Alcune misure con l oscilloscopio
|
|
|
- Antonella Capone
- 7 anni fa
- Visualizzazioni
Transcript
1 Alcune misure con l oscilloscopio 1 Misura delle caratteristiche di un segnale A disposizione: oscilloscopio digitale o analogico sonda breadbord senza saldature con generatore di forme d onda resistori e condensatori cavetti di connessione R0 V 0 V1 2 La base di misura generatore di funzioni ampiezza variabile (scalibrata) Generatore di funzioni frequenza Sinusoidale triangolare quadra 3
2 Oscilloscopio 4 Oscilloscopio 5 Compensazione della sonda 6
3 Compensazione della sonda sovracompensata Onda quadra per compensazione della sonda Ground sottocompensata 7 Oscilloscopio 8 Oscilloscopio 9
4 Misure base esempio della sinusoide Ampiezza V = N ydy D x: Δt/div Dy: ΔV/div T = NxDx Tempo/frequenza Nx Ny visualizzare almeno un intero periodo misura picco-picco (riduce incertezza) traslare sull asse y (far coincidere un max/min con una divisione) misurare fra due passaggi per zero traslare sull asse x (far coincidere uno zero con una divisione) espandere la scala y (maggior pendenza miglior valutazione del passaggio per zero 10 Misure differenziali 1 Ingressi: hanno terminale a massa (sbilanciati). Z1 V CH1 CH1 CH2 V~ Z2 Z3 Se il circuito sotto indagine ha una sua massa, la connessione diretta può falsare la misura, o dar luogo a problemi anche più seri: viene messo a massa uno dei punti del circuito sotto indagine 11 Misure differenziali 2 Ingressi: hanno terminale a massa (sbilanciati). Z1 VCH1 VCH2 CH1 CH2 V~ Z2 Sì Z3 Connessione differenziale Visualizzazione: VCH1 VCH2 Uso di due canali (da cui l utilità di quattro canali) 12
5 Misura di fase relativa 1 A disposizione: oscilloscopio digitale o analogico sonda breadbord senza saldature con generatore di forme d onda resistori e condensatori cavetti di connessione R0 dispositivo V1 = VxM sinωt V 2 = VyM sin(ωt+φ) V1 V2 V0 13 R0 Misura di fase relativa 2: doppia y dispositivo V1 = VxM sinωt CH1 V1 V2 V 2 = VyM sin(ωt+φ) CH2 V0 v(t) φ = 2πΔT /T [rad] centrare sullo 0 i canali! attenzione alle funzioni di trasferimento (oscilloscopio e sonda) è su CH2 che vi sono le maggiori limitazioni in frequenza: CH1 non dà significativo contributo al comportamento del dispositivo V 2 V 1 0 V 1 V 2 (π ) > 0 v 2 (t) v 1 (t) T/2 π T (T ΔT) ΔT T 2π t θ 14 R 0 Misura di fase relativa 3: xy dispositivo V1 = VxM sinωt base dei tempi, Vx V0 V1 V2 V2 = VyM sin(ωt+φ) CH1, Vy y { Vx(t) = VxM sinωt V y(t) = VyM sin(ωt+φ) equazione dell ellisse parametrica V Y(max) VY(0) x sinφ = Vy(t = 0)/VyM CRT face 15
6 { Vx(t) = VxM sinωt Vy(t) = VyM sin(ωt+φ) sinφ = V y(t = 0)/V ym Con le stesse scale X e Y sull oscilloscopio!!! Misura di fase relativa 4: xy equazione dell ellisse parametrica In fase (φ = 0) elisse degenera in una retta (I e III quadrante), pendenza V ym/v xm. Stessa ampiezza pendenza 45 Opposizione di fase (φ = 180 ) elisse degenera in una retta (II e IV quadrante), pendenza VyM/VxM Stessa ampiezza pendenza 135 In quadratura (φ = ±90 ) Ellisse con i semiassi coincidenti con gli assi x e y. Stessa ampiezza cerchio V Y(max) VyM VxM y CRT face VY(0) x il canale x può non essere sufficientemente veloce! metodo limitato a frequenze basse 16 Materiale a disposizione: Oscilloscopio digitale due sonde per oscilloscopio a attenuazione regolabile (1X, 10X) cacciavite per la compensazione della sonda breadboard base di misura con generatore scalibrato di onde sinusoidali, triangolari, quadre resistori e condensatori cavetti di connessione per breadboard Si colleghino le sonde ai due canali, si pongano in attenuazione 10X e si prenda confidenza con lo strumento con le seguenti operazioni: 17 1) compensare le sonde: si collega una sonda all apposito piedino osservando l uscita (un onda quadra) sullo schermo. Si regola il trigger in maniera che l immagine sia ferma, e si trasla la curva in modo che il plateau dell onda quadra sia sovrapposto a una riga delle divisioni. L operazione di compensazione sarà allora più agevole e accurata. Documentare fotograficamente o con disegni le varie forme d onda viste sullo schermo. Ripetere per la seconda sonda. trigger compensazione 18
