ogni altro vertice questo grafo non è connesso 20

21 efinizioni: grafo fortemente connesso se G è un grafo orientato, definiamo G fortemente connesso se esiste un cammino da ogni vertice ad ogni altro vertice questo grafo è fortemente connesso 21

22 efinizioni: grafo fortemente connesso se G è un grafo orientato, definiamo G fortemente connesso se esiste un cammino da ogni vertice ad ogni altro vertice questo grafo non è fortemente connesso non esiste cammino da ad 22

23 efinizioni: grafo debolmente connesso se G è un grafo orientato, definiamo G debolmento connesso se il grafo ottenuto da G dimenticando la direzione degli archi è connesso questo grafo è debolmente connesso 23

24 efinizioni: ciclo un ciclo è un cammino x 1,...,x n di lunghezza almeno 1, tale che x 1 = x n il cammino,,,, è un ciclo 24

25 efinizioni: grafo aciclico un grafo senca cicli è detto aciclico questo grafo non è aciclico perchè esiste il ciclo,, un grafo orientato aciclico è spesso chiamato directed acyclic graph (G) 25

26 efinizioni: grafo completo un grafo completo è un grafo che ha un arco tra ogni coppia di vertici questo grafo non è completo 26

27 efinizioni: grafo completo un grafo completo è un grafo che ha un arco tra ogni coppia di vertici questo grafo è completo ( numero ) di archi in un grafo completo con n vertici: n n(n 1) =

28 efinizioni: albero libero un albero libero è un grafo non orientato, connesso, aciclico libero si riferisce al fatto che non è definito quale vertice è la radice 28

29 efinizioni: albero radicato un albero radicato è un grafo non orientato, connesso, aciclico con un vertice designato ad essere radice radice 29

30 Rappresentazione: matrice di adiacenza, grafo non orientato M(x,y) = { 1 se (x,y) 0 altrimenti

31 Rappresentazione: lista di adiacenza, grafo non orientato L(x) = lista di y, tale che (x,y) per x V 31

32 Rappresentazione: matrice di adiacenza, grafo orientato M(x,y) = { 1 se (x,y) 0 altrimenti

33 Rappresentazione: lista di adiacenza, grafo orientato L(x) = lista di y, tale che (x,y) per x V 33

34 Rappresentazione: matrice di adiacenza, grafo pesato M(x,y) = W(x,y)

35 Rappresentazione: lista di adiacenza, grafo pesato L(x) = lista di W(x,y), tale che W(x,y) 0 per x V

36 Visite

37 Visite scopo: visitare tutti nodi e archi in modo sistematico problema di base in molte applicazioni la visita fornisce informazione sul grafo visitato vari tipi di visite: in ampiezza, breadth first search in profondità, depth first search

38 Realizzazione insieme di vertici diviso in tre sottoinsiemi: bianco: nodi non ancora scoperti (non visitati) grigio: vertici scoperti di cui adiacenti non sono ancora tutti scoperti (nodi da cui bisogna andare ancora avanti; la frangia) nero: nodi scoperti di cui adiacenti sono già stati scoperti (nodi da cui non bisogna andare avanti più) proprietà I: colore di un nodo può solo passare da bianco a grigio a nero

39 lgoritmo di visita in ampiezza, S VISIT(G, s) make empty color[s] grigio add(, s) while non empty() do u first() if v bianco adj[u] then color[v] grigio π[v] u add(, v) else color[u] black remove first() struttura dati di è una coda visita in ampiezza (breadth first search, S)

40 sempio di S G H oda :

41 sempio di S G H

42 sempio di S G H

43 sempio di S G H

44 sempio di S G H

45 sempio di S G H H H

46 sempio di S G H H H

47 sempio di S G H H H G G

48 sempio di S G H H G G

49 sempio di S G H H G G

50 sempio di S G H H G

51 lgoritmo di visita in profondità, S VISIT(G, s) make empty color[s] grigio add(, s) while non empty() do u first() if v bianco adj[u] then color[v] grigio π[v] u add(, v) else color[u] black remove first() struttura dati di è una pila visita in profondità (depth first search, S)

52 sempio di S H G Pila:

53 sempio di S H G Pila :

54 sempio di S H G Pila :

