Cammini minimi con una sorgente

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cammini minimi con una sorgente"

Transcript

1 Cammini minimi con na orgene Problema dei cammini minimi Variani e archi negaii Soorra oima di n cammino minimo Algorimo di Dijkra Compleià dell algorimo Rappreenazione dei cammini minimi

2 Problema dei cammini minimi Inp: n grafo G=(V,E) orienao e peao, con na fnzione peo : E R, che aocia ad ogni arco in E n peo a alore reale

3 Problema dei cammini minimi Il coo di n cammino p= <,,, k > è la omma dei pei degli archi che lo coiicono. k ( p )= i= MC PT LU PR PI 6 FI LI 6 SI 4 GR ( i, i ) AR p= <PR, FI, SI> = min + min = 6 min p = <PR, FI, AR, SI> = min + min + 4 min = = 9 min p = <PR, FI, PI, LI, GR, SI> = 6 min

4 Problema dei cammini minimi Il coo di n cammino minimo dal erice al erice è definio da: δ (, )={ min {( p): p } e eie n cammino da a } alrimeni Un cammino minimo dal erice al erice è definio come n qalnqe cammino p con peo (p) = δ(,). Pò non eere nico! δ(6,) = 7 p = <6,,, > (p ) = 7 p = <6, > (p ) = 9 p = <6,, 6,,, > (p ) = 9 p 4 = <6,, 4,, > (p 4 ) = 7

5 Vari problemi Problema di cammini minimi con orgene ingola: i ole roare n cammino minimo da n dao erice orgene ad ogni erice in V. Problema di cammini minimi con deinazione ingola: i ole roare da ogni erice in V n cammino minimo ad n dao erice deinazione. Problema di cammini minimi ra na coppia: i ole roare n cammino minimo da a. Problema di cammini minimi ra e le coppie: deerminazione di n cammino minimo per ogni coppia di erici e.

6 Archi con pei negaii NOTA: ono ammei archi di peo negaio, ma non deono eiere nel grafo cicli di coo negaio. Se il coo di n ciclo è negaio, allora i i nodi raggingibile dal ciclo hanno n cammino minimo di peo infiniamene negaio (- ) Ciclo <6,> negaio. Ogni ola che compio n giro diminico il peo del cammino che paa per il ciclo. Eempio: δ(6,) =

7 Soorra oima di n cammino minimo Soocammini di cammini minimi ono cammini minimi Dao n grafo G=(V,E) con fnzione peo :E R, ia p= <,,, k > n cammino minimo da a k. Per ogni i e j ali che i j k, i ha che il oocammino p ij = < i, i+,, j > è n cammino minimo da i a j. (p ij )=δ(i,j) i j k p ij Dao n alro oocammino p ij da i a j, neceariamene (p ij ) (p ij ), alrimeni il cammino minimo paerebbe per p ij

8 Soorra oima di n cammino minimo Di conegenza: Si pponga che n cammino minimo p da na orgene ad n erice pai per l arco (,) con peo (,). Il peo del cammino minino da a è δ(,) = δ(,) + (,). δ(,) (,) cammino minimo ra e i δ(,) = δ(,) + (,). Più in generale, e eie n arco (,), allora i ha: δ(,) δ(,) + (,), ale l'gaglianza e =.

9 Algorimo di Dijkra L algorimo di Dijkra riole il problema dei cammini minimi con orgene ingola S n grafo orienao (o non orienao) e peao G=(V,E) nel cao in ci i i pei degli archi iano non negaii. Ci ono de iniemi: S: doe d[] = δ(,), qindi n cammino minimo ra e è ao deerminao. Q = V/S: na coda a priorià doe d[] ha il alore del cammino con peo minore finora copero. All inizio, S coniene olo, d[]=, menre Q=V / {} con d[]=.

10 Algorimo di Dijkra DIJKSTRA(G,,). for ogni erice in V[G] // inizializzazione di ogni erice. do d[]. p[] NIL 4. d[] // i comincia dal erice. Q V[G] // coda a priorià 6. S Ø // iniemi dei nodi con cammino minimo roao 7. hile Q Ø // ermina qando la coda Q è oa 8. do EXTRACT-MIN(Q) // prendi il nodo con d[] minore 9. S S U {} // inerici in S for ogni erice in Adj[] / S. do if d[] > d[] + (,) // Procedra rela(,,). hen d[] d[] + [,] // aggiorna cammini minimi per adiacene. p[]. Q.decreae.key(, d[]) // Aggiorna le dianze in Q

11 Eempio y y y (a) (b) (c) y y y (d) (e) (f)

12 Eempio 4,, 6,,9 7,4

13 Compleià Si conideri che la coda con priorià Q come n array lineare: Inizzializzazione empo O( V ) EXTRACT-MIN(Q): ricerca del minimo in Q. Biogna edere i i alori in Q, richiede empo O( V ) EXTRACT-MIN(Q) iene eegio per ogni erice qindi il empo oale è O( V V ) = O( V ) Come in BFS engono, i eamina la lia di adiacenza di ogni erice, che enra olo na ola in S. La omma di e lie di adiacenze è E, più il coo delle decreae key oale O( V E ) Il empo oale dell algorimo di Dijkra è O( E + V ).