7 2) verificare lo zero dell oscilloscopio in accoppiamento DC: a tale scopo agganciare la prima sonda (CH1) sonda all apposito piedino sull oscilloscopio e regolare la posizione sulla verticale. Ripetere per la seconda sonda (CH2) 19 3) montare un semplice partitore resistivo con almeno tre resistori da alimentare col generatore di funzioni (notare che il generatore di funzione è già grounded alla massa comune della base di misura). Si misurino le resistenze con l ohmmetro prima di montarle. Collegare per ora una sola sonda ai capi di due resistori del partitore (attenzione: collegare la massa della sonda alla massa della base). Si presti attenzione alla resistenza di ingresso della sonda. Regolare la frequenza del generatore in modo che valga N KHz (potete scegliere l intero N liberamente fra 1 e 10). Regolare l ampiezza in modo da ottenere un numero intero di divisioni, prossimo al fondoscala (che può essere scelto liberamente e combinato con l ampiezza della sinusoide in modo da ottenere un segnale ben chiaro). 20 4) collegare le due sonde in due diversi punti del partitore, visualizzando i due canali sull oscilloscopio (CH1 e CH2). Attenzione alla collocazione delle masse delle sonde. Misurare le due ampiezze e confrontare con i valori attesi per il partitore. Variate ora la frequenza, misurandola, con almento tre ulteriori punti sperimentali sufficientemente spaziati (ad es.: 100 Hz, 1 khz, 5 khz, 10 khz). Verificate che il rapporto di partizione misurato con l oscilloscopio non cambi con la frequenza (ovvero: verificate la compensazione della sonda). Ripetete le misure con un onda quadra, alle stesse frequenze. Z1 CH1 CH2 V~ Z2 Z3 21
8 5) visualizzate ora varie forme d onda a diverse frequenze da poche decine di Hz fino alla frequenza massima (100 khz), misurando la frequenza. Notate distorsioni? Prendere nota e fare la foto dello schermo in alcuni casi tipici e discutere poi sulla relazione. 22 Esercitazione 2 - passa alto e sfasamenti Montate un semplice circuito CR serie, in modo che il tempo caratteristico RC ~ 100 µs. Regolate l ampiezza dell uscita (ai capi dei due componenti) come nell esempio precedente. Prelevate l uscita ai capi del resistore e effettuate alcune misurazioni (almeno dieci) di ampiezza e sfasamento al variare della frequenza, scegliendo intervalli di frequenza tali da poter osservare l effetto passa-alto. A questo scopo usate le due sonde: una ai capi del generatore e una ai capi del resistore, e inviate le due uscite ai due canali dell oscilloscopio (CH1 e CH2). Dai ritardi temporali di una sinusoide rispetto all altra ricavate lo sfasamento. Nella relazione riportate i punti sperimentali in grafico. Scegliete poi alcune frequenze (almeno tre) e misurate lo sfasamento con la visualizzazione X-Y (per la visualizzazione X-Y: Utility -> Display > Format-> X-Y. il canale 1 è su X). V R = jωτ 1+jωτ V in R0 V~ C R φ(ω) = arctan 1 ωτ τ = RC 23
Circuito RC con d.d.p. sinusoidale
Circuito C con d.d.p. sinusoidale Un circuito C-serie ha la seguente configurazione: G è la resistenza interna del generatore. Misura dello sfasamento della tensione ai capi del condensatore rispetto alla
Uso dell oscilloscopio 1
1/5 1 1 Introduzione Gli obiettivi di questa esercitazione sono sia quello di imparare l uso dei comandi principali dell oscilloscopio sia quello di imparare a valutare le incertezze di misura di questo
FRANCESCO MARINO - TELECOMUNICAZIONI
