Figura 1 - Schema dell'impianto

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Figura 1 - Schema dell'impianto"

Transcript

1 File:C:\Esercitazioni FTMAC\EES\Impianto vapore 2 spill.ees 12/05/ Page T DTI Spillamento Acqua alimento DTU Figura 1 - Schema dell'impianto 0 % 100 % Superficie scambio IMPIANTO A VAPORE CON DUE SPILLAMENTI, DEGASAGGIO E RISURRISCALDAMENTO DF 14/03/ Revisione 10/05/2005 Sia dato l'impianto a vapore della figura1, cui corrisponde il ciclo termodinamico di Figura 2 nel piano T-s e di figura 3 nel piano h-s.. Sono noti: Rendimento turbina AP h=0.83 Rendimento turbina BP h=0.92 Rendimento meccanico del turbo alternatore h=0.99 Rendimento elettrico del turbo alternatore h=0.98. Le temperature di surriscaldamento e risurriscaldamento del vapore. Le pressioni agli spillamenti e quella al condensatore, come indicato in figura 1 Calcolare: 1. Rendimento del ciclo reale 2. Portata di vapore in caldaia per ottenere la potenza nominale di 332 Mwe 3. Portate ed entalpie dei vari spillamenti e drenaggi Dati p 6 = 35 [bar] Pressione ingresso corpo bassa pressione T 6 = 538 [ C] Temperatura ingresso corpo bassa pressione

2 File:C:\Esercitazioni FTMAC\EES\Impianto vapore 2 spill.ees 12/05/ Page 2 p 4 = 170 [bar] Pressione ingresso corpo alta pressione T 4 = 538 [ C] Temperatura ingresso corpo alta pressione p 7 = 0,05 [bar] Pressione al condensatore p 10 = 5 [bar] Pressione al degasatore p 13 = 25 [bar] Pressione spillamento bassa pressione p 16 = 90 [bar] Pressione spillamento alta pressione p 5 = 35 [bar] Pressione uscita corpo turbina alta pressione W = [kw] Potenza richiesta in uscita dall'impianto ηtap = 0,83 Rendimento isoentropico turbina alta pressione ηtbp = 0,92 Rendimento isoentropico turbina bassa pressione ηm = 0,99 ηe = 0,98 Rendimento meccanico gruppo turboalternatore Rendimento elettrico gruppo turboalternatore DTI AP1 = 5 [ C] Differenza di temperatura di approach all'ingresso rigeneratore AP1 DTU AP1 = 0 [ C] Differenza di temperatura di approach all'uscita rigeneratore AP1 DTI AP2 = 5 [ C] Differenza di temperatura di approach all'ingresso rigeneratore AP2 DTU AP2 = 0 [ C] Differenza di temperatura di approach all'uscita rigeneratore AP2 Soluzione Calcolo entalpie ed entropie (definizione termodinamica dei vari punti) h 6 = h 'Steam NBS' ; T =T 6 ; P =p 6 vapore surriscaldato a T e p note => Tabelle o diagramma di Mollier s 6 = s 'Steam NBS' ; T =T 6 ; P =p 6 vapore surriscaldato a T e p note => Tabelle o diagramma di Mollier h 4 = h 'Steam NBS' ; T =T 4 ; P =p 4 vapore surriscaldato a T e p note => Tabelle o diagramma di Mollier s 4 = s 'Steam NBS' ; T =T 4 ; P =p 4 vapore surriscaldato a T e p note => Tabelle o diagramma di Mollier h 5s = h 'Steam NBS' ; s =s 4 ; P =p 5 Entalpia punto 5 isoentropico h 5 = h 4 ηtap h 4 h 5s Entalpia punto 5 reale, calcolato con la definizione di rendimento isoentropico dell'espansione nel tratto 4-5 Spillamento AP (rigeneratore AP2) h 16s = h 'Steam NBS' ; s =s 4 ; P =p 16 Entalpia punto 16 isoentropico h 16 = h 4 ηtap h 4 h 16s Entalpia punto 16 reale, calcolato con la definizione di rendimento isoentropico dell'espansione nel tratto 4-5

3 File:C:\Esercitazioni FTMAC\EES\Impianto vapore 2 spill.ees 12/05/ Page 3 x 16 = x 'Steam NBS' ; h =h 16 ; P =p 16 Verifica del titolo spillamento punto 16 AP (Se si trova sulle tabelle del surriscaldato è x=1=100%) Primo spillamento (rigeneratore AP1) h 13s = h 'Steam NBS' ; s =s 6 ; P =p 13 Entalpia punto 13 isoentropico h 13 = h 6 ηtbp h 6 h 13s Entalpia punto 13 reale, calcolato con la definizione di rendimento isoentropico dell'espansione nel tratto 6-7 x 13 = x 'Steam NBS' ; h =h 13 ; P =p 13 Verifica del titolo spillamento punto 13 BP (Se si trova sulle tabelle del surriscaldato è x=1=100%) Secondo spillamento (Degasatore) h 10s = h 'Steam NBS' ; s =s 6 ; P =p 10 Entalpia punto 10 isoentropico h 10 = h 6 ηtbp h 6 h 10s Entalpia punto 10 reale, calcolato con la definizione di rendimento isoentropico dell'espansione nel tratto 6-7 T 10 = T 'Steam NBS' ; h =h 10 ; P =p 10 x 10 = x 'Steam NBS' ; h =h 10 ; P =p 10 Titolo spillamento punto 10 BP Uscita turbina bassa pressione h 7s = h 'Steam NBS' ; s =s 6 ; P =p 7 Entalpia punto 7 isoentropico Entalpia punto 7 reale, calcolato con la definizione di rendimento isoentropico dell'espansione nel tratto 6-7 h 7 = h 6 ηtbp h 6 h 7s Temperatura di saturazione corrispondente alla pressione p 7 al condensatore T 7 = T 'Steam NBS' ; h =h 7 ; P =p 7 Titolo a fine espansione BP, calcolato con funzione implicita oppure con h 7 =h 7l +x 7 *(h 7g -h 7l) x 7 = x 'Steam NBS' ; h =h 7 ; P =p 7 Uscita dal condensatore p 8 = p 7 Stessa pressione perché è vapore saturo Liquido saturo all'uscita del condensatore, dalle tabelle del saturo a p 8 o sulla curva limite inferiore del Mollier h-s h 8 = h 'Steam NBS' ; x =0 ; P =p 8 T 8 = T 7 Stessa temperatura perché è vapore saturo Ingresso degasatore Pressione di spillamento uguale alla pressione di saturazione uguale alla pressione del liquido p 9 = p 10