14 Compleià L algorimo di Dijkra con binary heap: l analii. Inizializzazione di Q Bild-Heap che corice n heap con V elemeni in O(V). Analii del ciclo di hile V operazioni Erac-Min Ciacna richiede empo O(log V) (oale O(VlogV)) V aggiornameni di S Ciacna richiede empo coane Un oale di O(E) ierazioni del ciclo di for (linee -) in qano la lia di adiacenza di ciacn erice iene candia eaamene na ola (qando è inerio in S) RELAX(,, ) lla linea 8 : L aggiornameno di d[] è effeao eegendo DECREASEKEY( Q,, d[] + (, )) che richiede empo O(log V) [ma nel codice malab O(n) per la ricerca della poizione di nello heap!]. Toale O(ElogV) L aggiornameno di π[] richiede empo coane Tempo oale: O(Vlog V + E log V)

15 Rappreenazione dei cammini minimi Come nella iia in ampiezza (BFS), l algorimo Dijkra definice n oografo dei predeceori T p =(V p,e p ). L albero che ne ege coniene i cammini minimi indiidai da ad ogni erice raggingibile. Noa: qeo ale olo al ermine dell algorimo y y T p =(V p,e p )

16 Problemi Algorimo Dijkra 4

17 Problemi Algorimo Dijkra 4

18 Problemi Algorimo Dijkra - - Solzione di Dijkra Solzione Oimale

19 Algorimo di Bellman-Ford Ricordiamo che per ogni arco (,) in E e per ogni erice in V, ale: Tecnica del Rilaameno: Si pare da ime per ecceo delle dianze Dy d y Si aggiornano le ime, decremenandole progreiamene fino a renderle eae.

20 Algorimo di Bellman-Ford Eege n ierazioni In ciacna ierazione rilaa i gli archi Dopo la j-eima paaa, i primi j rilaameni correi ono ai ceramene eegii Eege però moli rilaameni inili!

21 Algorimo di Bellman-Ford Inizalmene, d[] = e d[] = per Vengono fae V - paae Ad ogni paaa, applica il rilaameno ad ogni arco Bellman_Ford(G,) Tempo = O( V E ) Inizializza(G,,d) for i = o V - do for each arco (,) in E do rela(,,) for each arco (,) in E //conrollo preenza cicli nagaii do if d[] > d[] + (,) hen rern FALSE rern TRUE

22 Eempio Algorimo Bellman-Ford 4 -

23 Eempio Algorimo Bellman-Ford

24 Eercizi. Implemenare l'oggeo MATLAB grafo non direo peao, in ci gli archi hanno n peo. Implemenare la lia di adiacenza come lia concaenaa in ci gli elemeni ono rre con campi nodo e peo. Scriere n programma MATLAB che implemeni l'algorimo di Bellman-Ford grafo (direo o non direo) rappreenao mediane lia di adiacenza. Scriere n programma MATLAB che permee all'ene di geire n grafo direo peao (inerire erici ed archi,cancellare archi) e calcolare i cammini minimi ra de erici pecificai mediane nome

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Problema: Supponiamo che

Dettagli

Algoritmi greedy III parte

Algoritmi greedy III parte Algorimi greedy III pare Progeazione di Algorimi a.a. -1 Maricole congrue a 1 Docene: Annalia De Boni 1 Cammini minimi Si vuole andare da Napoli a Milano in auo percorrendo il minor numero di chilomeri

Dettagli

Shortest-Paths Problem - definizioni

Shortest-Paths Problem - definizioni Grafo Cammini Minimi GT 3.6 Shortet-Path Problem - definizioni G (V,E) grafo orientato, peato, con fnzione peo w: E R Lnghezza (peo) di n cammino p = < 0,,..., k > : k w( p) = i= 0 Ditanza tra ertici e

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/ ~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Pr oblema: Supponiamo che

Dettagli

Massimo Flusso. Ulteriori vincoli. Descrizione del problema. Rete di flusso. Flusso in G

Massimo Flusso. Ulteriori vincoli. Descrizione del problema. Rete di flusso. Flusso in G Maimizzare il # di PC prodoi Maimo Flo rre dai 2 Decrizione del problema Una fabbrica (orgene) di PC dee abilire il nmero di PC da aemblare giornalmene. Ti i PC prodoi erranno endi in n negozio (deinazione).