Classe: Data Gruppo: Alunni assenti Schema dell esercitazione. Progetto di un filtro RC passa-basso avendo specificato la frequenza di taglio 2. Realizzazione dei collegamenti e disegno dello schema circuitale
L Oscilloscopio e misure relative
Facoltà di INGEGNERIA II - Taranto Corso di Misure e Strumentazione Elettronica mod. I- L Oscilloscopio e misure relative 1 L oscilloscopio è attualmente uno dei più versatili e utili strumenti di misura
L OSCILLOSCOPIO. Ing. Stefano Severi
L OSCILLOSCOPIO Ing. Stefano Severi L oscilloscopio è in grado di visualizzare solo l andamento di tensioni periodiche PANNELLO FRONTALE DI UN OSCILLOSCOPIO una sezione di trigger schermo menù buttons
Laboratorio di elettromagnetismo II anno CdL in Fisica. Oscilloscopio digitale Agilent 54621A
Laboratorio di elettromagnetismo II anno CdL in Fisica Oscilloscopio digitale Agilent 4621A 1 2 6 3 3 4 4 CH1 CH2 3 3 2 1 6 1 Horizontal controls Controlli della posizione orizzontale delle tracce 1 Controllo
Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra
Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra TABELLE DEI COLORI 4 ANELLI. 1 ANELLO 2 ANELLO 3 ANELLO 4 ANELLO Nero. 0 x 1 - Marrone 1 1 x 10 - Rosso
Esercitazione Oscilloscopio
Esercitazione Oscilloscopio - 1 Esercitazione Oscilloscopio 1 - Oggetto Uso dell oscilloscopio. Rilievo della caratteristica tensione-corrente di un diodo. Misure di capacità mediante misure di sfasamento.
11/04/00. L oscilloscopio (raccolta di lucidi)
11/04/00 L oscilloscopio (raccolta di lucidi) L oscilloscopio visualizza la tensione (variabile) ai capi di un bipolo (che può essere un elemento di un circuito, un sensore, ecc.). In quanto misuratore
4 - Visualizzazione di forme d onda in funzione del tempo
Esercitazione Oscilloscopio - 1 Esercitazione Oscilloscopio 1 - Oggetto Uso dell oscilloscopio. Rilievo della caratteristica tensione-corrente di un diodo. Misure di capacità mediante misure di sfasamento.
Misure di tensione alternata 1
1/5 1 Introduzione 1 La seguente esercitazione di laboratorio riguarda l uso dei voltmetri nella modalità di misura di tensioni in alternata. Obiettivo dell esercitazione, oltre a raffinare la dimestichezza
Impiego dell oscilloscopio e del generatore di funzioni
Esercitazioni Lab - Impiego dell oscilloscopio e del generatore di funzioni 1 Impiego dell oscilloscopio e del generatore di funzioni Esercitazioni Lab - Impiego dell oscilloscopio e del generatore di
Laboratorio di Elettronica T
Laboratorio di Elettronica T Esperienza 1 Strumenti: Oscilloscopio e Gen. di funzione Cognome Nome Matricola Postazione N 1) Predisposizione banco di misura Accendete il generatore di funzione (FG) Agilent
Generatori di funzione e filtri RC
1/12 Generatori di funzione e filtri RC 1 Introduzione La seguente esercitazione di laboratorio riguarda lo studio di un filtro RC (passa basso o passa alto) per mezzo sia di uno stimolo sinusoidale che
Generatori di funzione e filtri RC
1/12 Generatori di funzione e filtri RC 1 Introduzione La seguente esercitazione di laboratorio riguarda lo studio di un filtro RC di tipopassabassopermezzosiadiunostimolosinusoidalechediunaformad onda
Metodi voltamperometrici. Metodo voltamperometrico - voltmetro a valle R x. misura di due grandezze. errori di inserzione di due strumenti
Enrico Silva diritti riservati Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore Elementi di Misure Elettroniche E. Silva a.a. 206/207 Parte
Interazione tra strumenti e sistemi in misura: effetto di carico
Corso di Laurea a distanza in INGEGNERIA ELETTRONICA Sede di Torino - A.A. 2005/2006 Modulo: Misure Elettroniche II (05EKCcm) Esercitazioni di Laboratorio Alessio Carullo 27 luglio 2006 Interazione tra
Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata
Scopo dell'esperienza: Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2 Circuiti in corrente alternata. Uso di un generatore di funzioni (onda quadra e sinusoidale); 2.