4 File:C:\Esercitazioni FTMAC\EES\Impianto vapore 2 spill.ees 12/05/ Page 4 h 9 = h 'Steam NBS' ; T =T 8 ; P =p 9 Entalpia dell'acqua di alimento all'ingresso del degasatore Uscita dal degasatore Esce liquido saturo alla pressione dello spillamento, quindi curva limite inferiore sul Mollier oppure tabelle del saturo: h 11 =h l(p=p,9) h 11 = h 'Steam NBS' ; x =0 ; P =p 9 T 11 = T 'Steam NBS' ; x =0 ; P =p 9 [ C], temperatura di saturazione alla p 9 p 11 = p 10 [bar] Uscita pompa di alimento p 12 = p 4 [bar] T 12 = T 11 [ C] si suppone di poter trascurare la variazione di temperatura dovuta al pompaggio del liquido Entalpia del liquido in pressione alla T 12 e p 12 letta sulle tabelle del liquido o sul Mollier h 12 = h 'Steam NBS' ; T =T 12 ; P =p 12 Uscita rigeneratore AP1 (punti 14 e 15) Temperatura di drenaggio (sottoraffreddamento) dello spillamento AP1 per il valore fissato di DTI AP1 T 14 = T 12 + DTI AP1 [ C] p 14 = p 13 [bar] h 14 = h 'Steam NBS' ; T =T 14 ; P =p 14 T sat13 = T 'Steam NBS' ; x =0 ; P =p 13 [ C] T di saturazione spillamento 13 Temperatura dell'acqua di alimento all'uscita del rigeneratore AP1 per il valore fissato DTU AP1 T 15 = T sat13 DTU AP1 p 15 = p 12 [bar] h 15 = h 'Steam NBS' ; T =T 15 ; P =p 15 Entalpia dell'acqua di drenaggio sottoraffreddata a p 15 e T 15 Uscita rigeneratore AP2 (punti 18 e 17) Temperatura di drenaggio (sottoraffreddamento) dello spillamento AP2 per il valore fissato di DTI AP2 T 17 = T 15 + DTI AP2 [ C] p 17 = p 16 [bar] h 17 = h 'Steam NBS' ; T =T 17 ; P =p 17 T sat16 = T 'Steam NBS' ; x =0 ; P =p 16 [ C] T di saturazione spillamento 16 Temperatura dell'acqua di alimento all'uscita del rigeneratore AP2 per il valore fissato DTU AP2 T 18 = T sat16 DTU AP2 p 18 = p 15 [bar]

5 File:C:\Esercitazioni FTMAC\EES\Impianto vapore 2 spill.ees 12/05/ Page 5 h 18 = h 'Steam NBS' ; T =T 18 ; P =p 18 Entalpia dell'acqua di drenaggio sottoraffreddata a p 18 e T 18 Bilanci massici (portate nei punti) m 7 = m 6 m 13 m 10 [kg/s] Portata massica ingresso al condensatore m 8 = m 7 [kg/s] Conservazione portata massica al condensatore m 9 = m 8 [kg/s] Conservazione portata massica alla pompa di estrazione condensa m 11 = m 9 + m 10 + m 14 [kg/s] Bilancio massico ingresso/uscita al degasatore m 12 = m 11 [kg/s] Conservazione portata massica alla pompa di alimento m 14 = m 13 + m 17 [kg/s] Bilancio massico ingresso/uscita sul lato condensa al rigeneratore AP1 m 15 = m 12 [kg/s] Bilancio massico ingresso/uscita sul lato acqua al rigeneratore AP1 m 17 = m 16 [kg/s] Bilancio massico ingresso/uscita sul lato condensa al rigeneratore AP2 m 16 = m 4 m 5 [kg/s] Bilancio massico ingresso/uscita turbina alta pressione m 18 = m 15 [kg/s] Bilancio massico ingresso/uscita sul lato acqua al rigeneratore AP2 m 4 = m 18 [kg/s] Bilancio massico ingresso/uscita al generatore di vapore Bilancio energetico al degasatore m 9 h 9 + m 10 h 10 + m 14 h 14 = m 11 h 11 Bilancio energetico allo scambiatore AP1 m 13 h 13 + m 12 h 12 + m 17 h 17 = m 15 h 15 + m 14 h 14 Bilancio energetico allo scambiatore AP2 m 16 h 16 + m 15 h 15 = m 17 h 17 + m 18 h 18 Calcolo potenza dei corpi turbina Alta pressione W AP = m 4 h 4 h 16 + m 4 m 16 h 16 h 5 [kw] Bassa pressione W BP = m 6 h 6 h 13 + m 6 m 13 h 13 h 10 + m 6 m 13 m 10 h 10 h 7 [kw] Potenza assorbita dalle pompe Pompa di estrazione delle condense dal condensatore W PEC = m 8 h 9 h 8 [kw] Pompa di Alimento W PA = m 11 h 12 h 11 [kw] Potenza netta dell'impianto = potenza W richiesta dai dati di progetto

6 File:C:\Esercitazioni FTMAC\EES\Impianto vapore 2 spill.ees 12/05/ Page 6 W AP + W BP W PEC W PA = W Potenza termica fornita dall'esterno in ingresso all'impianto Q 1 = m 6 h 6 h 5 + m 4 h 4 h 18 Rendimento netto dell'impianto η = W Q 1 Grado di rigenerazione dell'impianto R = h 18 h 8 h 'Steam NBS' ; x =0 ; P =p 4 h 8 SOLUTION Unit Settings: [kj]/[c]/[bar]/[kg]/[degrees] DTI AP1 = 5 [ C] DTI AP2 = 5 [ C] DTU AP1 = 0 [ C] DTU AP2 = 0 [ C] η = 0,4616 ηe = 0,98 ηm = 0,99 ηtap = 0,83 ηtbp = 0,92 h 10 = 3004 [kj/kg] h 10s = 2958 [kj/kg] h 11 = 640,3 [kj/kg] h 12 = 650,5 [kj/kg] h 13 = 3428 [kj/kg] h 13s = 3418 [kj/kg] h 14 = 663,1 [kj/kg] h 15 = 966 [kj/kg] h 16 = 3230 [kj/kg] h 16s = 3197 [Btu/lb] h 17 = 986,6 [kj/kg] h 18 = 1354 [kj/kg] h 4 = 3393 [kj/kg] h 5 = 3027 [kj/kg] h 5s = 2952 [kj/kg] h 6 = 3537 [kj/kg] h 7 = 2321 [kj/kg] h 7s = 2216 [kj/kg] h 8 = 137,7 [kj/kg] h 9 = 138,2 [kj/kg] m 10 = 36,91 [kg/s] m 11 = 292,2 [kg/s] m 12 = 292,2 [kg/s] m 13 = 27,42 [kg/s] m 14 = 77,96 [kg/s] m 15 = 292,2 [kg/s] m 16 = 50,54 [kg/s] m 17 = 50,54 [kg/s] m 18 = 292,2 [kg/s] m 4 = 292,2 [kg/s] m 5 = 241,6 [kg/s] m 6 = 241,6 [kg/s] m 7 = 177,3 [kg/s] m 8 = 177,3 [kg/s] m 9 = 177,3 [kg/s] p 10 = 5 [bar] p 11 = 5 [bar] p 12 = 170 [bar] p 13 = 25 [bar] p 14 = 25 [bar] p 15 = 170 [bar] p 16 = 90 [bar] p 17 = 90 [bar] p 18 = 170 [bar] p 4 = 170 [bar] p 5 = 35 [bar] p 6 = 35 [bar] p 7 = 0,05 [bar] p 8 = 0,05 [bar] p 9 = 5 [bar] Q 1 = [kj/kg] R = 0,7836 s 4 = 6,401 [kj/kg-k] s 6 = 7,266 [kj/kg-k] T 10 = 271,4 [ C] T 11 = 151,8 [ C] T 12 = 151,8 [ C] T 14 = 156,8 [ C] T 15 = 224 [ C] T 17 = 229 [ C] T 18 = 303,4 [ C] T 4 = 538 [ C] T 6 = 538 [ C] T 7 = 32,88 [ C] T 8 = 32,88 [ C] T sat13 = 224 [ C] T sat16 = 303,4 [ C] W = [kw] W AP = [kw] W BP = [kw] W PA = 2995 [kw] W PEC = 79,33 [kw] x 10 = 100 x 13 = 100 x 16 = 100 x 7 = 0, potential unit problems were detected.

