FRANCESCO MARINO - TELECOMUNICAZIONI
|
|
|
- Isabella Lelli
- 8 anni fa
- Visualizzazioni
Transcript
1 Classe: Data Gruppo: Alunni assenti Schema dell esercitazione. Progetto di un filtro RC passa-basso avendo specificato la frequenza di taglio 2. Realizzazione dei collegamenti e disegno dello schema circuitale 3. Calcolo dei valori teorici dello sfasamento introdotto dal filtro al variare della frequenza 4. Misura dello sfasamento introdotto dal filtro al variare della frequenza (regime sinusoidale) 5. Determinazione sperimentale della frequenza di taglio 6. Misura dei componenti 7. Grafici 8. Commenti Teoria: Vol., par Circuito Formule f π ψ = ϕo ϕi = arctg 0 f 2 (ψ in rad.) f ψ = ϕo ϕi = arctg 0 90 (ψ in gradi deg.) f f V i 0 I = 2 π RC R C Autore: Francesco Marino [email protected] Esercitazione n. 3 Misura al variare della frequenza dello sfasamento introdotto da un filtro RC passa-basso V o ψ: sfasamento ϕ o : fase iniziale della tensione di uscita ϕ i : fase iniziale della tensione di ingresso f: frequenza f 0 : frequenza di taglio Dotazione necessaria. Generatore di funzioni (g.d.f.) 2. Oscilloscopio a doppia traccia 3. Tre cavi BNC-coccodrillo (oppure due cavi BNC-coccodrillo, un cavo BNC-BNC e una «T» BNC) 4. Tester
2 Introduzione alle tecniche di misura dello sfasamento A) Metodo del ritardo temporale I due segnali sinusoidali da esaminare si applicano ai due canali CH e CH2 dell oscilloscopio e si visualizzano contemporaneamente. Noto il periodo T delle sinusoidi, dalla misura del tempo t r che intercorre tra il passaggio attraverso lo zero dei due segnali (fig. ) è possibile ricavare il valore assoluto dello sfasamento ψ presente tra i due segnali. Esprimendo quest ultimo in gradi, vale la proporzione [] 360 :T = ψ :t r da cui 360 t [2] ψ = T r Per ottenere il valore dello sfasamento in radianti è sufficiente sostituire 360 con 2π. v(t) Fig. CH t r CH2 t r Al fine di determinare il segno dello sfasamento è necessario stabilire quale dei due segnali si trovi in anticipo di fase rispetto all altro. Per esempio, se lo sfasamento è stato definito come ψ = ϕ CH2 - ϕ CH e si rileva che il segnale CH si trova in anticipo di fase rispetto al segnale CH2 (come in fig. ), si dovrà concludere che lo sfasamento ψ è negativo, mentre sarà positivo in caso contrario. Durante le misurazioni è necessario osservare le seguenti regole: Evitare di porre il selettore di sorgente trigger (solitamente contraddistinto dalle posizioni NORM/CH/CH2) in NORM (caso in cui il segnale di comando trigger è quello applicato alle placche di deflessione). In questo caso infatti possono verificarsi due eventualità: se il selettore d ingresso è posto in posizione ALT (modalità ALTERNATE per il funzionamento in doppia traccia) si perde la corretta posizione reciproca dei due segnali in quanto la partenza della rampa per lo spostamento o- rizzontale dello spot è comandata alternativamente dal CH e dal CH2; se invece lo stesso selettore è in CHOP (modalità CHOPPED per il funzionamento in doppia traccia) il segnale fornito al trigger risulta troppo complesso con conseguenti difficoltà di visualizzazione. Nel caso il periodo T dei segnali venga misurato mediante oscilloscopio, espandere la scala orizzontale al massimo. Prima di misurare il ritardo t r centrare entrambe le tracce rispetto al riferimento orizzontale presente sullo schermo dell oscilloscopio. Misurare il ritardo t r cercando di espandere la scala orizzontale nei limiti del possibile, eventualmente agendo sul comando LEVEL/SLOPE per spostare nell area visibile la zona utile per la misura. t B) Metodo delle figure di Lissajous I due segnali sinusoidali da esaminare si applicano ai due canali CH e CH2 dell oscilloscopio e si porta quest ultimo in modalità X-Y (canale CH sull asse X e canale CH2 sull asse Y) agendo sugli opportuni selettori. In questo caso, dopo aver selezionato le scale appropriate per la visualizzazione orizzontale e verticale, si formano sullo schermo delle figura di forma ellittica (o in casi particolari segmenti o cerchi) 2