La sonda compensata. La sonda compensata
1/6 1 Introduzione La seguente esercitazione di laboratorio affronta il problema di realizzare una sonda compensata per un cavo di 50 m con capacità distribuita di circa 100 pf/m. 2 Tempo di salita di
LABORATORIO DI FISICA Lunedì 15 marzo Misura della costante di tempo di un circuito RC
LABORATORIO DI FISICA Lunedì 15 marzo 2004 Misura della costante di tempo di un circuito RC Collegare la serie RC al generatore di onde quadre (cavetto di massa all estremità libera del condensatore) e
Esercitazione di Laboratorio Oscilloscopio Analogico
1 Realizzazione del banco di misura 1 1 Realizzazione del banco di misura Esercitazione di Laboratorio Oscilloscopio Analogico Lo svolgimento di questa esercitazione richiede l allestimento del banco di
POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE
POLITECNICO DI TORINO Laboratorio di Elettrotecnica Data: Gruppo: Allievi: TERZA ESERCITAZIONE Strumenti utilizzati Materiale necessario Generatore di funzioni da banco Oscilloscopio da banco Bread-board
Esperienze n 3 e 4: circuiti RC e RL. Corso di laurea in Ingegneria Gestionale Laboratorio di fisica 2
Esperienze n 3 e 4: circuiti RC e RL Corso di laurea in Ingegneria Gestionale Laboratorio di fisica 2 1 Circuito RC 2 Circuito RC Obiettivo: Misurare la capacità inserita nel circuito sfruttando la costante
Capacità parassita. Quindi ci si aspetta che la funzione di trasferimento dipenda dalla frequenza
Esperienza n. 10 Partitore resistivo e sua compensazione in c.a. Partitore resistivo-capacitivo Partitore resistivo: abbiamo visto che in regime di corrente continua il rapporto di partizione è costante:
Prof. Paolo Colantonio a.a
Prof. Paolo Colantonio a.a. 2011 12 La breadboard o scheda per prototipi è un dispositivo di facile utilizzo che consente di realizzare rapidamente prototipi di circuiti elettronici senza eseguire saldature,
Compensazione della sonda
In laboratorio - compensazione della sonda - misure su segnali prodotti con g.f.o. - trigger ed effetti soglia - segnali lenti - risoluzione verticale - sweep (gen. forme d onda) - traslazione della traccia
Misura della banda passante di un filtro RC-CR
Elettronica Applicata a.a. 05/06 Esercitazione N Misura della banda passante di un filtro RC-CR Prof. Ing. Elena Biagi Sig. Marco Calzolai Sig. Andrea Giombetti Piergentili Ing. Simona Granchi Ing. Enrico
Lab 3 Strumenti per i circuiti in alternata
La maggior parte dei circuiti è in corrente alternata (AC) e la nostra capacità di progettare buoni circuiti dipende dagli strumenti disponibili per misurare i componenti, le impedenze e visualizzare le
ELETTRONICA APPLICATA I (DU) Guida alle esercitazioni di laboratorio - AA Circuiti con Amplificatori Operazionali
Guida alle esercitazioni di laboratorio AA 19992000 Esercitazione n. 4 Circuiti con Amplificatori Operazionali 4.1 Amplificatore AC Montare il circuito riportato nello schema a lato, con alimentazione
Laboratorio di Elettronica II. Esperienza 4. Realizzazione e misura di un amplificatore a BJT
Laboratorio di Elettronica II Esperienza 4 Realizzazione e misura di un amplificatore a BJT Attività Realizzazione dell amplificatore progettato e simulato nella precedente esperienza ( 3 ): - Montaggio
SECONDA ESERCITAZIONE - I parte
POLITECNICO DI TORINO Laboratorio di Elettrotecnica Data: Gruppo : Allievi: SECONDA ESERCITAZIONE - I parte Strumenti utilizzati Materiale necessario Generatore di funzioni da banco Oscilloscopio da banco
Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali
Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 2009 Amplificatore operazionale perché? Moltiplicazione
2 INTRODUZIONE DESCRIZIONE DELLA STRUMENTAZIONE ACCENSIONE DELL OSCILLOSCOPIO E IMPOSTAZIONE Default... 5
1 SOMMARIO 2 INTRODUZIONE... 2 2.1 DESCRIZIONE DELLA STRUMENTAZIONE... 3 3 ACCENSIONE DELL OSCILLOSCOPIO E IMPOSTAZIONE Default... 5 4 VISUALIZZAZIONE DI UNA FORMA D ONDA... 6 4.1 COMPENSAZIONE DELLE SONDE...