Dettagli

Ulteriori Esercizi su Grafi. Ugo Vaccaro

Ulteriori Esercizi su Grafi. Ugo Vaccaro Progeazione di Algorimi Anno Accademico 0 0 Uleriori Eercizi u Grafi. Ugo Vaccaro N.B. Si ricorda che ogni algorimo và accompagnao da una argomenazione ul perchè calcola correamene l oupu e da un analii

Dettagli

2.4 Flussi di valore massimo

2.4 Flussi di valore massimo .4 Flui di valore maimo I modelli di fluo hanno variae applicazioni in eori come elecomunicazioni informaica (muliproceori, proocolli inerne) rapori (aereo, radale, ferroviario, merci) Si raa di diribuire

Dettagli

Cammini Minimi. Un problema molto comune. Formalizziamo. Peso di un cammino. Esempio. Ritorniamo all esempio iniziale. Input:

Cammini Minimi. Un problema molto comune. Formalizziamo. Peso di un cammino. Esempio. Ritorniamo all esempio iniziale. Input: Cammini Minimi Un problema molto comune i uole andare da alerno a Milano in auto percorrendo il minor numero di chilometri oluzione inefficiente: i coniderano TUTTI i percori poibili e e ne calcola la

Dettagli

Grafo diretto Università degli Studi di Milano

Grafo diretto Università degli Studi di Milano Grafo diretto Un grafo diretto G è na coppia ordinata (V, E), doe V è l insieme dei ertici {,,,,n} (anche detti nodi). E V V è n insieme di coppie ordinate (,) dette archi diretti 6 V= {,,,4,5,6,7} 7 4

Dettagli

Cammini Minimi. Algoritmo di Dijkstra. Cammino in un grafo

Cammini Minimi. Algoritmo di Dijkstra. Cammino in un grafo Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

Cammini Minimi. Algoritmo di Dijkstra

Cammini Minimi. Algoritmo di Dijkstra Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

Grafi: cammini minimi

Grafi: cammini minimi Algoritmi e Programmaione Aanata EIP Grafi: cammini minimi Flio CORNO - Matteo SONZA REORDA Dip. Atomatica e Informatica Politecnico di Torino Sommario Introdione Algoritmo di Dijkstra Algoritmo di Bellman-Ford.

Dettagli

Note per la Lezione 29 Ugo Vaccaro

Note per la Lezione 29 Ugo Vaccaro Progeaione di Algorimi Anno Accademico 1 1 Noe per la Leione Ugo Vaccaro In quea leione coninueremo lo udio di cammini minimin grafi in cui vi poono eere archi di coo negaivo. Ricordiamo l algorimo baao

Dettagli

Un problema molto comune

Un problema molto comune Cammini Minimi [CLRS cap. 4] Un problema molto comune Si vuole andare da Salerno a Milano in auto percorrendo il minor numero di chilometri Soluzione inefficiente: i coniderano TUTTI i percori poibili

Dettagli

Esercizi per il corso di Algoritmi, anno accademico 2014/15

Esercizi per il corso di Algoritmi, anno accademico 2014/15 Eercizi per il coro di Algorimi, anno accademico 0/ Eercizi u Union-Find. Eercizio: Scrivere peudocodice per Make-Se, Union, e Find-Se uando la rappreenazione aravero lie linkae e la euriica di unione

Dettagli

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Applicazioni del Maimo fluo Progeazione di Algorimi a.a. 0-6 Maricole congrue a Docene: Annalia De Boni Maching bipario Problema del max maching. Inpu: grafo non direzionao G = (V, E). M E e` un maching

Dettagli

Note per la Lezione 28 Ugo Vaccaro

Note per la Lezione 28 Ugo Vaccaro Progeazione di Algorimi Anno Accademico 2017 2018 Noe per la Lezione 28 Ugo Vaccaro In quea lezione udieremo ancora problemi u cammini minimi, ma in grafi in cui vi poono eere archi di coo negaivo. Quindi,

Dettagli

Ottimizzazione Combinatoria Formulazioni e Formulazioni Ottime

Ottimizzazione Combinatoria Formulazioni e Formulazioni Ottime Oimizzazione Combinaoria Formulazioni e Formulazioni Oime Prof. Anonio Saano Diparimeno di Informaica e Siemiica Univerià di Roma La Sapienza A.A. 29 Formulazione Lineare Problema di PL: min {c T x : xs}

Dettagli

Teoria dei grafi: ricerca di percorsi a minimo costo Ing. Valerio Lacagnina

Teoria dei grafi: ricerca di percorsi a minimo costo Ing. Valerio Lacagnina Metodi diide-et-impera, programmazione dinamica e algoritmi greed La programmazione dinamica, come il metodo diide-et-impera, risole n problema mettendo insieme le solzioni di n certo nmero di sottoproblemi.