3 dette figure di Lissajous, mediante le quali è possibile misurare lo sfasamento presente tra i due segnali in esame. Con riferimento alla fig. 2, dalla misura di A e B, ottenuta dopo aver centrato l immagine rispetto all asse verticale, è possibile risalire al valore assoluto dello sfasamento ψ mediante la seguente relazione: [3] ψ = arcsen( B A ) B Fig. 2 E necessario osservare che il metodo descritto non consente la determinazione del segno di ψ. Oltre a ciò il calcolo di ψ fornisce sempre valori compresi tra 0 e 90, anche quando in effetti lo sfasamento ha un modulo compreso tra 90 e 80. Dal tipo di figura visualizzata è possibile però determinare se sia necessario o meno aggiungere 90 al valore calcolato. Con riferimento alla fig. 3 si hanno i seguenti casi: a) ψ = 0 (segnali in fase) b) 0 < ψ < 90 c) ψ = 90 (segnali in quadratura di fase) d) 90 < ψ < 80 e) ψ = 80 (segnali in controfase) A a) b) c) d) e) Fig. 3 Per quanto riguarda gli aspetti pratici delle misure si può osservare che: Dato che è possibile fissare il valore di A arbitrariamente è opportuno, per avere la massima precisione nella misura, fissare A al massimo valore, pari a 8 divisioni. E sufficiente misurare A e B in divisioni in quanto tali quantità vanno a costituire un rapporto e ciò rende superflua la moltiplicazione di entrambe le grandezze per lo stesso fattore di scala. Al fine di fissare A è sufficiente porre il selettore d ingresso del CH su GND e portare il segmento verticale che viene visualizzato sull asse centrale. Al fine della misura di B può essere utile espandere la scala del CH in modo tale da poter meglio valutare le intersezioni dell ellisse con l asse verticale. 3
4 Svolgimento Nota: i valori teorici sono contraddistinti dal pedice T, mentre i valori sperimentali sono contraddistinti dal pedice S ) Scegliere i valori di R T e C T in modo da ottenere una frequenza di taglio f 0T compresa tra e 0 khz (suggerimento: dato che di norma i valori disponibili di capacità sono pochi scegliere prima C T e poi R T ). Calcoli per la determinazione di R T e C T R T = C T = f 0T = 2) Montare su breadboard il filtro e realizzare i collegamenti con il g.d.f. e l oscilloscopio. Collegare il g.d.f. all ingresso del filtro e i canali e 2 dell oscilloscopio rispettivamente all ingresso e all uscita del filtro. Per quanto riguarda la disposizione delle masse si rimanda all esercitazione n. 2. Disegnare lo schema completo di g.d.f. e oscilloscopio (rappresentare i cavi mediante una linea bipolare); per quanto riguarda la rappresentazione di g.d.f. e oscilloscopio si rimanda all esercitazione n. 2. Schema circuitale 3) Calcolare (approssimando a tre cifre significative) e riportare in tabella i valori teorici dello sfasamento ψ T in gradi degradi introdotto dal filtro in funzione della frequenza. f (khz) ψ T 4