7 File:C:\Esercitazioni FTMAC\EES\Impianto vapore 2 spill.ees 12/05/ Page Figura 2 - Ciclo sul piano T-s T [ C] = bar 90 bar 35 bar 25 bar 5 bar 5s ,05 bar 0-2,0-1,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 s [kj/kg-k] 6s 7

8 File:C:\Esercitazioni FTMAC\EES\Impianto vapore 2 spill.ees 12/05/ Page 8 h [kj/kg] = bar 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11, s 5 s [kj/kg-k] 90 bar 6 6s bar 25 bar bar 0,05 bar Figura 3 - Ciclo sul piano h-s

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Motori a Vapore. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Motori a Vapore. Roberto Lensi Roberto Lensi 4. Sistemi Motori a Vapore Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 4. Sistemi Motori a Vapore Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2006-07 Roberto

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Termici Motori Sistemi Motori a Vapore. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Termici Motori Sistemi Motori a Vapore. Roberto Lensi Roberto Lensi 4. Sistemi Termici Motori 4.1. Sistemi Motori a Vapore Pag. 1 di 24 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 4. Sistemi Termici Motori 4.1. Sistemi Motori a Vapore Roberto Lensi

Dettagli

Determinazione e confronto delle prestazioni di impianti geotermoelettrici

Determinazione e confronto delle prestazioni di impianti geotermoelettrici Determinazione e confronto delle prestazioni di impianti geotermoelettrici Si ipotizzi di avere una potenza geotermica disponibile pari a 600 MW. La temperatura dell'acqua di refrigerazione all'uscita

Dettagli

Dipartimento di Ingegneria dell'energia e dei Sistemi

Dipartimento di Ingegneria dell'energia e dei Sistemi Roberto Lensi 3. Sistemi Gas/Vapore Pag. 1 di 28 UNIVERSITÀ DEGLI STUDI DI PISA Dipartimento di Ingegneria dell'energia e dei Sistemi RISPARMIO ENERGETICO INDUSTRIALE (6 CFU) 3. Sistemi Gas/Vapore Roberto

Dettagli

Impianti motori a vapore.

Impianti motori a vapore. Impianti motori a vapore I seguenti esercizi sono tratti da Esercitazioni di sistemi energetici, di C. Carcasci e B. Facchini Il libro contiene altri esercizi relativi agli stessi temi Condensatore in

Dettagli

rigeneratore condensatore utenze T [ C]

rigeneratore condensatore utenze T [ C] File:ORC Siloxane_Biogenera.EES 3//07 :0:9 Page EES Ver. 0.9: #99: For use only by Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze turbina biomassa aria caldaia evaporatore rigeneratore

Dettagli

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 9 settembre 2014 per le sedi di Milano Bovisa e Piacenza Proff. Consonni S., Chiesa P., Martelli

Dettagli

La tabella 2 caratterizza alcuni dati di riferimento per il ciclo termodinamico realizzato.

La tabella 2 caratterizza alcuni dati di riferimento per il ciclo termodinamico realizzato. POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE Prima sessione ANNO 2010 Settore INDUSTRIALE - Classe 33/S Ingegneria Energetica e nucleare Terza prova (prova pratica

Dettagli

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 10 Febbraio 2014 per le sedi di Milano Bovisa e Piacenza Proff. S. Consonni, P. Chiesa, E.

Dettagli

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA LAUREA MAGISTRALE IN INGEGNERIA MECCANICA A.A 2012-13 - CORSO DI SISTEMI ENERGETICI LM proff. Paolo CHIESA, Stefano CONSONNI e Emanuele MARTELLI Prova scritta

Dettagli

Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna

Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna Ciclo termodinamico ideale Joule (Brayton) Ciclo termodinamico ideale Holzwarth Schema

Dettagli

Laurea in Ingegneria Elettrica, A.A. 2008/2009 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Impianto antincendio*.

Laurea in Ingegneria Elettrica, A.A. 2008/2009 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Impianto antincendio*. Laurea in Ingegneria Elettrica, A.A. 2008/2009 Corso di FISICA TECNICA E MACCHINE TERMICHE Le tavole verranno discusse in sede di esame. Lo studente è libero di redigerle manualmente o tramite calcolatore.

Dettagli

Laurea in Ingegneria Elettrica, A.A. 2005/2006 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Impianto antincendio*.

Laurea in Ingegneria Elettrica, A.A. 2005/2006 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Impianto antincendio*. Laurea in Ingegneria Elettrica, A.A. 2005/2006 Corso di FISICA TECNICA E MACCHINE TERMICHE Le tavole verranno consegnate e discusse in sede di esame. Lo studente è libero di redigerle manualmente o tramite

Dettagli

Gestione dell Energia

Gestione dell Energia Gestione dell Energia I Prova in itinere del 14.06.2006 1. Illustrare il contenuto exergetico della radiazione solare, descrivere il comportamento dei radiatori e ricavare il rendimento exergetico. 2.