Dettagli

Algoritmi e Strutture dati Mod B. Grafi: Percorsi Minimi (parte I)

Algoritmi e Strutture dati Mod B. Grafi: Percorsi Minimi (parte I) Algoritmi e Strutture dati Mod B Grafi: Percorsi Minimi (parte I) Grafi: Percorsi minimi Un percorso minimo in un grafo G= grafo pesato orientato, con funzione di peso w: E fi che mappa archi in pesi

Dettagli

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1 Lezione 5. Calcolo dell aniraormaa di Laplace. Previdi - Auomaica - Lez. 5 Schema della lezione. Inroduzione. Aniraormazione di Laplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale 5. Teorema

Dettagli

Cammini minimi con sorgente singola

Cammini minimi con sorgente singola Capitolo 11 Cammini minimi con sorgente singola efinizione 11.1. Sia G = (V,, w) un grafo orientato e pesato; dato il cammino p = v 0, v 1,..., v k in G, il valore w(p) = k i=1 w(v i 1, v i ) rappresenta

Dettagli

Visita di un Grafo Università degli Studi di Milano

Visita di un Grafo Università degli Studi di Milano Viita di n Gafo Unieità degli Stdi di Milano La iita di n gafo conite nell'eploae na ola olta ttti il contento (cioè le infomaioni) dei nodi di n gafo E.: iitae n ottogafo del Web Difficoltà: Cammini molteplici

Dettagli

Ottimizzazione Combinatoria Flussi, Cammini e Tagli

Ottimizzazione Combinatoria Flussi, Cammini e Tagli Oimizzazione Combinaoria Flui, Cammini e Tagli Prof. Anonio Saano Diparimeno di Informaica e Siemiica Univerià di Roma La Sapienza A.A. DATI: Un grafo orienao G(N,A) Un veore capacià c A DIREMO: FLUSSO

Dettagli

Che cosa c è nella lezione. Questa lezione si occupa di teoria dei grafi: la rappresentazione dei grafi. le visite dei grafi

Che cosa c è nella lezione. Questa lezione si occupa di teoria dei grafi: la rappresentazione dei grafi. le visite dei grafi Algoritmi e Programmazione Aanzata - teoria 1/18 Che cosa c è nella lezione Qesta lezione si occpa di teoria dei grafi: la rappresentazione dei grafi le isite dei grafi gli alberi ricoprenti minimi i cammini

Dettagli

Lezione 9. Calcolo dell antitrasformata di Laplace. F. Previdi - Fondamenti di Automatica - Lez. 9 1

Lezione 9. Calcolo dell antitrasformata di Laplace. F. Previdi - Fondamenti di Automatica - Lez. 9 1 ezione 9. Calcolo dell aniraormaa di aplace. Previdi - ondameni di Auomaica - ez. 9 Schema della lezione. Inroduzione. Aniraormazione di aplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale

Dettagli

Grafi (orientati): cammini minimi

Grafi (orientati): cammini minimi Grafi (orientati): cammini minimi Una breve presentazione Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Un cammino minimo tra

Dettagli

Visita di grafi. Vittorio Maniezzo - Università di Bologna

Visita di grafi. Vittorio Maniezzo - Università di Bologna Visita di grafi Vittorio Manieo - Uniersità di Bologna Liste di adiacena Lista di adiacenadi n ertice : lista che concatena ttti i ertici adiacenti a Il grafo pò essere rappresentato dalle liste di adiacena

Dettagli

Algoritmi e Strutture dati Mod B. Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*)

Algoritmi e Strutture dati Mod B. Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*) Algoritmi e Strutture dati Mod B Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*) Grafi: Percorsi minimi Un percorso minimo in un grafo G= grafo pesato orientato, con funzione di

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Prof. Aniello Murano Componenti fortemente connesse e Alberi minimi di copertura Corso di Laurea Codice insegnamento Email docente Anno accademico Informatica

Dettagli

Claudio Arbib Università dell Aquila. Ricerca Operativa. Problemi di cammino ottimo

Claudio Arbib Università dell Aquila. Ricerca Operativa. Problemi di cammino ottimo Claudio Arbib Univerià dell Aquila Ricerca Operaiva Problemi di cammino oimo Sommario Il problema del cammino più breve Il problema del cammino più icuro Una formulazione come PL 0- Proprieà della formulazione

Dettagli

Esercizi per il corso di Algoritmi

Esercizi per il corso di Algoritmi Esercizi per il corso di Algorimi Esercizi su Union-Find. Esercizio: Scrivere pseudocodice per Make-Se, Union, e Find-Se usando la rappresenazione araverso lise linkae e la eurisica di unione pesaa. Si

Dettagli

Problema del cammino minimo

Problema del cammino minimo Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento

Dettagli

Problemi di flusso. Reti. Problemi di flusso. Problemi di flusso. Problemi di percorso. minσ (i,j) E c ij x ij. i N (i,j) E.