5 4a) Misurare con il metodo del ritardo temporale i valori dello sfasamento in funzione della frequenza e riportare i valori in tabella. Per quanto riguarda la determinazione di T può considerato sufficientemente preciso il valore di frequenza indicato dal g.d.f, il cui inverso è pari al periodo dei segnali; se si vuole una precisione maggiore il valore del periodo deve essere verificato all oscilloscopio, variando in maniera fine la frequenza per ottenere il valore di T desiderato. Si ricorda l opportunità di estendere al massimo la scala orizzontale dell oscilloscopio in modo tale da ottenere la migliore precisione della misura. Nelle colonne T, scala e t r devono essere riportate, per ciascuna misura, le unità di misura. Attendere l insegnante per il controllo delle prime misure effettuate. f (khz) T n (div) scala t r ψ S misura di t r 4b) Misurare con il metodo delle figure di Lissajous i valori dello sfasamento in funzione della frequenza e riportare i valori in tabella. Si ricorda l opportunità di fissare A a 8 divisioni per tutte le misure. f (khz) A (div) B (div) ψ S a) Misurare con il metodo del ritardo temporale la frequenza di taglio del filtro. Partendo dal valore teorico, variare la frequenza finché non si abbia ψ = -45, il che si verifica se t r = (/8)T: 360 ( / 8)T 360 ψ 0 = = = 45 T 8 Misurare quindi il periodo T 0S e calcolare f 0S. Si ricorda l opportunità di estendere al massimo la scala orizzontale in modo tale da ottenere la migliore precisione nella misura del periodo. t r = T 0S = f 0S = 5
6 5b) Misurare con il metodo delle figure di Lissajous la frequenza di taglio del filtro. Partendo dal valore teorico, variare la frequenza finché non si abbia ψ S = -45, il che si verifica se A = 8 div e B = 5,6 div: ψ = arcsen( 56, 8) = arcsen( 07, ) = 45 Misurare quindi il periodo T 0S2 e calcolare f 0S2. Si ricorda l opportunità di estendere al massimo la scala orizzontale in modo tale da ottenere la migliore precisione nella misura del periodo. T 0S2 = f 0S2 = 6) Misurare con un tester il valore della resistenza. Determinare quindi, sulla base della resistenza misurata e della frequenza di taglio sperimentale f 0S (uno dei due valori misurati), il valore della capacità. Calcolare il valore degli scarti in percentuale rispetto ai valori nominali verificando se tali scarti rientrano nelle tolleranze previste. R S = scarto percentuale = C S = scarto percentuale = 7) Riportare su carta semilogaritmica con due colori distinti l andamento di ψ T e di ψ S (da una delle due tabelle costruite con i due metodi) al variare della frequenza. 8) Commentare i risultati ottenuti, ipotizzando in particolare le cause delle discordanze tra la curva teorica e quella sperimentale e tra i risultati sperimentali ottenuti con i due metodi. Commenti 6
Circuito RC con d.d.p. sinusoidale
Circuito C con d.d.p. sinusoidale Un circuito C-serie ha la seguente configurazione: G è la resistenza interna del generatore. Misura dello sfasamento della tensione ai capi del condensatore rispetto alla
Uso dell oscilloscopio 1
1/5 1 1 Introduzione Gli obiettivi di questa esercitazione sono sia quello di imparare l uso dei comandi principali dell oscilloscopio sia quello di imparare a valutare le incertezze di misura di questo
L OSCILLOSCOPIO. Ing. Stefano Severi
L OSCILLOSCOPIO Ing. Stefano Severi L oscilloscopio è in grado di visualizzare solo l andamento di tensioni periodiche PANNELLO FRONTALE DI UN OSCILLOSCOPIO una sezione di trigger schermo menù buttons
Generatori di funzione e filtri RC
1/12 Generatori di funzione e filtri RC 1 Introduzione La seguente esercitazione di laboratorio riguarda lo studio di un filtro RC di tipopassabassopermezzosiadiunostimolosinusoidalechediunaformad onda
Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra
Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra TABELLE DEI COLORI 4 ANELLI. 1 ANELLO 2 ANELLO 3 ANELLO 4 ANELLO Nero. 0 x 1 - Marrone 1 1 x 10 - Rosso
Esercitazione Oscilloscopio
Esercitazione Oscilloscopio - 1 Esercitazione Oscilloscopio 1 - Oggetto Uso dell oscilloscopio. Rilievo della caratteristica tensione-corrente di un diodo. Misure di capacità mediante misure di sfasamento.