55 sempio di S H G Pila : H H

56 sempio di S H G Pila : H

57 sempio di S H G Pila : H

58 sempio di S H G Pila : G G H

59 sempio di S H G Pila : G H

60 sempio di S H G Pila : G H

61 sempio di S H G Pila : G H

62 sempio di S H G Pila : G H

63 , componenti fortemente connessi

64 efinizione di componenti fortemente connessi ato un grafo diretto G = (V,), una componente fortemente connessa (cfc) un insieme massimale di vertici U sottoinsieme di V tale che per ogni coppia di vertici u,v in U, u raggiungibile da v e viceversa. Useremo la notazione u v per indicare che i vertrici u e v sono nella stesso cfc

65 Un esempio di algoritmo un esempio: visitiamo il grafo a partire da 3 cfc: {},{,,},{, } nello stesso albero ci sono nodi di più cfc

66 Un esempio di algoritmo albero si può potare in modo da separare le cfc questo è sempre possibile: sia u discendente di v in un albero della S e u v discendenti di u non possono appartenere al cfc di v

67 , cammini minimi

68 ammini minimi sia dato un un grafo orientato e pesato distanza di un vertice u da un vertice v: δ(v,u), il peso di un cammino di peso minimo tra tutti i cammini da v a u δ(v,u) = min{w(p) p è un cammino da v a u} dove W(p) è la somma dei pesi degli archi che formano il cammino δ(v,u) è ben definito solo se nessun cammino da v ad u contiene un ciclo di peso negativo

69 lgoritmi greedy per trovare cammini minimi da un dato nodo input: grafo orientato e pesato un nodo (sorgente) output: v V (G) l attributo d[v] indica la distanza di v dal vertice sorgente algoritmi greedy: dobbiamo individuare cosa rende un vertice appettibile l attributo d[v] mantiene una stima (maggiore o uguale) della distanza di v da s un vertice è tanto più appetibile quanto minore è la stima della sua distanza dal sorgente

70 L idea dell algoritmo inizialmente: d[s]=0, v V (G),v s : d[v]= si costruisce un albero, di radice s, in cui viene inserito un vertice per volta: il più appetibile l albero è memorizzato implicitamente come l insieme dei suoi archi < π[v],v > quando un vertice u è inserito nell albero, si aggiornano le stime delle distanze dei vertici v ad esso adiacenti, in quanto potrebbe esistere un cammino da s a v, attraverso il vertice u, meno pesante del cammino da s a v considerato fino a quel momento

71 lgoritmo di ijkstra ijkstra(g, s) Q V for v V do d[v], π[v] nil d[s] 0 π[s] nil while Q do u togli nodo con d minimo da Q for v adj[u] do if v Q e d[u] + W(u,v) < d[v] then d[v] d[u] + W(u,v) π[v] u

72 Un esempio distanze: d[]=0, d[]=, d[]=, d[]=, d[]= da scegliere: nuove distanze: d[]=0, d[]=3, d[]=2, d[]=4, d[]=

73 Un esempio distanze: d[]=0, d[]=3, d[]=2, d[]=4, d[]= da scegliere: nuove distanze: d[]=0, d[]=3, d[]=2, d[]=4, d[]=

74 Un esempio distanze: d[]=0, d[]=3, d[]=2, d[]=4, d[]= da scegliere: nuove distanze: d[]=0, d[]=3, d[]=2, d[]=4, d[]=6

75 Un esempio distanze: d[]=0, d[]=3, d[]=2, d[]=4, d[]=6 da scegliere: nuove distanze: d[]=0, d[]=3, d[]=2, d[]=4, d[]=5

76 Un esempio distanze: d[]=0, d[]=3, d[]=2, d[]=4, d[]=5 da scegliere: nuove distanze: d[]=0, d[]=3, d[]=2, d[]=4, d[]=5

77 Un esempio distanze: d[]=0, d[]=3, d[]=2, d[]=4, d[]=5

78 lgoritmo di ijkstra applica la strategia greedy vista in precedenza funzione se tutti i pesi sono maggiori o uguali a 0

Grafi: introduzione. Definizioni: che cosa sono i grafi. Definizione

Grafi: introduzione. Definizioni: che cosa sono i grafi. Definizione Grafi: introduzione e rappresentazione efinizioni: che cosa sono i grafi Un grafo G=(V,) consiste in: un insieme V di vertici (o nodi) un insieme di coppie di vertici, detti archi o spigoli: ogni arco

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Introduzione ai grafi Grafi: Definizione e Algoritmi di visita Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2007/08 Introduzione ai