Dettagli

061473/ Macchine (a.a. 2014/15)

061473/ Macchine (a.a. 2014/15) 061473/090856 - Macchine (a.a. 2014/15) Nome: Matricola: Data: 02/04/2015 Prova da sostenere: II parte Prova completa Parte B (11 punti su 32). Punteggio minimo: 5/11. Per chi sostiene la prova completa

Dettagli

CICLO FRIGORIFERO PER RAFFREDDAMENTO

CICLO FRIGORIFERO PER RAFFREDDAMENTO CICLO FRIGORIFERO PER RAFFREDDAMENTO REGIONE CALDA Liquido saturo o sottoraffreddato Q out 3 2 Vapore surriscaldato condensatore compressore valvola di espansione P c evaporatore 4 Miscela bifase liquidovapore

Dettagli

CICLO COMBINATO CON SPILLAMENTO IN TURBINA E RIGENERATORE DI TIPO CHIUSO

CICLO COMBINATO CON SPILLAMENTO IN TURBINA E RIGENERATORE DI TIPO CHIUSO CICLO COMBINATO CON SPILLAMENTO IN TURBINA E RIGENERATORE DI TIPO CHIUSO 2J 3J 3J 1J sc 4J 2J 4J m m 1 2 4 3 1J 4 3 m 2 5 7 2 3 6 m m 1 2 m 2 5 m 1 3 6 1 7 m 1 CICLO COMBINATO CON SPILLAMENTO IN TURBINA

Dettagli

Relazione di Sistemi Energetici: Analisi termica di una centrale a vapore.

Relazione di Sistemi Energetici: Analisi termica di una centrale a vapore. Relazione di Sistemi Energetici: Analisi termica di una centrale a vapore. Palagiano, Riccardo matricola 792668 Ostojic, Roberto matricola 811142 Perucchini, Guido matricola 808292 Mezzanotte, Alberto

Dettagli

CORSO DI TERMODINAMICA E MACCHINE

CORSO DI TERMODINAMICA E MACCHINE CORSO DI TERMODINAMICA E MACCHINE Parte A (Termodinamica Applicata) - Tempo a disposizione 1 ora Problema N. 1A (punti 10/30) Una tubazione con diametro di 70 mm e lunga 2 km trasporta 20 kg/s di gasolio

Dettagli

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 15 Luglio 2014 per le sedi di Milano Bovisa e Piacenza Proff. Consonni S., Chiesa P., Martelli

Dettagli

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA LAUREA MAGISTRALE IN INGEGNERIA MECCANICA A.A 2012-13 - CORSO DI SISTEMI ENERGETICI LM proff. Paolo CHIESA, Stefano CONSONNI e Emanuele MARTELLI Prova scritta

Dettagli

Esercitazione 2 Ciclo a vapore a recupero

Esercitazione 2 Ciclo a vapore a recupero Esercitazione 2 Ciclo a vapore a recupero Lo scopo di questa esercitazione è la progettazione di un ciclo a recupero: l impianto è composto da un ciclo a vapore ad un livello di pressione che utilizza

Dettagli

TESTI DELLE APPLICAZIONI

TESTI DELLE APPLICAZIONI Roberto Lensi Testi delle Applicazioni A.A. 2012-13 Pag. 1 di 7 TESTI DELLE APPLICAZIONI Settimana n. 1 1. Il ciclo termodinamico ideale Lenoir è un ciclo diretto a gas costituito da tre trasformazioni:

Dettagli

IMPIANTO FRIGORIFERO A COMPRESSIONE DI VAPORE CON CAMERA DI SEPARAZIONE (liquido - vapore) E COMPRESSIONE A DUE STADI

IMPIANTO FRIGORIFERO A COMPRESSIONE DI VAPORE CON CAMERA DI SEPARAZIONE (liquido - vapore) E COMPRESSIONE A DUE STADI IMPIANTO FRIGORIFERO A COMPRESSIONE DI VAPORE CON CAMERA DI SEPARAZIONE (liquido - vapore) E COMPRESSIONE A DUE STADI IMPIANTO FRIGORIFERO A COMPRESSIONE DI VAPORE CON CAMERA DI SEPARAZIONE (liquido -

Dettagli

Laurea in Ingegneria Elettrica, A.A. 2006/2007 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Ugello di De Laval*.

Laurea in Ingegneria Elettrica, A.A. 2006/2007 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Ugello di De Laval*. Laurea in Ingegneria Elettrica, A.A. 2006/2007 Corso di FISICA TECNICA E MACCHINE TERMICHE Le tavole verranno consegnate e discusse in sede di esame. Lo studente è libero di redigerle manualmente o tramite

Dettagli

Analisi del bilancio termico di una centrale a vapore

Analisi del bilancio termico di una centrale a vapore CORSO DI FISICA TECNICA e SISTEMI ENERGETICI Esercitazione 4 Proff. P. Silva e G. Valenti - A.A. 2009/2010 Analisi del bilancio termico di una centrale a vapore Si consideri il ciclo Rankine ipercritico

Dettagli

Soluzione Esame di Stato ITIS Termotecnica 2007 SVOLGIMENTO :

Soluzione Esame di Stato ITIS Termotecnica 2007 SVOLGIMENTO : Soluzione Esame di Stato ITIS Termotecnica 2007 SVOLGIMENTO : Come è noto, nella fase 3-4 del diagramma T-s di Rankine-Hirn sotto riportato, il fluido, dalla pressione vigente P2 e temperatura T3, si espande

Dettagli

POLITECNICO DI TORINO ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE SEZ A - ANNO 2004

POLITECNICO DI TORINO ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE SEZ A - ANNO 2004 POLITECNICO DI TORINO ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE SEZ A - ANNO 2004 Settore INDUSTRIALE - Classe 33/S Ingegneria Energetica TEMA N. 2 (Prova pratica) II generatore di

Dettagli

IMPIANTI ENERGETICI PER L INDUSTRIA TESSILE. RACCOLTA di ESERCIZI con SOLUZIONI

IMPIANTI ENERGETICI PER L INDUSTRIA TESSILE. RACCOLTA di ESERCIZI con SOLUZIONI IMPIANTI ENERGETICI PER L INDUSTRIA TESSILE RACCOLTA di ESERCIZI con SOLUZIONI ESERCIZIO n.1 Del circuito idraulico rappresentato in Figura 1 in sono noti: Diametro delle tubazioni D 1 = D 2 = 0.5 m Lunghezza

Dettagli

UNIVERSITÀ DEGLI STUDI DI BRESCIA

UNIVERSITÀ DEGLI STUDI DI BRESCIA UNIVERSITÀ DEGLI STUDI DI BRESCIA ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello D.M. 509/99 e D.M. 270/04 e Diploma Universitario) SEZIONE B - Seconda

Dettagli

Termodinamica applicata ai cicli frigoriferi. Certificazione Frigoristi Regolamento CE n.842/2006

Termodinamica applicata ai cicli frigoriferi. Certificazione Frigoristi Regolamento CE n.842/2006 Termodinamica applicata ai cicli frigoriferi Certificazione Frigoristi Regolamento CE n.842/2006 Termodinamica applicata ai cicli frigoriferi Parte I Ciclo frigorifero Parte II Diagrammi termodinamici

Dettagli

) [gas riscaldato a V cost fintanto che la sua p è tale da sollevare pistone]

) [gas riscaldato a V cost fintanto che la sua p è tale da sollevare pistone] BILANCIO ENERGETICO DEI SISTEMI CHIUSI 1 Principio della Termodinamica: (per più sottosistemi: ) BILANCIO ENERGETICO DEI SISTEMI APERTI I Principio per volumi di controllo: [W] Equazione di continuità:

Dettagli

Esercitazione: Dimensionamento di una valvola termostatica

Esercitazione: Dimensionamento di una valvola termostatica Corso di Impianti Meccanici Laurea Triennale e Magistrale Esercitazione: Dimensionamento di una valvola termostatica Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini, PhD Ing.