Generatori di funzione e filtri RC
1/12 Generatori di funzione e filtri RC 1 Introduzione La seguente esercitazione di laboratorio riguarda lo studio di un filtro RC (passa basso o passa alto) per mezzo sia di uno stimolo sinusoidale che
4 - Visualizzazione di forme d onda in funzione del tempo
Esercitazione Oscilloscopio - 1 Esercitazione Oscilloscopio 1 - Oggetto Uso dell oscilloscopio. Rilievo della caratteristica tensione-corrente di un diodo. Misure di capacità mediante misure di sfasamento.
Generatore di Funzioni
Generatore di Funzioni Tipo di onda Come impostare una certa frequenza? Hz, khz, MHz. Oscilloscopio CH1 nel tempo CH2 nel tempo XY (CH1 vs. CH2) DUAL entrambi Lettura: Valore/DIVISIONE Ogni quadrato corrisponde
Laboratorio di Elettronica T
Laboratorio di Elettronica T Esperienza 1 Strumenti: Oscilloscopio e Gen. di funzione Cognome Nome Matricola Postazione N 1) Predisposizione banco di misura Accendete il generatore di funzione (FG) Agilent
L oscilloscopio: introduzione
L oscilloscopio: introduzione Ampiezza y Tubo a raggi catodici canale Y canale X segnale base tempi asse tempi t ingresso L oscilloscopio è uno strumento che visualizza su uno schermo l andamento di una
POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE
POLITECNICO DI TORINO Laboratorio di Elettrotecnica Data: Gruppo: Allievi: TERZA ESERCITAZIONE Strumenti utilizzati Materiale necessario Generatore di funzioni da banco Oscilloscopio da banco Bread-board
Misura della banda passante di un filtro RC-CR
Elettronica Applicata a.a. 05/06 Esercitazione N Misura della banda passante di un filtro RC-CR Prof. Ing. Elena Biagi Sig. Marco Calzolai Sig. Andrea Giombetti Piergentili Ing. Simona Granchi Ing. Enrico
Misure di tensione alternata 1
1/5 1 Introduzione 1 La seguente esercitazione di laboratorio riguarda l uso dei voltmetri nella modalità di misura di tensioni in alternata. Obiettivo dell esercitazione, oltre a raffinare la dimestichezza
Onde sonore stazionarie in un tubo risonante
Onde sonore stazionarie in un tubo risonante Scopo dell esperimento Determinare la velocità del suono analizzando le caratteristiche delle onde sonore stazionarie in un tubo risonante. Richiamo teorico
LABORATORIO DI FISICA Lunedì 15 marzo Misura della costante di tempo di un circuito RC
LABORATORIO DI FISICA Lunedì 15 marzo 2004 Misura della costante di tempo di un circuito RC Collegare la serie RC al generatore di onde quadre (cavetto di massa all estremità libera del condensatore) e
Tensioni e corrente variabili
Tensioni e corrente variabili Spesso, nella pratica, le tensioni e le correnti all interno di un circuito risultano variabili rispetto al tempo. Se questa variabilità porta informazione, si parla spesso
Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata
Scopo dell'esperienza: Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2 Circuiti in corrente alternata. Uso di un generatore di funzioni (onda quadra e sinusoidale); 2.