Problemi di flusso. Reti. Problemi di flusso. Problemi di flusso. Problemi di percorso. minσ (i,j) E c ij x ij. i N (i,j) E. Problemi di fluo Rei Problemi di percoro Fluo a coo minimo MinoFlow(G(V,E),b,l,u,c,min) Ianza: una ree G(V,E) per cui è dao un valore inero b i (fluo prodoo dal nodo) per ogni nodo v i un coo c ij per

Dettagli

Depth-first search. Visita in profondità di un grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico

Depth-first search. Visita in profondità di un grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico Depth-first search Visita in profondità di n grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico Depth-first search Dato n grafo G=(V,E) e n specifico ertice s chiamato

Dettagli

09/12/11. Chapter 7. Network Flow. Rete ferroviaria sovietica. Altri esempi di network. Rete ferroviaria sovietica, 1955

09/12/11. Chapter 7. Network Flow. Rete ferroviaria sovietica. Altri esempi di network. Rete ferroviaria sovietica, 1955 ee ferroviaria ovieica Chaper Nework Flow Hanno analizzao problemi di raporo relai alla ree ferroviaria ovieica:.n. Toloi, Mehod of finding he minimal oal kilomerage in cargoranporaion planning in pace,,

Dettagli

Visita di grafi. Liste di adiacenza

Visita di grafi. Liste di adiacenza Visia di grafi Viorio Manieo - Uniersià di ologna Lise di adiacena Lisa di adiacenadi un erice : lisa che concaena ui i erici adiaceni a Il grafo può essere rappresenao dalle lise di adiacena di ui i suoi

Dettagli

Note per la Lezione 25

Note per la Lezione 25 Progettaione di Algoritmi Anno Accademico 7 8 Note per la Leione 5 Ugo Vaccaro In qeta leione parleremo di problemi algoritmici relatii al calcolo ed alle applicaioni di Cammini Minimi in Grafi. Spprremo

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Elementari su Grafi Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Polo di Scienze Università di Camerino ad Ascoli Piceno Visita

Dettagli

Dato un cammino P indichiamo con c(p ) il costo dell insieme di archi A(P ) del cammino, ovvero c(p )=c(a(p )) = uv P c uv. c 1

Dato un cammino P indichiamo con c(p ) il costo dell insieme di archi A(P ) del cammino, ovvero c(p )=c(a(p )) = uv P c uv. c 1 Capiolo 7 Cammini minimi 7. Definizioni fondamenali Sia dao un grafo non orienao G(N,A) conneo, con coi aociai agli archi c uv R per ogni uv A. Siano anche dai due nodi peciali, N. Faremo la eguene: Aunzione

Dettagli

Grafi (non orientati e connessi): minimo albero ricoprente

Grafi (non orientati e connessi): minimo albero ricoprente .. Grafi (non orientati e connessi): minimo albero ricoprente Una presentazione alternativa (con ulteriori dettagli) Problema: calcolo del minimo albero di copertura (M.S.T.) Dato un grafo pesato non orientato

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Cammini minimi Definizioni Sia G = (V,E) un grafo orientato pesato sugli archi. Il costo di un cammino π = è dato da: Un cammino minimo tra una coppia di

Dettagli

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati Algoritmi e Strutture Dati Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Cammini minimi Un cammino minimo tra una coppia di

Dettagli

Grafi (orientati): cammini minimi

Grafi (orientati): cammini minimi .. Grafi (orientati): cammini minimi Una presentazione alternativa (con ulteriori dettagli) Un algoritmo greedy per calcolare i cammini minimi da un vertice sorgente in un grafo orientato e pesato, senza

Dettagli

PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Il costo di cammino minimo da un vertice u ad un vertice v è definito nel seguente modo:

PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Il costo di cammino minimo da un vertice u ad un vertice v è definito nel seguente modo: PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Sia G = (V,E) un grafo orientato ai cui archi è associato un costo W(u,v). Il costo di un cammino p = (v 1,v 2,...,v k ) è la somma dei costi degli archi

Dettagli

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Schedulazione intervalli. Schedulazione intervalli: Algoritmi Greedy. Schedulazione intervalli.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Schedulazione intervalli. Schedulazione intervalli: Algoritmi Greedy. Schedulazione intervalli. Chaper.1 Inerval Scheduling Greedy Algorihm 1 Schedulazione inervalli Schedulazione inervalli: Algorimi Greedy Schedulazione inervalli.! Job j inizia a j e finice a f j.! Due job ono compaibili e non hanno

Dettagli

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1. Docente: Annalisa De Bonis

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1. Docente: Annalisa De Bonis Maimo fluo Progeazione di Algorimi a.a. 2017-18 Maricole congrue a 1 Docene: Annalia De Boni 1 Maimizzare il # di PC prodoi 2 Decrizione del problema Una fabbrica (orgene) di PC deve abilire il numero

Dettagli

Problema del flusso massimo

Problema del flusso massimo Rei di fluo Problema del fluo maimo Moivazione iniziale: problemi di raffico u rei di raporo Trapori ferroviari, auoradali, Traporo di liquidi in rei idriche Traporo di pacchei di dai in una ree di comunicazione.