Circuiti elettrici non lineari. Il diodo
Circuiti elettrici non lineari Il diodo Misure con l oscilloscopio e con il multimetro Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 009 Individuazione dei pin del diodo Anodo Anodo
Generatore di Funzioni
Generatore di Funzioni Tipo di onda Come impostare una certa frequenza? Hz, khz, MHz. Oscilloscopio CH1 nel tempo CH2 nel tempo XY (CH1 vs. CH2) DUAL entrambi Lettura: Valore/DIVISIONE Ogni quadrato corrisponde
Esperienza 6 : semplici circuiti con diodi Corso di Laboratorio di Elettromagnetismo e Circuiti, prof. S. Masi
Esperienza 6 : semplici circuiti con diodi Corso di Laboratorio di Elettromagnetismo e Circuiti, prof. S. Masi 1 MISURA DELLA CARATTERISTICA DEL DIODO CON L OSCILLOSCOPIO E IL TRASFORMATORE Sono disponibili:
ω 1 è la frequenza di taglio inferiore ω 2 = ω 1 = 0 ω 2 è la frequenza di taglio superiore Α(ω) Α(ω) ω ω 1 ω 2
. Studio della loro risposta ad un onda quadra 1 Filtri elettrici ideali: sono quadrupoli che trasmettono un segnale di ingresso in un certo intervallo di frequenze ovvero esiste una banda di pulsazioni
Elettronica I - Prima Esercitazione - RISPOSTA IN FREQUENZA DI CIRCUITI CON AMPLIFICATORI OPERAZIONALI OpAmp
Elettronica I - Prima Esercitazione - RISPOSTA IN FREQUENZA DI CIRCUITI CON AMPLIFICATORI OPERAZIONALI OpAmp 1 Configurazione Invertente Circuito ATTIVO: l OpAmp va alimentato 2 OpAmp Ideale 3 Configurazione
CIRCUITI 2. determinazione della risposta in frequenza del multimetro misura di impedenze
CIRCUITI 2 determinazione della risposta in frequenza del multimetro misura di impedenze Laboratorio di Fisica Dipartimento di Fisica G.Occhialini Università di Milano Bicocca PARTE PRIMA: Determinazione
Esercitazione 5: DECODIFICATORE DI TONO CON C.I. NE567
Esercitazione 5: DECODIFICATORE DI TONO CON C.I. NE567 Obiettivo Verificare il funzionamento di un PLL per demodulazione AM coerente, con misure del comportamento come tone decoder, e dei campi di cattura
FRANCESCO MARINO - TELECOMUNICAZIONI
Classe: Data Gruo: Alunni assenti Schema dell esercitazione. Realizzazione di un filtro RCL parallelo passa-banda 2. Misura della frequenza di onanza e del guadagno in onanza del filtro. Calcolo dei valori
Elettronica I - Lab. Did. Elettronica Circuitale - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA
Elettronica I - Lab. Did. Elettronica Circuitale - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni T T i - TG2000 Generatore di Funzioni T T i - TG2000 Genera i segnali di
COMPORTAMENTO DI UN CONDENSATORE AL VARIARE DELLA FREQUENZA
COMPORTAMENTO DI UN CONDENSATORE AL VARIARE DELLA FREQUENZA Per studiare il comportamento in frequenza di un condensatore ho usato un circuito costituito da un resistore in serie ad un condensatore alimentato
Esercitazione 5 : PLL CON CIRCUITO INTEGRATO CD4046
Esercitazione 5 : PLL CON CIRCUITO INTEGRATO CD4046 Specifiche Verificare il funzionamento in diverse condizioni e determinare il valore di alcuni parametri del PLL integrato CD4046. Il circuito comprende
SECONDA ESERCITAZIONE
POLITECNICO DI TORINO Laboratorio di Elettrotecnica Data: Gruppo : Allievi: SECONDA ESERCITAZIONE Strumenti utilizzati Materiale necessario Generatore di funzioni da banco Oscilloscopio da banco Bread
Tensioni e corrente variabili