Dettagli

Algoritmi e Strutture Dati Grafi. Daniele Loiacono

Algoritmi e Strutture Dati Grafi. Daniele Loiacono lgoritmi e Strutture ati Grafi Riferimenti 2 Questo materiale è tratto dalle trasparenze del corso lgoritmi e Strutture ati del prof. lberto Montresor dell Università di Trento. (http://www.dit.unitn.it/~montreso/asd/index.shtml)

Dettagli

Esempi. non. orientato. orientato

Esempi. non. orientato. orientato Definizione! Un grafo G = (V,E) è costituito da un insieme di vertici V ed un insieme di archi E ciascuno dei quali connette due vertici in V detti estremi dell arco.! Un grafo è orientato quando vi è

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 12 Grafi e visite di grafi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione Un grafo G=(V,E) consiste in: - un insieme V di vertici (o nodi) - un insieme

Dettagli

Visite in Grafi BFS e DFS

Visite in Grafi BFS e DFS Visite in Grafi BFS e DFS Visita di un Grafo Obiettivo: Visitare una sola volta tutti i nodi del grafo. Es.: visitare un porzione del grafo del Web Difficoltà: Presenza di cicli: Marcare i nodi visitati

Dettagli

Algoritmi & Laboratorio

Algoritmi & Laboratorio lbero ricoprente sia dato un grafo connesso e non orientato un albero ricoprente è un sottografo che contiene tutti nodi è aciclico è connesso cknowledgement Lucidi da. Damiani, a.a. 00-00. Demetrescu

Dettagli

Visite in Grafi BFS e DFS. PDF created with FinePrint pdffactory trial version

Visite in Grafi BFS e DFS. PDF created with FinePrint pdffactory trial version Visite in Grafi BFS e DFS Visita di un Grafo 8Obiettivo: 4Visitare una sola volta tutti i nodi del grafo. 4Es.: visitare un porzione del grafo del Web 8Difficoltà : 4Presenza di cicli: Marcare i nodi visitati

Dettagli

Grafi (orientati): cammini minimi

Grafi (orientati): cammini minimi .. Grafi (orientati): cammini minimi Una presentazione alternativa (con ulteriori dettagli) Un algoritmo greedy per calcolare i cammini minimi da un vertice sorgente in un grafo orientato e pesato, senza

Dettagli

Grafi. V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)}

Grafi. V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)} Grafi Grafo orientato (o diretto) = (V,E) V = nodi o vertici - E = archi (edges) V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)} archi uscenti da un nodo x: (x, y) archi incidenti su un nodo

Dettagli

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità Visite Grafi Sommario Rappresentazione dei grafi Visita in ampiezza Visita in profondità Ordinamento topologico Visita in ampiezza La visita in ampiezza breadth-first-search (BFS) di un grafo dato un vertice

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Grafi e visite di grafi Domenico Fabio Savo 1 Grafo: definizione Un grafo G=(V,E) consiste in: - un insieme V di vertici (o nodi) - un insieme E di coppie di vertici, detti archi

Dettagli

Università Roma Tre - PAS Classe A048 "Matematica Applicata" - Corso di Informatica a.a. 2013/2014

Università Roma Tre - PAS Classe A048 Matematica Applicata - Corso di Informatica a.a. 2013/2014 Università Roma Tre Dipartimento di Matematica e Fisica Percorso Abilitante Speciale Classe A08 Matematica Applicata Corso di Informatica Algoritmi su Grafi Marco Liverani (liverani@mat.uniroma.it) Sommario

Dettagli

Esercitazione 7. Grafi. Rappresentazione e algoritmi di visita

Esercitazione 7. Grafi. Rappresentazione e algoritmi di visita Esercitazione 7 Grafi Rappresentazione e algoritmi di visita Grafo G = (V,E) non orientato 1 1 G = (V,E) orientato 6 Rappresentazione Grafo G = (V,E) metodi standard per la rappresentazione Liste di adiacenza

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Grafi e visite di grafi Fabio Patrizi 1 Grafo: definizione Un grafo G=(V,E) consiste in: - un insieme V di vertici (o nodi) - un insieme E di coppie di vertici, detti archi (o

Dettagli

Algoritmi & Laboratorio

Algoritmi & Laboratorio Acknowledgement Lucidi da F. Damiani, a.a. 2004-2005 C. Demetrescu et al, Algoritmi e strutture dati, McGraw-Hill M. Zacchi, a.a. 2003-2004 I lucidi non sono un sostituto per il libro di testo non contengono