Dettagli

061473/ Macchine (a.a. 2015/16)

061473/ Macchine (a.a. 2015/16) 061473/090856 - Macchine (a.a. 2015/16) Nome: Matricola: Data: 03/02/2016 Prova da sostenere: I parte II parte Prova completa Parte B (11 punti su 32). Punteggio minimo: 5/11. Per chi sostiene la prova

Dettagli

1. Definizione del lay-out impiantistico e scelta dei parametri operativi

1. Definizione del lay-out impiantistico e scelta dei parametri operativi Esempio numerico bilancio termico a carico nominale e a carico parziale di una centrale a vapore. Definizione del lay-out impiantistico e scelta dei parametri operativi Si consideri, per semplicità, una

Dettagli

Esercitazione: Dimensionamento di una valvola termostatica

Esercitazione: Dimensionamento di una valvola termostatica Corso di Impianti Meccanici Laurea Triennale e Magistrale Esercitazione: Dimensionamento di una valvola termostatica Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini PhD Ing.

Dettagli

FISICA TECNICA E MACCHINE

FISICA TECNICA E MACCHINE FISICA TECNICA E MACCHINE Prof. Lucio Araneo AA 2018/2019 ESERCITAZIONE N.10 Ing. Gabriele D Ippolito 1) Il circuito di un impianto industriale che necessita 10 kg/s di aria compressa alla pressione di

Dettagli

Soluzione Esame di Stato ITIS Termotecnica 2013 SVOLGIMENTO :

Soluzione Esame di Stato ITIS Termotecnica 2013 SVOLGIMENTO : Soluzione Esame di Stato ITIS Termotecnica 2013 SVOLGIMENTO : Come è noto, nella fase 3-4 del diagramma T-s di Rankine-Hirn sotto riportato, il fluido, dalla pressione vigente P2 e temperatura T3, si espande

Dettagli

SOLUZIONE SECONDA PROVA - TEMA N 2 - TECNICO DEI SISTEMI ENERGETICI Svolgimento :

SOLUZIONE SECONDA PROVA - TEMA N 2 - TECNICO DEI SISTEMI ENERGETICI Svolgimento : SOLUZIONE SECONDA PROVA - TEMA N 2 - TECNICO DEI SISTEMI ENERGETICI 2003 Svolgimento : Riferendoci alla figura del ciclo reale sul piano entalpico, il calore assorbito nell' eveporatore Q2 e il lavoro

Dettagli

REFRIGERAZIONE. Refrigerazione Riduzione e/o mantenimento della temperatura a valori più bassi della temperatura ambiente (<8 C)

REFRIGERAZIONE. Refrigerazione Riduzione e/o mantenimento della temperatura a valori più bassi della temperatura ambiente (<8 C) Refrigerazione Riduzione e/o mantenimento della temperatura a valori più bassi della temperatura ambiente (

Dettagli

CORSO DI FISICA TECNICA

CORSO DI FISICA TECNICA ESERCITAZIONE N. 1/02 MATERIALE DI RIFERIMENTO: VIDEOLEZIONI 1-6 1) VERO/FALSO Dire se le seguenti affermazioni sono vere o false: 1. Un sistema aperto consente scambi sia di massa che di energia con l

Dettagli

Indice delle lezioni (Prof. Marchesi)

Indice delle lezioni (Prof. Marchesi) Lezione numero 1 Lezione numero 2 Lezione numero 3 Lezione numero 4 Lezione numero 5 Lezione numero 6 Lezione numero 7 Indice delle lezioni Introduzione al corso. Sistemi termodinamici. Pareti. La natura

Dettagli

SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 9 luglio Proff. Consonni S., Chiesa P., Martelli E.

SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 9 luglio Proff. Consonni S., Chiesa P., Martelli E. SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 9 luglio 2013 Proff. Consonni S., Chiesa P., Martelli E. Tempo a disposizione: 2 ore Avvertenze per lo svolgimento del tema d esame: 1)

Dettagli

SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 25 Giugno Proff. Consonni S., Chiesa P., Martelli E.

SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 25 Giugno Proff. Consonni S., Chiesa P., Martelli E. SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 25 Giugno 2013 Proff. Consonni S., Chiesa P., Martelli E. Tempo a disposizione: 2 ore Avvertenze per lo svolgimento del tema d esame: 1)

Dettagli

Esame di Stato per l Abilitazione all Esercizio della Professione di Ingegnere Iunior I Sessione Settore Civile-Ambientale

Esame di Stato per l Abilitazione all Esercizio della Professione di Ingegnere Iunior I Sessione Settore Civile-Ambientale Esame di Stato per l Abilitazione all Esercizio della Professione di Ingegnere Iunior I Sessione 2007 Settore Civile-Ambientale II prova scritta Civile (Strutture) Indicare e commentare i parametri in

Dettagli

FISICA TECNICA - A.A. 99/00

FISICA TECNICA - A.A. 99/00 Termo-fluidodinamica applicata - 1 a Interprova del 30.3.2000 Cognome Nome Anno di Corso Matricola 1 T1=200 C p1=7,0 bar m1=40 kg/s 2 A2=25 cm 2 T2=40,0 C p2=7,0 bar 3 V3=0,060 m 3 /s p3=7,0 bar Q A) Due

Dettagli

POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI INGEGNERE INDUSTRIALE JUNIOR

POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI INGEGNERE INDUSTRIALE JUNIOR POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI INGEGNERE INDUSTRIALE JUNIOR II Sessione 2013 - Sezione B Settore Industriale Prova pratica del 23 gennaio 2014

Dettagli

DIAGRAMMA DI MOLLIER TABELLE DEL VAPOR D'ACQUA

DIAGRAMMA DI MOLLIER TABELLE DEL VAPOR D'ACQUA DIAGRAMMA DI MOLLIER TABELLE DEL VAPOR D'ACQUA 1 DIAGRAMMA DI MOLLIER DEL VAPORE D'ACQUA RAPPRESENTA I VALORI DELLE VARIABILI TERMODINAMICHE DEL VAPOR D'ACQUA IN UN PIANO h (ASSE Y) / s (ASSE X) h = ENTALPIA

Dettagli

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl SOLUZIONI problemi cap.9 9.1 (a) Assimiliamo l aria a un gas perfetto con calori specifici costanti a temperatura ambiente: Trasformazione 1-2: compressione isoentropica. Trasformazione 2-3: somministrazione