Tensioni e corrente variabili Spesso, nella pratica, le tensioni e le correnti all interno di un circuito risultano variabili rispetto al tempo. Se questa variabilità porta informazione, si parla spesso
Parte I. Relazione di laboratorio del 15/05/2009
Parte I Relazione di laboratorio del 15/05/2009 1 Capitolo 1 Oscilloscopio 1.1 Comandi dell oscilloscpio 1.1.1 Canale verticale Selettore di ingresso D1. Dove e come agisce il comando Y-POS? R1.. AC: il
Alimentatore Tektronix PS283. Silvia Roncelli Lab. Did. di Elettronica Circuitale 1
Alimentatore Tektronix PS283 Silvia Roncelli Lab. Did. di Elettronica Circuitale 1 Generatore di Tensione Silvia Roncelli Lab. Did. di Elettronica Circuitale 2 Regolazione Tensione e Limite di Corrente
Programma di Elettrotecnica ed Elettronica. Classe III A EN Prof. Maria Rosaria De Fusco e Domenico Bartemucci. a.s
Programma di Elettrotecnica ed Elettronica Classe III A EN Prof. Maria Rosaria De Fusco e Domenico Bartemucci a.s. 2014-2015 Elettrotecnica: Nozioni fondamentali: La struttura della materia La corrente
Misure su linee di trasmissione
Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare
Generatore di forme d onda
Generatore di forme d onda Uso Il display indica il numero corrispondente alla forma d onda, rappresentato con una singola cifra esadecimale ( da o a F ). Il numero, e quindi la forma d onda, può essere
ESERCITAZIONE 3: USO DELL OSCILLOSCOPIO DIGITALE
ESERCITAZIONE 3: USO DELL OSCILLOSCOPIO DIGITALE Introduzione L esercitazione di laboratorio qui descritta ha lo scopo di illustrare l uso dell oscilloscopio digitale analizzando le funzioni sue funzioni
ESERCITAZIONE DI LABORATORIO SUL TEOREMA DI THEVENIN
ESECITAZIONE DI LABOATOIO SUL TEOEMA DI THEVENIN Simone Fiori Dipartimento di Ingegneria Industriale Facoltà di Ingegneria - Università di Perugia ([email protected]) IL TEOEMA DI SOSTITUZIONE DI THEVENIN
Linee di trasmissione
Linee di trasmissione Finora esperienza con circuiti a costanti concentrate. E un approssimazione, valida solo per lunghezze d onda dei segnali grandi rispetto alle dimensioni del circuito. Esempio Sinusoidale
Circuiti Elettrici. Un introduzione per studenti di Fisica. Giulio D Agostini. Dipartimento di Fisica, Università La Sapienza, Roma
Circuiti Elettrici Un introduzione per studenti di Fisica Giulio D Agostini Dipartimento di Fisica, Università La Sapienza, Roma 17 febbraio 2014 ii Indice 1 Forze gravitazionali e forze elettriche 1 1.1
ESERCITAZIONE DI LABORATORIO SULLA DETERMINAZIONE DELLA RISPOSTA IN FREQUENZA DI UN FILTRO PASSIVO PASSA-BASSO COSTITUITO DA UNO STADIO RC
ESERCITZIONE DI LBORTORIO SULL DETERMINZIONE DELL RISPOST IN FREQUENZ DI UN FILTRO PSSIVO PSS-BSSO COSTITUITO D UNO STDIO RC Premessa Un filtro è un quadripolo capace di operare una selezione, tra i segnali
Circuiti Elettrici. Un introduzione per studenti di Fisica. Giulio D Agostini. Dipartimento di Fisica, Università La Sapienza, Roma
Circuiti Elettrici Un introduzione per studenti di Fisica Giulio D Agostini Dipartimento di Fisica, Università La Sapienza, Roma 24 settembre 2012 ii Indice 1 Forze gravitazionali e forze elettriche 1
Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA
Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni Tektronix CFG280 Generatore di Funzioni Tektronix CFG280 Genera i segnali di tensione