Dettagli

Cammini Minimi. Algoritmo di Dijkstra. Cammino in un grafo

Cammini Minimi. Algoritmo di Dijkstra. Cammino in un grafo Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

Algoritmi e Strutture di Dati II 2. Visite di grafi

Algoritmi e Strutture di Dati II 2. Visite di grafi Algoritmi e Strutture di Dati II 2 Visite di grafi Gli algoritmi di visita di un grafo hanno come obiettivo l esploraione di tutti i nodi e gli archi del grafo. Vi sono due modi principali per esplorare

Dettagli

Richiami di matematica discreta: grafi e alberi. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Richiami di matematica discreta: grafi e alberi. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Richiami di matematica discreta: grafi e alberi Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Grafi Definizione: G = (V,E) V: insieme finito di vertici E: insieme finito di archi,

Dettagli

Cammini Minimi. Algoritmo di Dijkstra

Cammini Minimi. Algoritmo di Dijkstra Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

Problema del cammino minimo

Problema del cammino minimo Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento

Dettagli

K 4 è planare? E K 3,3 e K 5 sono planari? Sì! No! (Teorema di Kuratowski) K 5. Camil Demetrescu, Irene Finocchi, Giuseppe F.

K 4 è planare? E K 3,3 e K 5 sono planari? Sì! No! (Teorema di Kuratowski) K 5. Camil Demetrescu, Irene Finocchi, Giuseppe F. K 4 è planare? Sì! E K 3,3 e K 5 sono planari? K 5 No! (Teorema di Kuratowski) 1 Un albero è un grafo bipartito? SÌ! Ma un grafo bipartito è sempre un albero?? 2 Algoritmi e Strutture Dati Capitolo 11

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani (liverani@mat.uniroma.it)

Dettagli

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici);

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici); Algoritmi e Strutture di Dati II 2 Grafi diretti Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove V è u n i n s i e m e d i nodi (o vertici); E µ V V è u n i n s i e m e d i archi. Denotiamo

Dettagli

Grafi: visite. Una breve presentazione. F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Grafi: visite. Una breve presentazione. F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill) Grafi: visite Una breve presentazione Visite di grafi Scopo e tipi di visita Una visita (o attraversamento) di un grafo G permette di esaminare i nodi e gli archi di G in modo sistematico Problema di base

Dettagli

Grafi: visita generica

Grafi: visita generica .. Grafi: visita generica Una presentazione alternativa (con ulteriori dettagli) Algoritmi di visita Scopo: visitare tutti i vertici di un grafo (si osservi che per poter visitare un vertice occorre prima

Dettagli

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi!

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! G R A F I 1 GRAFI Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! 2 cip: cip: Pallogrammi Pallogrammi GRAFI: cosa sono I grafi sono una struttura matematica fondamentale: servono

Dettagli

Problema: attraversamento di un grafo. Definizione del problema

Problema: attraversamento di un grafo. Definizione del problema Problema: attraversamento di un grafo Visita: attenzione alle soluzioni facili Definizione del problema Prendere ispirazione dalla visita degli alberi Dato un grafo =(V, ) ed un vertice r di V (detto sorgente

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

Grafi: definizioni e visite

Grafi: definizioni e visite Grafi: definizioni e visite Grafi (non orientati) Grafo (non orientato): G = (V, E) V = nodi (o vertici) E = archi fra coppie di nodi distinti. Modella relazioni fra coppie di oggetti. Parametri della

Dettagli

Note per la Lezione 21 Ugo Vaccaro

Note per la Lezione 21 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 20 20 Note per la Lezione 2 Ugo Vaccaro In questa lezione introdurremo il concetto di grafo, esamineremo le loro più comuni rappresentazioni ed introdurremo i

Dettagli

Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte II

Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte II Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte II Classificazione digli archi Sia G la foresta DF generata da DFS sul grafo G. Arco d albero: gli

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

uscente entrante adiacente Figure B.2 (a) (b) (c) incident from leaves incident to enters incident on adjacent degree isolated

uscente entrante adiacente Figure B.2 (a) (b) (c) incident from leaves incident to enters incident on adjacent degree isolated Grafi Si dice grafo un insieme di nodi legati "a due a due" da archi direzionati (o no) I grafi sono strutture dati di fondamentale importanza in informatica Vi sono centinaia di problemi computazionali

Dettagli

Algoritmi e Strutture dati Mod B. Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*)