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ Grafi pesati e alberi minimi di copertura Riepilogo delle lezioni precedenti Definizione di

Dettagli

Indici con gli alberi. Indici su memorie secondarie. Organizzazione logica di un disco

Indici con gli alberi. Indici su memorie secondarie. Organizzazione logica di un disco Indici con gli alberi Alberi perfeamene bilanciai per indici su memorie di massa: B-alberi Indici su memorie secondarie Spesso i dai da ordinare sono in quanià ale da richiedere disposiivi di memoria secondaria,

Dettagli

RICERCA OPERATIVA GRUPPO A prova scritta del 5 luglio 2010

RICERCA OPERATIVA GRUPPO A prova scritta del 5 luglio 2010 RICERCA OPERATIVA GRUPPO A prova cria del luglio 00. Dao il problema di programmazione lineare P) min z = x +x +x max y + y x x x = y +y < x + x x y + y < x, x, x 0 y y < y > 0 a) coruirne il duale D;

Dettagli

uscente entrante adiacente Figure B.2 (a) (b) (c) incident from leaves incident to enters incident on adjacent degree isolated

uscente entrante adiacente Figure B.2 (a) (b) (c) incident from leaves incident to enters incident on adjacent degree isolated Grafi Si dice grafo un insieme di nodi legati "a due a due" da archi direzionati (o no) I grafi sono strutture dati di fondamentale importanza in informatica Vi sono centinaia di problemi computazionali

Dettagli

Soluzione Progetto 1 ASD a.a. 2017/2018. : Pioggia di laser. Alessio Guerrieri e Cristian Consonni 14 dicembre 2017

Soluzione Progetto 1 ASD a.a. 2017/2018. : Pioggia di laser. Alessio Guerrieri e Cristian Consonni 14 dicembre 2017 Soluzione Progetto 1 ASD a.a. 2017/2018 : Pioggia di laser Alessio Guerrieri e Cristian Consonni 14 dicembre 2017 Statistiche Statistiche Numero sottoposizioni: 873 220 90 200 80 Sottomissioni 180 160

Dettagli

INSTRADAMENTO: ALGORITMO DI BELLMAN-FORD

INSTRADAMENTO: ALGORITMO DI BELLMAN-FORD UNIVERSITA' DEGLI STUDI DI BERGAMO Dipartimento di Ingegneria INSTRADAMENTO: ALGORITMO DI BELLMAN-FORD FONDAMENTI DI RETI E TELECOMUNICAZIONE A.A. 2012/13 - II Semestre Esercizio 1 Sia dato il grafo G=

Dettagli

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Maimo fluo Progeazione di Algorimi a.a. 2016-17 Maricole congrue a 1 Docene: Annalia De Boni 1 Maimizzare il # di PC prodoi 2 Decrizione del problema Una fabbrica (orgene) di PC deve abilire il numero

Dettagli

Rappresentazione del sistema. Classificazione dei sistemi di controllo

Rappresentazione del sistema. Classificazione dei sistemi di controllo Rappreenazione del iema ẋ= f x,u, (equazione differenziale) y =g x,u, (equazione algebrica) Nomi delle variabili u: ingreo x: ao y: ucia Claificazione dei iemi di conrollo Ordine Il numero n delle variabili

Dettagli

Esame di Ricerca Operativa del 18/06/18

Esame di Ricerca Operativa del 18/06/18 Esame di Ricerca Operativa del 8/0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x +x x x x +x x x x + x

Dettagli

Visite in Grafi BFS e DFS

Visite in Grafi BFS e DFS Visite in Grafi BFS e DFS Visita di un Grafo Obiettivo: Visitare una sola volta tutti i nodi del grafo. Es.: visitare un porzione del grafo del Web Difficoltà: Presenza di cicli: Marcare i nodi visitati

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 3 Cammini minimi: algoritmo di Dijkstra Cammini minimi in grafi: cammini minimi a singola sorgente (senza pesi negativi) Cammini minimi in grafi pesati Sia G=(V,E,w)

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Introduzione ai grafi Grafi: Definizione e Algoritmi di visita Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2007/08 Introduzione ai

Dettagli

Cammini minimi in grafi:

Cammini minimi in grafi: Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio III: la fine della trilogia Input: nelle puntate

Dettagli

Visite in Grafi BFS e DFS. PDF created with FinePrint pdffactory trial version

Visite in Grafi BFS e DFS. PDF created with FinePrint pdffactory trial version Visite in Grafi BFS e DFS Visita di un Grafo 8Obiettivo: 4Visitare una sola volta tutti i nodi del grafo. 4Es.: visitare un porzione del grafo del Web 8Difficoltà : 4Presenza di cicli: Marcare i nodi visitati

Dettagli

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. (Massimo Flusso) Giovanni Fasano.