LABORATORIO SPERIMENTALE ESERCITAZIONE nr. 2 ELETTRONICA I
LABORATORIO SPERIMENTALE ESERCITAZIONE nr. 2 ELETTRONICA I Fig. 1: Vista dall alto della basetta utilizzata nell esercitazione con i diodi Fig. 2: Schema dei circuiti presenti sulla scheda elettronica
Laboratorio di Telecomunicazioni
I.I.S. Perlasca sez. ITIS Vobarno (BS) Data 02 /10/15 Laboratorio di Telecomunicazioni Castellini Fabio Cognome e Nome Relazione n 1 Classe Gruppo 4 Obiettivo L esperienza, suddivisa in 2 parti distinte,
Laboratorio di Telecomunicazioni
I.I.S. Perlasca sez. ITIS Vobarno (BS) Data 16/10/15 Laboratorio di Telecomunicazioni Castellini Fabio Cognome e Nome Relazione n 2 Classe Gruppo 4 Titolo: I filtri attivi Obiettivo L esperienza, suddivisa
II.3.1 Inverter a componenti discreti
Esercitazione II.3 Caratteristiche elettriche dei circuiti logici II.3.1 Inverter a componenti discreti Costruire il circuito dell invertitore in logica DTL e verificarne il funzionamento. a) Posizionando
ELETTRONICA APPLICATA E MISURE
Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO B8 Esercizi parte B (2)» Generatore Q-T e Q» Monostabili» Laboratorio ELN-1 22/10/2013-1 ElapB8-2013 DDC Page 1 2013 DDC 1 Come
AMPLIFICATORE INVERTENTE E NON INVERTENTE CON DIVERSO GUADAGNO RELATIVAMENTE ALLA SEMIONDA POSITIVA E ALLA SEMIONDA NEGATIVA DEL SEGNALE D INGRESSO
MPLIFICTOE INVETENTE E NON INVETENTE CON DIVESO GUDGNO ELTIVMENTE LL SEMIOND POSITIV E LL SEMIOND NEGTIV DEL SEGNLE D INGESSO Si diversifica l amplificazione relativamente alla semionda positiva (amplificazione
RADDRIZZATORE AD UNA SEMIONDA AMPLIFICATORE LOGARITMICO
Elettronica Applicata a.a. 2016/2017 Esercitazione N 4 RADDRIZZATORE AD UNA SEMIONDA AMPLIFICATORE LOGARITMICO Elena Biagi Marco Calzolai Andrea Giombetti Piergentili Simona Granchi Enrico Vannacci www.uscndlab.dinfo.unifi.it
Elettronica Applicata a.a. 2015/2016 Esercitazione N 1 STRUMENTAZIONE
Elettronica Applicata a.a. 2015/2016 Esercitazione N 1 STRUMENTAZIONE Prof. Ing. Elena Biagi Sig. Marco Calzolai Sig. Andrea Giombetti Piergentili Ing. Simona Granchi Ing. Enrico Vannacci www.uscndlab.dinfo.unifi.it
monitor V(t) X(ms/cm) Y(V/cm) comandi
L oscilloscopio è lo strumento più utilizzato per studiare grandezze elettriche variabili nel tempo. Ha uno schermo sul quale viene visualizzato il grafico della grandezza in funzione del tempo: Grazie
ELETTRONICA APPLICATA E MISURE
Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO Be2 Esercizi parte B (2)» Generatore Q-T e Q» Monostabili» Laboratorio ELN-1 AA 2014-15 23/09/2014-1 ElapBe2-2014 DDC Page 1
ELETTRONICA APPLICATA E MISURE
Ingegneria dell Informazione Come utilizzare gli esercizi ELETTRONICA APPLICATA E MISURE Dante DEL CORSO Be2 Esercizi parte B (2)» Generatore Q-T e Q» Monostabili» Laboratorio ELN-1 AA 2015-16 Esercizi
Piano Lauree Scientifiche. Esperimento di Hebb
Piano Lauree Scientifiche Esperimento di Hebb Prof. Alessio Piana Liceo Scientifico F. Filelfo di Tolentino Ciro Biancofiore Dipartimento di Fisica dell Università di Camerino. Scopo dell esperimento Determinare
MISURA DELLA VELOCITA DELLA LUCE
MISURA DELLA VELOCITA DELLA LUCE La misura della velocità della luce (c=3x10 8 m/s) effettuata su distanze dell ordine del metro richiede la misura di intervalli di tempo brevissimi (~3x10-9 s). Il metodo