Algoritmi e Strutture dati Mod B. Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*) Algoritmi e Strutture dati Mod B Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*) Grafi: Percorsi minimi Un percorso minimo in un grafo G= grafo pesato orientato, con funzione di

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 3 Cammini minimi: algoritmo di Dijkstra Cammini minimi in grafi: cammini minimi a singola sorgente (senza pesi negativi) Cammini minimi in grafi pesati Sia G=(V,E,w)

Dettagli

Cammini minimi in grafi:

Cammini minimi in grafi: Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio III: la fine della trilogia Input: nelle puntate

Dettagli

Grafi: visita in profondita

Grafi: visita in profondita .. rafi: visita in profondita Una presentazione alternativa (con ulteriori dettagli) onsideriamo la versione concreta dell algoritmo di visita generica con costruzione del sottografo dei predecessori:

Dettagli

Introduzione ai Grafi: Implementazione e operazioni di base

Introduzione ai Grafi: Implementazione e operazioni di base Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ 1 Introduzione ai Grafi: Implementazione e operazioni di base 2 1 Informazione Generali (1)

Dettagli

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso Grafi Un grafo è una struttura definita come un insieme di nodi (o vertici) che

Dettagli

Esercitazione 6 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016

Esercitazione 6 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016 Esercitazione 6 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016 Tong Liu April 14, 2016 Elementi Fondamentali Rappresentazione n = V numero di vertici (nodi) m = E numero di archi Matrice di adiacenza:

Dettagli

Grafi non orientati. Grafi (non orientati) Rappresentazione di Grafi: matrice delle adiacenze. Tipiche applicazioni di modelli basati su grafi

Grafi non orientati. Grafi (non orientati) Rappresentazione di Grafi: matrice delle adiacenze. Tipiche applicazioni di modelli basati su grafi Grafi non orientati Grafi (non orientati) Notazione. G = (V, E) V = nodi (o vertici). E = archi (o lati) tra coppie di nodi. Modella relazioni definite tra coppie di oggetti. aglia di un grafo: numero

Dettagli

Minimo albero di copertura

Minimo albero di copertura apitolo 0 Minimo albero di copertura efinizione 0.. ato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottoinsieme T E tale che il sottografo (V, T ) è un albero libero.

Dettagli

Grafi (non orientati e connessi): minimo albero ricoprente

Grafi (non orientati e connessi): minimo albero ricoprente .. Grafi (non orientati e connessi): minimo albero ricoprente Una presentazione alternativa (con ulteriori dettagli) Problema: calcolo del minimo albero di copertura (M.S.T.) Dato un grafo pesato non orientato

Dettagli

Grafi: ordinamento topologico

Grafi: ordinamento topologico .. Grafi: ordinamento topologico Che cosa e e come si calcola Che cosa e un ordinamento topologico F. Damiani - Alg. & Lab. 04/05 Una definizione di ordinamento topologico Definizione. Funzione σ: V {1,

Dettagli

Grafi (orientati): cammini minimi

Grafi (orientati): cammini minimi Grafi (orientati): cammini minimi Una breve presentazione Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Un cammino minimo tra

Dettagli

Soluzioni della settima esercitazione di Algoritmi 1

Soluzioni della settima esercitazione di Algoritmi 1 Soluzioni della settima esercitazione di Algoritmi 1 Beniamino Accattoli 19 dicembre 2007 1 Grafi Un grafo è non orientato se descrivendo un arco come una coppia di vertici (i,j) l ordine è ininfluente

Dettagli

Cammini minimi con sorgente singola

Cammini minimi con sorgente singola Capitolo 11 Cammini minimi con sorgente singola efinizione 11.1. Sia G = (V,, w) un grafo orientato e pesato; dato il cammino p = v 0, v 1,..., v k in G, il valore w(p) = k i=1 w(v i 1, v i ) rappresenta

Dettagli

Grafo diretto Università degli Studi di Milano

Grafo diretto Università degli Studi di Milano Grafo diretto Un grafo diretto G è na coppia ordinata (V, E), doe V è l insieme dei ertici {,,,,n} (anche detti nodi). E V V è n insieme di coppie ordinate (,) dette archi diretti 6 V= {,,,4,5,6,7} 7 4

Dettagli

Note per la Lezione 22 Ugo Vaccaro

Note per la Lezione 22 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 0 09 Note per la Lezione Ugo Vaccaro Nella lezione scorsa abbiamo introdotto la vista in ampiezza di grafi. Essenzialmente, esso è un metodo per esplorare in