Dettagli

Ingegneria Edile-Architettura Esercizi di Fisica Tecnica Ambientale Termodinamica

Ingegneria Edile-Architettura Esercizi di Fisica Tecnica Ambientale Termodinamica Ingegneria Edile-Architettura Esercizi di Fisica Tecnica Ambientale 2012-2013 Termodinamica TD1 In un sistema pistone-cilindro, 1 kg di gas (! = 1,29 ed R * = 190 J/(kg"K)) si espande da 5 bar e 90 C ad

Dettagli

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA LAUREA MAGISTRALE IN INGEGNERIA MECCANICA A.A 2012-13 - CORSO DI SISTEMI ENERGETICI LM Prof. Emanuele MARTELLI Prova scritta del 26-02-2013 Allegare alle soluzioni

Dettagli

Esercitazione 4 Cicli a vapore avanzati

Esercitazione 4 Cicli a vapore avanzati Esercitazione 4 Cicli a vapore avanzati Questa esercitazione prevede il confronto di 5 diverse configurazioni relative ad un ciclo a vapore USC. Per effettuare i calcoli è stato utilizzato il programma

Dettagli

RACCOLTA DI ESERCIZI TRATTI DA TEMI D ESAME - parte 2^

RACCOLTA DI ESERCIZI TRATTI DA TEMI D ESAME - parte 2^ A.A. 25/26 Sistemi eneretici (11CINDK) RACCOLTA DI ESERCIZI TRATTI DA TEMI D ESAME - parte 2^ 1. Calcolare il potere calorifico superiore e inferiore dell ottano C 8 18 assoso alle condizioni di riferimento

Dettagli

Corso di Sistemi Energetici L

Corso di Sistemi Energetici L Corso di Sistemi Energetici L Esame del 1-7-2016 1. È assegnato un ciclo combinato cogenerativo basato su un ciclo a vapore a recupero a contropressione con singolo livello di evaporazione. Durante la

Dettagli

Capitolo 3. Una massa m=0,424 kg di un gas sconosciuto (il cui comportamento può essere ritenuto ideale) è

Capitolo 3. Una massa m=0,424 kg di un gas sconosciuto (il cui comportamento può essere ritenuto ideale) è Esercizio 3.16 Una massa m=5 kg di un gas sconosciuto (il cui comportamento può essere ritenuto ideale) è contenuta in una bombola di volume V=80 dm 3 a temperatura T=300 K e pressione p=300 kpa. Determinare

Dettagli

Prova scritta di Fisica Tecnica 1 Fila A 22 dicembre 2006

Prova scritta di Fisica Tecnica 1 Fila A 22 dicembre 2006 Prova scritta di Fisica Tecnica Fila A dicembre 006 Esercizio n. Un impianto a vapore per la produzione di energia elettrica opera secondo un ciclo Rankine con le seguenti caratteristice: portata di vapore

Dettagli

Centrale di Moncalieri 2 G T

Centrale di Moncalieri 2 G T Centrale di Moncalieri 2 G T Iren Energia è la società del Gruppo Iren che opera nei settori della produzione e distribuzione di energia elettrica, nella produzione e distribuzione di energia termica per

Dettagli

A) ESERCIZI SVOLTI CON RISULTATI

A) ESERCIZI SVOLTI CON RISULTATI A) ESERCIZI SVOLTI CON RISULTATI ESERCIZIO 1 Una portata di 4592.80 m 3 /h di aria umida a T ba = 10 C e U.R. = 18 % si mescola adiabaticamente con una seconda portata di 1.27 kg/s di aria umida a T ba

Dettagli

Università degli Studi di Napoli Federico II - Facoltà di Ingegneria Esercizi di Fisica Tecnica per il Corso di laurea in Ingegneria Gestionale

Università degli Studi di Napoli Federico II - Facoltà di Ingegneria Esercizi di Fisica Tecnica per il Corso di laurea in Ingegneria Gestionale . SISTEMI APERTI Università degli Studi di Napoli Federico II - Facoltà di Ingegneria Si considerino sempre valide le seguenti ipotesi. ) Regime stazionario. ) Flusso monodimensionale ed equilibrio locale,

Dettagli

Ciclo Rankine - Clausius

Ciclo Rankine - Clausius Ciclo Rankine - Clausius Si inizia considerando il ciclo di Rankine Clausius anche chiamato ciclo di Hirn semplice avente le seguenti caratteristiche: Temperatura ambiente 30 C Pressione massima 151 bar

Dettagli

MARCO GENTILINI IMPIANTI MECCANICI. Marco Gentilini IMPIANTI MECCANICI 1

MARCO GENTILINI IMPIANTI MECCANICI. Marco Gentilini IMPIANTI MECCANICI 1 MARCO GENTILINI IMPIANTI MECCANICI 1 2 INDICE Premessa. PARTE PRIMA FONDAMENTI DI IMPIANTISTICA MECCANICA CAP.I 1 ANALISI DEGLI IMPIANTI I.1.1 Definizione degli impianti. I.1.2 La progettazione degli impianti.

Dettagli

CICLI TERMODINAMICI 1

CICLI TERMODINAMICI 1 CICLI TERMODINAMICI 1 CICLO RANKINE - TURBINE A VAPORE LE TURBINE A VAPORE SONO MACCHINE MOTRICI, INSERITE IN UN IMPIANTO BASATO SU UN CICLO TERMODINAMICO, DETTO CICLO RANKINE, COMPOSTO DA QUATTRO TRASFORMAZIONI

Dettagli

CAPITOLO 2 CICLO BRAYTON TURBINE A GAS FLUIDO: MONOFASE

CAPITOLO 2 CICLO BRAYTON TURBINE A GAS FLUIDO: MONOFASE CAPITOLO 2 CICLO BRAYTON TURBINE A GAS FLUIDO: MONOFASE 1 CICLO BRAYTON IL CICLO TERMODINAMICO BRAYTON E COMPOSTO DA QUATTRO TRASFORMAZIONI PRINCIPALI (COMPRESSIONE, RISCALDAMENTO, ESPANSIONE E RAFFREDDAMENTO),

Dettagli

Giuliana Ghezzi. Esercitazioni del corso di macchine

Giuliana Ghezzi. Esercitazioni del corso di macchine Esercitazioni del corso di macchine A.A 08-09 ESERCITAZIONE Esercizio - TRASFORMAZIONI Valutare lo scambio di lavoro meccanico e di energia termica delle seguenti trasformazioni: Compressione adiabatica

Dettagli

061473/ Macchine (a.a. 2016/17)

061473/ Macchine (a.a. 2016/17) 061473/090856 - Macchine (a.a. 2016/17) Nome: Matricola: Data: 01/02/2017 Prova da sostenere: I parte II parte Prova completa Parte B (11 punti su 32). Punteggio minimo: 5/11. Per chi sostiene la prova