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. (Massimo Flusso) Giovanni Fasano. Facolà di Ingegneria dell Informazione, Informaica e Saiica Appuni dalle lezioni di Ricerca Operaiva (Maimo Fluo) ede di Laina Giovanni Faano faano@unive.i hp://venu.unive.i/ faano anno accademico 2013-2014

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI CAMPIONAMENO E RICOSRUZIONE DI SEGNALI CAMPIONAMENO E RICOSRUZIONE Numerizzazione dei egnali Nei Nei moderni iemi di di memorizzazione e ramiione i i egnali in in ingreo ono ono di di ipo ipo numerio,

Dettagli

Ricerca Operativa Cammini minimi: algoritmi di Bellman-Ford e di Dijkstra

Ricerca Operativa Cammini minimi: algoritmi di Bellman-Ford e di Dijkstra Ricerca Operativa Cammini minimi: algoritmi di Bellman-Ford e di Dijkstra L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni Tema 3 Iniemi, elemeni di logica, calcolo combinaorio, relazioni e funzioni 3.1 Queii di livello bae 3.1.1 Si coniderino i egueni enunciai: n è un muliplo di 3 o è un numero pari, e inolre è minore di

Dettagli

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità Visite Grafi Sommario Rappresentazione dei grafi Visita in ampiezza Visita in profondità Ordinamento topologico Visita in ampiezza La visita in ampiezza breadth-first-search (BFS) di un grafo dato un vertice

Dettagli

Progetto e Ottimizzazione di Reti A. A

Progetto e Ottimizzazione di Reti A. A Progeo e Oimizzazione di Rei A. A. 006-007 Docene Fabrizio Roi roi@di.univaq.i Orario Maredi 15-17 aula.5 Mercoledi 11.30-13.30 aula.5 Giovedi 11.30-13.30 aula.5 Orario di ricevimeno Mercoledi 17-19 Progeo

Dettagli

Esempi. non. orientato. orientato

Esempi. non. orientato. orientato Definizione! Un grafo G = (V,E) è costituito da un insieme di vertici V ed un insieme di archi E ciascuno dei quali connette due vertici in V detti estremi dell arco.! Un grafo è orientato quando vi è

Dettagli

Esame di Ricerca Operativa del 06/02/17

Esame di Ricerca Operativa del 06/02/17 Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Numero d Matricola) Esercizio. Uno studente vuole definire un piano di studio settimanale per preparare gli esami A, B e C, massimizzando le ore (h)

Dettagli

Grafi: visita generica

Grafi: visita generica .. Grafi: visita generica Una presentazione alternativa (con ulteriori dettagli) Algoritmi di visita Scopo: visitare tutti i vertici di un grafo (si osservi che per poter visitare un vertice occorre prima

Dettagli

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime

Dettagli

Coda a Priorità. Coda a Priorità. Coda a Priorità: heap binario. Coda a Priorità: heap binario

Coda a Priorità. Coda a Priorità. Coda a Priorità: heap binario. Coda a Priorità: heap binario Coda a Priorità Coda a Priorità Ineme dinamico. Ogni elemento x dell ineme ha un valore vx aociato. Ineme: vertici di un grafo; valore = d(v) (il grado del vertice) Ineme: uomini nell algoritmo GS; valore

Dettagli

Esame di Ricerca Operativa del 11/02/2015

Esame di Ricerca Operativa del 11/02/2015 Esame di Ricerca Operativa del /0/0 (Cognome) (Nome) (Matricola) Esercizio. Un azienda produce tipi di TV (, 0, 0 e pollici) ed è divisa in stabilimenti (A e B). L azienda dispone di 0 operai in A e 0

Dettagli

Grafi. V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)}

Grafi. V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)} Grafi Grafo orientato (o diretto) = (V,E) V = nodi o vertici - E = archi (edges) V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)} archi uscenti da un nodo x: (x, y) archi incidenti su un nodo

Dettagli

Riprendiamo l algoritmo di Ford-Fulkerson che risolve il problema del flusso per vederne una delle innumerevoli applicazioni

Riprendiamo l algoritmo di Ford-Fulkerson che risolve il problema del flusso per vederne una delle innumerevoli applicazioni Riprendiamo l algoritmo di Ford-Fulkeron che riolve il problema del fluo per vederne una delle innumerevoli applicazioni Reti di fluo Atrazione per materiale che corre attravero gli archi (come liquidi

Dettagli

Algoritmi e Strutture Dati. Scelta della struttura dati

Algoritmi e Strutture Dati. Scelta della struttura dati Algoritmi e Strutture Dati Scelta della struttura dati Alberto Montresor Università di Trento 2018/06/11 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Dettagli