Dettagli

Algoritmi e Strutture Dati. Capitolo 11 Visite di grafi

Algoritmi e Strutture Dati. Capitolo 11 Visite di grafi lgoritmi e Strutture ati apitolo Visite di grafi Strutture dati per rappresentare grafi rafi non diretti Quanto spazio? a b c d a b c d a 0 a b d c b 0 0 b c a c 0 c a d b d 0 0 d c a Matrice di adiacenza

Dettagli

Strutture dati per rappresentare grafi

Strutture dati per rappresentare grafi lgoritmi e strutture dati amil emetrescu, Irene inocchi, iuseppe. Italiano Strutture dati per rappresentare grafi opyright 2004 - The Mcraw - Hill ompanies, srl lgoritmi e strutture dati amil emetrescu,

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Cammini minimi Definizioni Sia G = (V,E) un grafo orientato pesato sugli archi. Il costo di un cammino π = è dato da: Un cammino minimo tra una coppia di

Dettagli

Algoritmi e Strutture Dati. Capitolo 13 Cammini minimi: Algoritmo di Bellman e Ford

Algoritmi e Strutture Dati. Capitolo 13 Cammini minimi: Algoritmo di Bellman e Ford Algoritmi e Strutture Dati Capitolo 13 Cammini minimi: Algoritmo di Bellman e Ford Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio II: cammini minimi a singola sorgente (per grafi

Dettagli

Informatica 3. LEZIONE 24: Grafi. Modulo 1: Rappresentazione e implementazione di grafi Modulo 2: Attraversamento di un grafo

Informatica 3. LEZIONE 24: Grafi. Modulo 1: Rappresentazione e implementazione di grafi Modulo 2: Attraversamento di un grafo Informatica 3 LEZIONE 24: Grafi Modulo 1: Rappresentazione e implementazione di grafi Modulo 2: Attraversamento di un grafo Informatica 3 Lezione 24 - Modulo 1 Rappresentazione e implementazione di grafi

Dettagli

B.1 I grafi: notazione e nomenclatura

B.1 I grafi: notazione e nomenclatura Appendice B Grafi e Reti In questa appendice richiamiamo i principali concetti relativi a grafi e reti; descriviamo inoltre alcune classi di strutture dati che possono essere utilizzate per implementare

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Elementari su Grafi Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Polo di Scienze Università di Camerino ad Ascoli Piceno Visita

Dettagli

Grafi. Sommario. Definizioni Rappresentazione dei grafi Algoritmi di visita Esempi in C

Grafi. Sommario. Definizioni Rappresentazione dei grafi Algoritmi di visita Esempi in C Grafi Sommario Definizioni Rappresentazione dei grafi Algoritmi di visita Esempi in C 1 Esempi Relazioni di parentela Alberi genealogici Relazioni tra classi nei linguaggi OO Grafo del Web Assetti societari

Dettagli

Fondamenti teorici e programmazione

Fondamenti teorici e programmazione Fondamenti teorici e programmazione FTP(A) - modb Lezione 7 F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione (A) - modb a.a. 08/9 pag. Introduzione I grafi sono ovunque... Rete Ferroviaria

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Minimo albero ricoprente Domenico Fabio Savo 1 Albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un

Dettagli

Cammini minimi con sorgente singola

Cammini minimi con sorgente singola Cammini minimi con sorgente singola Vittorio Maniezzo - Università di Bologna Cammini minimi con sorgente singola Dato: un grafo(orientatoo non orientato) G= (V,E,W) con funzionedi peso w:e R un particolarevertices

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Prof. Aniello Murano Grafi: Implementazione ed operazioni di base Corso di Laurea Codice insegnamento Email docente Anno accademico Laboratorio di Algoritmi e

Dettagli

Appunti lezione Capitolo 13 Programmazione dinamica

Appunti lezione Capitolo 13 Programmazione dinamica Appunti lezione Capitolo 13 Programmazione dinamica Alberto Montresor 12 Novembre, 2015 1 Domanda: Fattore di crescita dei numeri catalani Vogliamo dimostrare che cresce almeno come 2 n. La nostra ipotesi

Dettagli

Open walk: Nodo di partenza diverso da quello di arrivo Close walk: Nodo di partenza coincidente con quello di arrivo