ESERCITAZIONE DI ELETTRONICA I L Alimentatore Stabilizzato (Realizzazione Circuitale e Prova Sperimentale)
ESERCITAZIONE DI ELETTRONICA I L Alimentatore Stabilizzato (Realizzazione Circuitale e Prova Sperimentale) Obiettivo dell'esercitazione: realizzazione ed analisi di un circuito regolatore di tensione facente
Interazione tra strumenti e sistemi in misura: effetto di carico
Corso di Laurea a distanza in INGEGNERIA ELETTRONICA Sede di Torino - A.A. 2005/2006 Modulo: Misure Elettroniche II (05EKCcm) Esercitazioni di Laboratorio Alessio Carullo 27 luglio 2006 Interazione tra
Esercitazione 5: DECODIFICATORE DI TONO CON C.I. NE567
Esercitazione 5: DECODIFICATORE DI TONO CON C.I. NE567 Obiettivo Verificare il funzionamento di un PLL per demodulazione AM coerente, con misure del comportamento come tone decoder, e dei campi di cattura
11/04/00. L oscilloscopio (raccolta di lucidi)
11/04/00 L oscilloscopio (raccolta di lucidi) L oscilloscopio visualizza la tensione (variabile) ai capi di un bipolo (che può essere un elemento di un circuito, un sensore, ecc.). In quanto misuratore
IL CIRCUITO ELETTRICO RESISTENZE IN PARALLELO
Laboratorio di.... Scheda n. 4 Livello: Medio A.S.... Classe. NOME..... DATA... Prof.... IL CIRCUITO ELETTRICO RESISTENZE IN PARALLELO R1 R2 Conoscenze - Conoscere le grandezze elettriche che caratterizzano
II.3.1 Inverter a componenti discreti
Esercitazione II.3 Caratteristiche elettriche dei circuiti logici II.3.1 Inverter a componenti discreti Costruire il circuito dell invertitore in logica DTL e verificarne il funzionamento. a) Posizionando
Esercitazione 4: Sintetizzatore di frequenza con PLL
Esercitazione 4: Sintetizzatore di frequenza con PLL 1. Informazioni generali 1.1 Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Verificare il comportamento di un PLL - Determinare
RELAZIONE DI LABORATORIO
RELAZIONE DI LABORATORIO Esercitazione di laboratorio di Elettrotecnica N 3 Svolta in data 30/11/2010 Corso di laurea in Ingegneria Aerospaziale Docente del corso ZICH RICCARDO Squadra (A,B,C) B Tavolo
Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II
Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1 Scopo dell'esperienza: Circuiti in corrente continua 1. Utilizzo di voltmetro ed amperometro; 2. verifica della validita'
La corrente alternata
La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello
ESERCITAZIONE DI LABORATORIO SULLA DETERMINAZIONE DELLA RISPOSTA IN FREQUENZA DI UN FILTRO PASSIVO PASSA-BASSO COSTITUITO DA UNO STADIO RC
ESERCITZIONE DI LBORTORIO SULL DETERMINZIONE DELL RISPOST IN FREQUENZ DI UN FILTRO PSSIVO PSS-BSSO COSTITUITO D UNO STDIO RC Premessa Un filtro è un quadripolo capace di operare una selezione, tra i segnali
Laboratorio di Telecomunicazioni
I.I.S. Perlasca sez. ITIS Vobarno (BS) Data 16/10/15 Laboratorio di Telecomunicazioni Castellini Fabio Cognome e Nome Relazione n 2 Classe Gruppo 4 Titolo: I filtri attivi Obiettivo L esperienza, suddivisa
Esercitazione di Laboratorio Oscilloscopio Analogico
1 Realizzazione del banco di misura 1 1 Realizzazione del banco di misura Esercitazione di Laboratorio Oscilloscopio Analogico Lo svolgimento di questa esercitazione richiede l allestimento del banco di
Annamaria Mazzia. Corso di Metodi Numerici per l Ingegneria dispense e altro materiale su
Soluzione di un sistema non lineare con la Regula Falsi generalizzata per la determinazione degli angoli conico di taglio ed elicoidale di taglio di una cremagliera Annamaria Mazzia Dipartimento di Metodi
Generatore di forme d onda
Generatore di forme d onda Uso Il display indica il numero corrispondente alla forma d onda, rappresentato con una singola cifra esadecimale ( da o a F ). Il numero, e quindi la forma d onda, può essere
MISURA DELLA VELOCITA DELLA LUCE
MISURA DELLA VELOCITA DELLA LUCE La misura della velocità della luce (c=3x10 8 m/s) effettuata su distanze dell ordine del metro richiede la misura di intervalli di tempo brevissimi (~3x10-9 s). Il metodo
Capacità parassita. Quindi ci si aspetta che la funzione di trasferimento dipenda dalla frequenza
Esperienza n. 10 Partitore resistivo e sua compensazione in c.a. Partitore resistivo-capacitivo Partitore resistivo: abbiamo visto che in regime di corrente continua il rapporto di partizione è costante:
Esperienza 6 : semplici circuiti con diodi Corso di Laboratorio di Elettromagnetismo e Circuiti, prof. S. Masi
Esperienza 6 : semplici circuiti con diodi Corso di Laboratorio di Elettromagnetismo e Circuiti, prof. S. Masi 1 MISURA DELLA CARATTERISTICA DEL DIODO CON L OSCILLOSCOPIO E IL TRASFORMATORE Sono disponibili:
La sonda compensata. La sonda compensata
1/6 1 Introduzione La seguente esercitazione di laboratorio affronta il problema di realizzare una sonda compensata per un cavo di 50 m con capacità distribuita di circa 100 pf/m. 2 Tempo di salita di
Misurare l impedenza di un altoparlante
Misurare l impedenza di un altoparlante Nel lavoro di riparazione-restauro di una vecchia radio può rendersi necessaria la sostituzione dell altoparlante, vuoi perché guasto irreparabilmente o addirittura
Laboratorio misure elettroniche ed elettriche: regolatori di tensione a tiristori
Laboratorio misure elettroniche ed elettriche: regolatori di tensione a tiristori Circuiti di accensione per tiristori (Tavole E.1.1 - E.1.2) Considerazioni teoriche Per le debite considerazioni si fa
Capitolo 8 Misura di Potenza in Trifase
Capitolo 8 di in Trifase Si vuole effettuare una misura di potenza utilizzando un metodo di carico trifase fittizio. Vengono impiegati in un primo momento tre wattmetri numerici sulle tre fasi ed in seguito
Diodo. Marco Ianna 23 maggio 2014
Diodo Marco Ianna 23 maggio 214 1 Introduzione: Diodo Un diodo ideale è un oggetto che può fare passare corrente solo in un certo verso e la cui caratteristica è quindi rappresentabile come in figura 1.
LA LEGGE DI OHM La verifica sperimentale della legge di Ohm
Laboratorio di.... Scheda n. 2 Livello: Avanzato A.S.... Classe. NOME..... DATA... Prof.... LA LEGGE DI OHM La verifica sperimentale della legge di Ohm Conoscenze - Conoscere la legge di Ohm - Conoscere
L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%
UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico
L OSCILLOSCOPIO: FUNZIONAMENTO E COMANDI
L OSCILLOSCOPIO: FUNZIONAMENTO E COMANDI 1 - Forze elettriche Tra due punti dello spazio tra i quali esiste una d.d.p. è presente un campo elettrico E orientato come in fig. 1. Una carica elettrica libera
M320 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE
Pag. 1/2 Sessione ordinaria 2008 Seconda prova scritta M320 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE CORSO DI ORDINAMENTO Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA (Testo valevole
BREVE GUIDA ALL'USO DEL TESTER
BREVE GUIDA ALL'USO DEL TESTER Un tester digitale sufficientemente preciso per uso hobbistico si può acquistare oramai con pochi spiccioli: considerata l'utilità dello strumento, è un vero peccato non
VOLUME 2 ELETTRONICA DIGITALE
VOLUME ELETTRONICA DIGITALE CAPITOLO 8 ALLEGATO A I FILTRI PASSA TUTTO ALLEGATO A I FILTRI PASSA TUTTO (All Pass). Caratteristiche Si tratta di un tipo di filtro che lascia inalterata l'ampiezza del segnale,
ω 1 è la frequenza di taglio inferiore ω 2 = ω 1 = 0 ω 2 è la frequenza di taglio superiore Α(ω) Α(ω) ω ω 1 ω 2
. Studio della loro risposta ad un onda quadra 1 Filtri elettrici ideali: sono quadrupoli che trasmettono un segnale di ingresso in un certo intervallo di frequenze ovvero esiste una banda di pulsazioni
Circuiti elettrici non lineari. Il diodo
Circuiti elettrici non lineari Il diodo Misure con l oscilloscopio e con il multimetro Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 009 Individuazione dei pin del diodo Anodo Anodo
LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA DI UN FILTRO RC PASSA-BASSO SCHEMA
ALUNNO: Fratto Claudio CLASSE: IV B Informatico ESERCITAZIONE N : 2 LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA DI UN FILTRO RC PASSA-BASSO SCHEMA DATI: R = 1kΩ C = 100nF VIn =
COSTRUZIONE DI UN VOLTMETRO A DIVERSE PORTATE; MISURA DELLA RESISTENZA INTERNA E VARIAZIONE DELLA PORTATA DI UN VOLTMETRO
COSTRUZIONE DI UN VOLTMETRO A DIVERSE PORTATE; MISURA DELLA RESISTENZA INTERNA E VARIAZIONE DELLA PORTATA DI UN VOLTMETRO L esercitazione è divisa in due parti. Nella prima parte si costruisce un voltmetro
Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)
Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3
Consideriamo ora circuiti in cui siano presenti più componenti. Circuito ohmico-induttivo R-L con resistenza e reattanza in serie.