Onde sonore stazionarie in un tubo risonante
Onde sonore stazionarie in un tubo risonante Scopo dell esperimento Determinare la velocità del suono analizzando le caratteristiche delle onde sonore stazionarie in un tubo risonante. Richiamo teorico
ESERCITAZIONE DI ELETTRONICA I L Alimentatore Stabilizzato (Realizzazione Circuitale e Prova Sperimentale)
ESERCITAZIONE DI ELETTRONICA I L Alimentatore Stabilizzato (Realizzazione Circuitale e Prova Sperimentale) Obiettivo dell'esercitazione: realizzazione ed analisi di un circuito regolatore di tensione facente
Laboratorio di Elettronica A.A. 2001/2002. Calendario delle Esperienze. 04/03 Inizio dei corsi salta - 22/04 RECUPERO delle lezioni precedenti -
Laboratorio di Elettronica A.A. 2/22 Calendario delle Esperienze Data Info File /3 Inizio dei corsi salta /3 Descrizione strumentazione prova su breadboard E_ 8/3 Amplificatore a opamp. Banda passante
Esercitazione 6: Convertitori A/D Delta e Sigma-Delta
Esercitazione 6: Convertitori A/D Delta e Sigma-Delta Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Verificare il comportamento di un convertitore A/D differenziale - Determinare
3) Terminare la linea con una resistenza variabile ( Ω); dalla condizione di riflessione nulla verificare l impedenza caratteristica.
Appendice C 233 1) Misurare la lunghezza elettrica T L della linea. 2) Dal valore di T L e dalla lunghezza geometrica calcolare la velocità di propagazione dei segnali lungo la linea e la costante dielettrica
Le sonde Pagina in. - figura
Le sonde Paga 04 LE ONDE L impedenza di gresso,, di un oscilloscopio è modellabile dal parallelo tra una resistenza e una capacità C, i cui valori tipici sono rispettivamente MΩ e 0 0pF. Il loro valore
OSCILLATORE A SFASAMENTO
Elettronica Applicata a.a. 2013/2014 Esercitazione N 5 OSCILLATORE A SFASAMENTO Fabio Cioria Andrea Giombetti Giulio Pelosi ([email protected]) ([email protected]) ([email protected]) www.echommunity.com/courses.htm
L oscilloscopio. Samuele Straulino.
L oscilloscopio Samuele Straulino [email protected] http://hep.fi.infn.it/ol/samuele/dida.php Cos è un oscilloscopio Si tratta sostanzialmente di un voltmetro capace di visualizzare in funzione del
Esercitazione 1 Misure e simulazioni su circuiti RC e RLC
Esercitazione 1 Misure e simulazioni su circuiti RC e RLC 1. Introduzione Scopo dell esercitazione Questa esercitazione sperimentale ha due obiettivi principali: - fornire le tecniche di base per l utilizzo
ESERCIZIO PRELIMINARE
ESERCIZIO PRELIMINARE Prima di cominciare le misure, svolgere quanto indicato sotto e poi verificare con il docente le conclusioni. Sulla carta di Smith, la misura di un componente concentrato ha l andamento
Dispositivi elettronici Esperienze di laboratorio
Dispositivi elettronici Esperienze di laboratorio Universitá degli Studi di L Aquila Massimo Lucresi Luigi Pilolli Mariano Spadaccini maggio 2002 Esperienza n. 1 Analisi della risposta in frequenza di
Collaudo statico di un ADC
Collaudo statico di un ADC Scopo della prova Verifica del funzionamento di un tipico convertitore Analogico-Digitale. Materiali 1 Alimentatore 1 Oscilloscopio 1 Integrato ADC 0801 o equivalente Alcuni