Open walk: Nodo di partenza diverso da quello di arrivo Close walk: Nodo di partenza coincidente con quello di arrivo Connettività WALK, TRAIL, PATH Walk (passeggiata) Walk (passeggiata): Una passeggiata è una sequenza di nodi e link che inizia e finisce con un nodo, in cui ogni nodo è incidente allo spigolo che lo precede

Dettagli

Algoritmi e Strutture dati Mod B. Grafi: Percorsi Minimi (parte I)

Algoritmi e Strutture dati Mod B. Grafi: Percorsi Minimi (parte I) Algoritmi e Strutture dati Mod B Grafi: Percorsi Minimi (parte I) Grafi: Percorsi minimi Un percorso minimo in un grafo G= grafo pesato orientato, con funzione di peso w: E fi che mappa archi in pesi

Dettagli

1 TEORIA DELLE RETI 1. 1 Teoria delle reti. 1.1 Grafi

1 TEORIA DELLE RETI 1. 1 Teoria delle reti. 1.1 Grafi 1 TEORIA DELLE RETI 1 1 Teoria delle reti 1.1 Grafi Intuitivamente un grafo è un insieme finito di punti (nodi o vertici) ed un insieme di frecce (archi) che uniscono coppie di punti Il verso della freccia

Dettagli

Alberi e arborescenze di costo minimo

Alberi e arborescenze di costo minimo Alberi e arborescenze di costo minimo Complementi di Ricerca Operativa Giovanni Righini Dipartimento di Tecnologie dell Informazione - Università degli Studi di Milano Definizioni - 1 Un grafo G = (V,

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Minimo albero ricoprente Fabio Patrizi 1 Albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un albero;

Dettagli

Ordinamenti. Grafo : definizione. Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici

Ordinamenti. Grafo : definizione. Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici Ordinamenti 1 Vittorio Maniezzo Università di Bologna Grafo : definizione Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici Un arco a= {u,v}

Dettagli

G è 2-colorabile se ogni nodo può essere colorato di bianco o di nero in modo che nodi connessi da archi siano colorati con colori distinti.

G è 2-colorabile se ogni nodo può essere colorato di bianco o di nero in modo che nodi connessi da archi siano colorati con colori distinti. Grafi Grafi bipartiti Un grafo non orientato G è bipartito se l insieme dei nodi può essere partizionato in due sottoinsiemi disgiunti tali che nessun arco del grafo connette due nodi appartenenti allo

Dettagli

algoritmi e strutture di dati

algoritmi e strutture di dati algoritmi e strutture di dati grafi m.patrignani nota di copyright queste slides sono protette dalle leggi sul copyright il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente, immagini,

Dettagli

Esercizi svolti a lezione

Esercizi svolti a lezione Esercizi svolti a lezione Problema 1 In un corso di laurea sono previsti un certo numero di esami obbligatori. Esistono inoltre dei vincoli di propedeuticità: se un esame A è propedeutico ad un esame B

Dettagli

Grafi Stessa distanza

Grafi Stessa distanza Grafi Stessa distanza In un grafo orientato G, dati due nodi s e v, si dice che: v è raggiungibile da s se esiste un cammino da s a v; la distanza di v da s è la lunghezza del più breve cammino da s a

Dettagli

Teoria dei Grafi Elementi di base della Teoria dei Grafi

Teoria dei Grafi Elementi di base della Teoria dei Grafi L. Pallottino, Sistemi Robotici Distribuiti - Versione del 4 Marzo 2015 42 Teoria dei Grafi Elementi di base della Teoria dei Grafi Definizione 1. Un grafo G = (V, E) è composto da un insieme finito di

Dettagli

Sommario della lezione

Sommario della lezione Sommario della lezione Introduzione ai grafi Definizioni, applicazioni,... Rappresentazioni comuni di grafi Esplorazione di grafi Università degli Studi di Salerno Corso di Progettazione di Algoritmi Prof.

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ Grafi pesati e alberi minimi di copertura Riepilogo delle lezioni precedenti Definizione di

Dettagli

Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III

Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III Applicazioni di DFS Due prolemi: calcolare l ordinamento topologico indotto da un grafo aciclico.