Circuiti RC ed RL Consideriamo ora circuiti in cui siano presenti più componenti. Circuito ohmico-induttivo R-L con resistenza e reattanza in serie. Figura A In figura vi è lo schema riferito ad un generatore
1 = 0. 1 è la frequenza di taglio inferiore 2 = 2 è la frequenza di taglio superiore. Elettronica II Prof. Paolo Colantonio 2 14
Filtri Passivi Filtri elettrici ideali: sono quadrupoli che trasmettono un segnale di ingresso in un certo intervallo di frequenze ovvero esiste una banda di pulsazioni tale che la funzione di trasferimento:
Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici.
Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici. Infatti, la struttura del convertitore risulta fortemente influenzata: dal tipo di sorgente primaria di alimentazione;
CIRCUITERIA DELLA POMPA MAGNETOIDRODINAMICA
CIRCUITERIA DELLA POMPA MAGNETOIDRODINAMICA 9.1 Introduzione Nel capitolo precedente, è stato affrontato il progetto dei componenti meccanici della pompa MHD; a questi va ovviamente integrata tutta la
SCHEDA N 8 DEL LABORATORIO DI FISICA
SCHEDA N 1 IL PENDOLO SEMPLICE SCHEDA N 8 DEL LABORATORIO DI FISICA Scopo dell'esperimento. Determinare il periodo di oscillazione di un pendolo semplice. Applicare le nozioni sugli errori di una grandezza
I.I.S.S. G. GALILEI A. SANI -ELETTRONICA Classe:5 - A\EN Data : 19\09\15 Elettronica - Gruppo n 4 : Salzillo_Pinna- Luogo: IISS GalileiSani -LT
NOME: Marco COGNOME: Salzillo TITOLO: AMPLIFICATORE OPERAZIONALE NON INVERTENTE OBBIETTIVO: REALIZZARE UN CIRCUITO OPERAZIONALE NON INVERTENTE CHE AMPLIFICA DI 11,7dB CIRCUITO TEORICO: CIRCUITO APPLICATIVO:
Relazione di Laboratorio Elettronica
Relazione di Laboratorio Elettronica OGGETTO: Funzionamento di un circuito derivatore con amplificatore operazionale DATI INIZIALI: Vcc = ±15V f 1 = 400Hz f 2 = 1KHz f 3 = 30KHz RIFERIMENTI TEORICI: Derivatore
Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA
Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni Tektronix CFG280 Generatore di Funzioni Tektronix CFG280 Genera i segnali di tensione
Impiego dell oscilloscopio e del generatore di funzioni
Esercitazioni Lab - Impiego dell oscilloscopio e del generatore di funzioni 1 Impiego dell oscilloscopio e del generatore di funzioni Esercitazioni Lab - Impiego dell oscilloscopio e del generatore di
Esercizi aggiuntivi Unità A2
Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 A2 ircuiti in corrente alternata monofase 1 Un circuito serie, con 60 Ω e 30 mh, è alimentato con tensione V 50 V e assorbe la corrente 0,4 A. alcolare:
Esercitazione Multimetro analogico e digitale
Esercitazione Multimetro analogico e digitale - 1 Esercitazione Multimetro analogico e digitale 1 - Oggetto Confronto tra multimetro analogico (OM) e digitale (DMM). Misure di tensioni alternate sinusoidali
Lab 3 Strumenti per i circuiti in alternata
La maggior parte dei circuiti è in corrente alternata (AC) e la nostra capacità di progettare buoni circuiti dipende dagli strumenti disponibili per misurare i componenti, le impedenze e visualizzare le
Tecniche di progetto di controllori
Tecniche di progetto di controllori (ver..2) In questo capitolo sarà descritta una tecnica di progetto classica di controllori denominata sintesi per tentativi. Abbiamo visto precedentemente come calcolare
DIODO. La freccia del simbolo indica il verso della corrente.