Algoritmi e Strutture Dati. Scelta della struttura dati

Algoritmi e Strutture Dati. Scelta della struttura dati Algoritmi e Strutture Dati Scelta della struttura dati Alberto Montresor Università di Trento 2019/01/1 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Dettagli

ESERCITAZIONE SULLE OSCILLAZIONI PERMANENTI IN UN SISTEMA DI LUR E

ESERCITAZIONE SULLE OSCILLAZIONI PERMANENTI IN UN SISTEMA DI LUR E ESERCITAZIONE SULLE OSCILLAZIONI PERMANENTI IN UN SISTEMA DI LUR E BREVE RIPASSO Stdio di oscillazioni permanenti in n sistema dinamico tempo inariante soggetto a ingressi costanti, composto da n elemento

Dettagli

INSTRADAMENTO: ALGORITMO DI KRUSKAL

INSTRADAMENTO: ALGORITMO DI KRUSKAL UNIVERSITA' DEGLI STUDI DI BERGAMO Dipartimento di Ingegneria INSTRADAMENTO: ALGORITMO DI KRUSKAL FONDAMENTI DI RETI E TELECOMUNICAZIONE A.A. 2012/13 - II Semestre Esercizio 1 Sia dato il grafo G= (N,

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 12 Grafi e visite di grafi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione Un grafo G=(V,E) consiste in: - un insieme V di vertici (o nodi) - un insieme

Dettagli

Basi di Elettronica (1 parte)

Basi di Elettronica (1 parte) Bai di Eleronica ( pare) A TRASFORMATA DI APACE 2 Traformaa invera di aplace 2 Tabella: raformae di aplace di funzioni elemenari 2 Alcune proprieà noevoli della raformaa di aplace 3 Idenià di Pareval 5

Dettagli

Quarto allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale

Quarto allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale Quarto allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini luca@chiodini.org - l.chiodini@campus.unimib.it 30 marzo 2017 Programma 1. Lettura e analisi di un problema 2.

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Grafi: definizioni e visite

Grafi: definizioni e visite Grafi: definizioni e visite Grafi (non orientati) Grafo (non orientato): G = (V, E) V = nodi (o vertici) E = archi fra coppie di nodi distinti. Modella relazioni fra coppie di oggetti. Parametri della

Dettagli

Esame di Ricerca Operativa del 03/09/2015

Esame di Ricerca Operativa del 03/09/2015 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una raffineria di petrolio miscela tipi di greggio per ottenere tipi di carburante: senza piombo, diesel e blu diesel.

Dettagli

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore

Dettagli

Algebra vettoriale. risultante. B modulo, direzione e verso A punto di applicazione. Somma e differenza di vettori: a + b = c

Algebra vettoriale. risultante. B modulo, direzione e verso A punto di applicazione. Somma e differenza di vettori: a + b = c Algebra eoriale A B modulo, direzione e ero A puno di applicazione Somma e differenza di eori: a + b = c b a c meodo grafico: regola del parallelogramma Proprieà della omma: a + b = b + a (commuaia) (a

Dettagli

Grafi pesati Minimo albero ricoprente

Grafi pesati Minimo albero ricoprente Algoritmi e Strutture Dati Definizioni Grafi pesati Minimo albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un albero; T contiene

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da calcio e da basket che vende a 1 e 20 euro rispettivamente. L azienda compra ogni settimana

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da basket e da calcio che vende rispettivamente a 1 e euro. L azienda compra ogni settimana 00

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Esame di Ricerca Operativa del 07/09/2016

Esame di Ricerca Operativa del 07/09/2016 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un industria chimica produce due tipi di fertilizzanti (A e B) la cui lavorazione è affidata ai reparti di produzione e

Dettagli

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 13 giugno 2011

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 13 giugno 2011 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Stdi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia gigno Nome: Cognome: Matricola: voglio sostenere la prova orale il giorno venerdì //

Dettagli

Minimo albero di copertura

Minimo albero di copertura apitolo 0 Minimo albero di copertura efinizione 0.. ato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottoinsieme T E tale che il sottografo (V, T ) è un albero libero.

Dettagli

Esame di Ricerca Operativa. x 1 +2 x 2 6 x 1 +x 2 6 x 1 4 x 1 1

Esame di Ricerca Operativa. x 1 +2 x 2 6 x 1 +x 2 6 x 1 4 x 1 1 Esame di Ricerca Operativa (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + x x +x x 0 x + x x +x x x Base Soluzione

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 13 Cammini minimi: Algoritmo di Dijkstra (*) (ACM in grafi diretti e non diretti senza archi di peso negativo) Punto della situazione Algoritmo basato sull ordinamento

Dettagli