Dettagli

Sommario della lezione

Sommario della lezione Sommario della lezione Introduzione ai grafi Definizioni, applicazioni,... Rappresentazioni comuni di grafi Esplorazione di grafi Università degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro

Dettagli

PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Il costo di cammino minimo da un vertice u ad un vertice v è definito nel seguente modo:

PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Il costo di cammino minimo da un vertice u ad un vertice v è definito nel seguente modo: PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Sia G = (V,E) un grafo orientato ai cui archi è associato un costo W(u,v). Il costo di un cammino p = (v 1,v 2,...,v k ) è la somma dei costi degli archi

Dettagli

ALFABETIZZAZIONE INFORMATICA

ALFABETIZZAZIONE INFORMATICA Laurea in ilosofia a.a. 2008-2009 LTIZZZION INORMTI Ogni problema che ho risolto è diventato una regola che in seguito è servita a risolvere altri problemi. (René escartes, artesio iscorso sul metodo )

Dettagli

Cammini minimi. Damiano Macedonio

Cammini minimi. Damiano Macedonio Cammini minimi Damiano Macedonio mace@unive.it Copyright 2010 2012, Moreno Marzolla, Università di Bologna, Italy (http://www.moreno.marzolla.name/teaching/asd2011b/) Modifications Copyright c 2015, Damiano

Dettagli

Sommario della lezione

Sommario della lezione Università degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 204/5 p. /5 Sommario della lezione Introduzione ai grafi Definizioni, applicazioni,... Rappresentazioni comuni di grafi

Dettagli

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore

Dettagli

Graf. Progettazione di Algoritmi a.a Matricole congrue a 1. Docente: Annalisa De Bonis. Grafi non direzionati

Graf. Progettazione di Algoritmi a.a Matricole congrue a 1. Docente: Annalisa De Bonis. Grafi non direzionati Graf Progettazione di Algoritmi a.a. 2017-18 Matricole congrue a 1 Docente: Annalisa De Bonis 1 Grafi non direzionati Grafi non direzionati. G = (V, E) V = insieme nodi. E = insieme archi. Esprime le relazioni

Dettagli

Dipartimento di Elettronica e Informazione API 2012/3

Dipartimento di Elettronica e Informazione API 2012/3 Dipartimento di Elettronica e Informazione API 2012/3 Grafi @ G. Gini 2013 I ponti di Konisberg Il matematico svizzero Leonhard Euler nel 700 Proprietà numero pari di ponti se esiste un percorso che inizia

Dettagli

Ordinamenti. Vittorio Maniezzo Università di Bologna

Ordinamenti. Vittorio Maniezzo Università di Bologna Ordinamenti 1 Vittorio Maniezzo Università di Bologna Grafo : definizione Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici Un arco a= {u,v}

Dettagli

Dati e Algoritmi 1: A. Pietracaprina. Grafi (II parte)

Dati e Algoritmi 1: A. Pietracaprina. Grafi (II parte) Dati e Algoritmi 1: A. Pietracaprina Grafi (II parte) 1 Breath-First Search (algoritmo iterativo) Si assume una rappresentazione tramite liste di adiacenza. L ordine con cui si visitano i vicini di un

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G è costituito da una coppia di insiemi (V,A) dove V è detto insieme dei nodi e A è detto insieme di archi ed è un sottinsieme di tutte

Dettagli

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati Algoritmi e Strutture Dati Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Cammini minimi Un cammino minimo tra una coppia di

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G é costituito da una coppia di insiemi (V,A) dove V é detto insieme dei nodi e A é detto insieme di archi ed é un sottinsieme di tutte

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

ESERCIZI SULLA TECNICA Greedy

ESERCIZI SULLA TECNICA Greedy ESERCIZI SULLA TECNICA Greedy 1. [FILE] Si supponga di avere n files di lunghezze l 1,..., l n (interi positivi) che bisogna memorizzare su un disco di capacità data D. Si assuma che la somma delle lunghezze

Dettagli

Progettazione di algoritmi

Progettazione di algoritmi Progettazione di algoritmi Discussione dell'esercizio [vincoli] Prima di tutto rappresentiamo il problema con un grafo G: i nodi sono le n lavorazioni L 1, L 2,, L n, e tra due nodi L h, L k c'è un arco

Dettagli

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso Minimum Spanning Tree Albero di copertura (Spanning Tree): un albero di copertura

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 13 Cammini minimi: Algoritmo di Dijkstra (*) (ACM in grafi diretti e non diretti senza archi di peso negativo) Punto della situazione Algoritmo basato sull ordinamento

Dettagli

Algoritmi e Strutture di Dati

Algoritmi e Strutture di Dati Algoritmi e Strutture di Dati I grafi m.patrignani Nota di copyright queste slides sono protette dalle leggi sul copyright il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente,

Dettagli