Dettagli

Corso Termodinamica. Esercitazione 3. II Principio

Corso Termodinamica. Esercitazione 3. II Principio Corso Termodinamica Esercitazione 3 II Principio 1. Una mole di metano fluisce in un condotto; la sua pressione passa da 1.5 a 0.5 atm a temperatura costante. Calcolare la variazione di entropia. 2. Calcolare

Dettagli

12c Impianto frigorifero - compressore volumetrico dimensionamento

12c Impianto frigorifero - compressore volumetrico dimensionamento Uniersità degli studi di Bologna D.I.E.M. Dipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia c Impianto frigorifero compressore olumetrico dimensionamento

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 7. Sistemi Combinati. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 7. Sistemi Combinati. Roberto Lensi Roberto Lensi 7. Sistemi Combinati Pag. 1 di 30 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 7. Sistemi Combinati Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2010-2011 Roberto Lensi

Dettagli

Applicazioni del primo principio della termodinamica ed utilizzo delle tabelle del vapore: Esercizi svolti

Applicazioni del primo principio della termodinamica ed utilizzo delle tabelle del vapore: Esercizi svolti Applicazioni del primo principio della termodinamica ed utilizzo delle tabelle del vapore: Esercizi svolti 19 marzo 23 Esercizio 1 Un recipiente di volume ssato e con pareti adiabatiche è diviso in due

Dettagli

gli impianti di cogenerazione e il Teleriscaldamento a Torino

gli impianti di cogenerazione e il Teleriscaldamento a Torino gli impianti di cogenerazione e il Teleriscaldamento a Torino Iren Energia è la società del Gruppo Iren che opera nei settori della produzione e distribuzione di energia elettrica, nella produzione e distribuzione

Dettagli

EVAPORAZIONE 2. Dati di progetto relativi ai vapori circolanti nell impianto:

EVAPORAZIONE 2. Dati di progetto relativi ai vapori circolanti nell impianto: EVAPORAZIONE 2 1. Una soluzione acquosa deve essere concentrata dal 10% al 25% in massa mediante un sistema di evaporazione a doppio effetto in controcorrente. Sapendo che: a) la soluzione diluita entra

Dettagli

Componenti impianto frigorifero. Certificazione Frigoristi Regolamento CE n.842/2006

Componenti impianto frigorifero. Certificazione Frigoristi Regolamento CE n.842/2006 Componenti impianto frigorifero Certificazione Frigoristi Regolamento CE n.842/2006 Il CIRCUITO FRIGORIFERO 23/04/2013 2 In natura il calore fluisce da un corpo più caldo ad un corpo più freddo CORPO CALDO

Dettagli

ESERCITAZIONE L IMPIANTO DI INCENERIMENTO DI RIFIUTI URBANI E SPECIALI DI BRESCIA E IL SISTEMA ENERGETICO SU SCALA COMUNALE

ESERCITAZIONE L IMPIANTO DI INCENERIMENTO DI RIFIUTI URBANI E SPECIALI DI BRESCIA E IL SISTEMA ENERGETICO SU SCALA COMUNALE ESERCITAZIONE L IMPIANTO DI INCENERIMENTO DI RIFIUTI URBANI E SPECIALI DI BRESCIA E IL SISTEMA ENERGETICO SU SCALA COMUNALE Indice 1. Analisi di un assetto di collaudo (A2-cogenerazione, due linee operative)

Dettagli

Esercitazione 6: Cicli e Diagrammi

Esercitazione 6: Cicli e Diagrammi Esercitazione 6: Cicli e Diagrammi 6.1) In figura è schematizzato un ciclo frigorifero. Il fluido è propilene. Determinare le condizioni finali del fluido nelle varie fasi del ciclo (temperatura, pressione,

Dettagli

Cicli combinati - Introduzione

Cicli combinati - Introduzione Cicli combinati - Introduzione Pag. Cicli combinati - Introduzione L'attuale diffusione degli impianti con turbina a gas è dovuta anche ai cicli combinati gas-vapore, nei quali si recupera il calore sensibile

Dettagli

SCAMBIATORI DI CALORE

SCAMBIATORI DI CALORE SCAMBIATORI DI CALORE 1 SCAMBIATORE DI CALORE APPARECCHIATURA NELLA QUALE AVVIENE UN PASSAGGIO DI CALORE DA UN FLUIDO AD UN ALTRO IN GENERE NON VI E' CONTATTO DIRETTO TRA I DUE FLUIDI, CHE SONO SEPARATI

Dettagli

Cap. 1 Richiami di termodinamica. 1.1 Concetti base 1.2 Principio di conservazione dell energia. Cap. 2 Il bilancio exergetico

Cap. 1 Richiami di termodinamica. 1.1 Concetti base 1.2 Principio di conservazione dell energia. Cap. 2 Il bilancio exergetico III Indice IX 1 1 2 3 5 6 7 9 11 12 12 13 13 Presentazione Cap. 1 Richiami di termodinamica 1.1 Concetti base 1.2 Principio di conservazione dell energia 1.2.1 Sistema con involucro chiuso allo scambio

Dettagli

Corsi di Macchine e Sistemi Energetici e di Termodinamica e Macchine a Fluido

Corsi di Macchine e Sistemi Energetici e di Termodinamica e Macchine a Fluido Facoltà di Ingegneria e Architettura Corsi di Macchine e Sistemi Energetici e di Termodinamica e Macchine a Fluido Daniele Cocco Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria PRIMA PROVA SCRITTA DEL 22 giugno 2011 SETTORE INDUSTRIALE TEMA N. 1 Il candidato fornisca una panoramica generale sugli scambiatori di calore, indicandone le principali tipologie e caratteristiche. Ne

Dettagli

F. Gamma Corso di Motori per Aeromobili CAP. 2 ESEMPI NUMERICI. Ciclo base ideale

F. Gamma Corso di Motori per Aeromobili CAP. 2 ESEMPI NUMERICI. Ciclo base ideale CAP. ESEMPI NUMERICI ES. ) Ciclo base ideale ES. ) Ciclo ideale con interrefrigerazione 3 ES. 3) Ciclo ideale con postcombustione 4 5 ES. 4) Ciclo ideale con rigenerazione 6 7 ES. 5) Ciclo reale con interrefrigerazione,

Dettagli

Le sostanze. Liquido volume propri, forma dell oggetto che contiene

Le sostanze. Liquido volume propri, forma dell oggetto che contiene Le sostanze NaCl Solido forma e volume propri Na Cl δ- H 2 O δ+ H Liquido volume propri, forma dell oggetto che contiene 1 Aeriforme né forma né volume proprio gli stati di equilibrio della sostanza e

Dettagli

LA CALDAIA A RECUPERO ASPETTI PROGETTUALI

LA CALDAIA A RECUPERO ASPETTI PROGETTUALI Corso di IMPIANTI di CONVERSIONE dell ENERGIA L energia, fonti, trasformazioni i ed usi finali Impianti a vapore I generatori di vapore Impianti turbogas Cicli combinati e cogenerazione Il mercato dell

Dettagli

Indice. Prefazione alla terza edizione italiana...xi. Ringraziamenti dell Editore...XIII. Guida alla lettura...xiv

Indice. Prefazione alla terza edizione italiana...xi. Ringraziamenti dell Editore...XIII. Guida alla lettura...xiv Prefazione alla terza edizione italiana...xi Ringraziamenti dell Editore...XIII Guida alla lettura...xiv 1 INTRODUZIONE E UNO SGUARDO D INSIEME...1 1.1 Introduzione alle scienze termiche...2 1.2 La termodinamica

Dettagli

Dipartimento di Ingegneria dell'energia e dei Sistemi

Dipartimento di Ingegneria dell'energia e dei Sistemi Roberto Lensi 5. Sistemi a Ciclo Inverso Pag. 1 di 18 UNIVERSITÀ DEGLI STUDI DI PISA Dipartimento di Ingegneria dell'energia e dei Sistemi RISPARMIO ENERGETICO INDUSTRIALE (6 CFU) 5. Sistemi a Ciclo Inverso

Dettagli

Dispensa del corso di SISTEMI ENERGETICI. Argomento: Sistemi Energetici (parte 1)

Dispensa del corso di SISTEMI ENERGETICI. Argomento: Sistemi Energetici (parte 1) Dispensa del corso di SISTEMI ENERGETICI Argomento: Sistemi Energetici (parte 1) Prof. Pier Ruggero Spina Dipartimento di Ingegneria Sommario Forme di energia e loro conversione Introduzione: diagrammi

Dettagli

PROGRAMMAZIONE DIDATTICA DISCIPLINARE

PROGRAMMAZIONE DIDATTICA DISCIPLINARE Pag. 1 di 6 PROGRAMMAZIONE DIDATTICA DISCIPLINARE Disciplina MECCANICA E MACCHINE a.s. 2013/2014 Classe: TERZA Sez. B INDIRIZZO: CONDUZIONE DEGLI IMPIANTI E DEGLI APPARATI MARITTIMI Docenti : Proff. M.

Dettagli

Cicli H2 O2 per la produzione di energia elettrica Modifica dell impianto Icaro per funzionamento con idrogeno

Cicli H2 O2 per la produzione di energia elettrica Modifica dell impianto Icaro per funzionamento con idrogeno Cicli H2 O2 per la produzione di energia elettrica Modifica dell impianto Icaro per funzionamento con idrogeno Ing. Marino Avitabile, Ing. Paolo Fiorini Cicli ad idrogeno e ossigeno La realizzazione di

Dettagli

Esercizi su regolazione di impianti di turbina a vapore

Esercizi su regolazione di impianti di turbina a vapore Esercizi su regolazione di impianti di turbina a vapore 17. Sul diagramma di Mollier si trova il punto O, a 40 bar e 400 gradi C, e si legge i O = 3215.7 kj/kg e v O = 0.0734 m 3 /kg. Scelta un isobara

Dettagli

Caratteristiche tecniche MYDENS 60 T, 70 T, 100 T/TV, 115 T/TV, 140 T/TV 180 T/TV, 210 T/TV e 280 T/TV

Caratteristiche tecniche MYDENS 60 T, 70 T, 100 T/TV, 115 T/TV, 140 T/TV 180 T/TV, 210 T/TV e 280 T/TV MODELLO MYDENS 60 T 70 T Paese di destino ITALIA ITALIA Tipo B23;C53;C63; B23;C53;C63; Categoria II2H3P II2H3P Certificato CE di tipo (PIN) 0694CP2296 0694CP2296 Certificato Range Rated APPROVATO APPROVATO

Dettagli

Esercizio 1 Esercizio 2

Esercizio 1 Esercizio 2 GAS IDEALI Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili: Compressione isoterma dallo stato 1 (p1 = 0.9 bar; v1 = 0.88

Dettagli

SCHEDA PROGRAMMA SVOLTO A.S. 2014/2015

SCHEDA PROGRAMMA SVOLTO A.S. 2014/2015 Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

Caratteristiche tecniche AGUADENS 60T, 70T, 100T, 100T V, 115T, 115T V, 140T, 140T V, 210T, 210T V, 280T e 280T V

Caratteristiche tecniche AGUADENS 60T, 70T, 100T, 100T V, 115T, 115T V, 140T, 140T V, 210T, 210T V, 280T e 280T V MODELLO AGUADENS 60T 70T Paese di destino ITALIA ITALIA Tipo B23;C43; C53; C63; C83 Categoria II2H3P II2H3P Certificato CE di tipo (PIN) 0694CN6126 0694CN6126 Certificato Range Rated APPROVATO APPROVATO

Dettagli

Dati tecnici LA 6TU. Glen Dimplex Deutschland GmbH. Data di stampa:

Dati tecnici LA 6TU. Glen Dimplex Deutschland GmbH. Data di stampa: Dati tecnici LA 6TU Informazioni sull'apparecchio LA 6TU Formato - Sorgente di calore Aria esterna - Versione Formato universale - Regolazione - Contatore della quantità di calore integrato - Luogo dell'installazione

Dettagli

Formulario corso vapore

Formulario corso vapore Formulario corso vapore Producibilita specifica: W s = W/S dove: W in kg/h ed S in m 2 e W s in kg/m 2 h Pressione: Pressione assoluta = pressione letta sul manometro piu 1. Fondoscala manometro: Fondoscala

Dettagli

II. Bilanci di massa, primo principio e secondo principio

II. Bilanci di massa, primo principio e secondo principio I. II. Bilanci di massa, primo principio e secondo principio A. Bilancio di massa per sistemi aperti Facendo riferimento al serbatoio schematizzato di fianco, sono note le seguenti grandezze: z D = 1,00

Dettagli

Le mie lezioni: Le Macchine Termiche (4/4^)

Le mie lezioni: Le Macchine Termiche (4/4^) Prof. Angelo Serafino Caruso, Docente di Meccanica, Macchine ed Energia nell Istituto Tecnico Industriale E. Majorana di Rossano Le mie lezioni: Le Macchine Termiche (4/4^) Diagramma del Vapor d Acqua

Dettagli

66 Congresso Nazionale ATI Cosenza, 5-9 Settembre 2011

66 Congresso Nazionale ATI Cosenza, 5-9 Settembre 2011 66 Congresso Nazionale ATI Cosenza, STABILITÀ TERMICA DI FLUIDI DI LAVORO E PRESTAZIONI TERMODINAMICHE DEL REFRIGERANTE HFC-245FA IN CICLI PER APPLICAZIONI GEOTERMICHE Paola Bombarda 1, Costante M. Invernizzi

Dettagli