DIODO Si dice diodo un componente a due morsetti al cui interno vi è una giunzione P-N. Il terminale del diodo collegato alla zona P si dice anodo; il terminale collegato alla zona N si dice catodo. Il
ESERCITAZIONE DI LABORATORIO A: VERIFICA DI STRUMENTAZIONE DI LABORATORIO
ESERCITAZIONE DI LABORATORIO A: VERIFICA DI STRUMENTAZIONE DI LABORATORIO La prova ha come scopo quello di verificare se uno strumento, o una particolare funzione di misura di uno strumento multifunzione,
I convertitori c.a.-c.a. possono essere suddivisi in tre categorie: convertitori a controllo di fase, cicloconvertitori, convertitori a matrice.
Tra i vari tipi di convertitori monostadio, i convertitori c.a.-c.a. sono quelli che presentano il minore interesse applicativo, a causa delle notevoli limitazioni per quanto concerne sia la qualità della
Esercitazione 8 : LINEE DI TRASMISSIONE
Esercitazione 8 : LINEE DI TRASMISSIONE Specifiche Scopo di questa esercitazione è verificare il comportamento di spezzoni di linea in diverse condizioni di pilotaggio e di terminazione. L'esecuzione delle
Laboratorio di Elettronica T Esperienza 7 Circuiti a diodi 2
Laboratorio di Elettronica T Esperienza 7 Circuiti a diodi 2 Cognome Nome Matricola Postazione N 1 Misura delle resistenze La corrente nei circuiti che dovrete analizzare nel seguito verranno misurate
Elettrotecnica Esercizi di riepilogo
Elettrotecnica Esercizi di riepilogo Esercizio 1 I 1 V R 1 3 V 2 = 1 kω, = 1 kω, R 3 = 2 kω, V 1 = 5 V, V 2 = 4 V, I 1 = 1 m. la potenza P R2 e P R3 dissipata, rispettivamente, sulle resistenze e R 3 ;
COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE
COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE Un sistema risponde ad una sinusoide in ingresso con una sinusoide in uscita della stessa pulsazione. In generale la sinusoide d uscita ha una diversa
FILTRI in lavorazione. 1
FILTRI 1 in lavorazione. Introduzione Cosa sono i filtri? C o II filtri sono dei quadripoli particolari, che presentano attenuazione differenziata in funzione della frequenza del segnale applicato in ingresso.
ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO
ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 2-56025 PONTEDERA (PI) 0587 53566/55390 - Fax: 0587 57411 - : [email protected] - Sito WEB: www.marconipontedera.it ANNO SCOLASTICO
EQUAZIONE DELLA LINEA ELASTICA
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale:
3.1 Verifica qualitativa del funzionamento di un FET
Esercitazione n. 3 Circuiti con Transistori Rilevamento delle curve caratteristiche Questa esercitazione prevede il rilevamento di caratteristiche V(I) o V2(V1). In entrambi i casi conviene eseguire la
Classe III specializzazione elettronica. Sistemi automatici
Macro unità n 1 Classe III specializzazione elettronica Sistemi automatici Reti elettriche Reti elettriche in regime continuo. Generatore, resistori, legge di Ohm. Resistenze in serie e parallelo. Partitore
Soluzione: prof. Stefano Mirandola PRIMA PARTE. 1) 2) Schema a blocchi e progetto circuitale della catena di condizionamento.
ITEC - ELETTRONICA ED ELETTROTECNICA Sessione ordinaria 206 ARTICOLAZIONE ELETTRONICA Tema di: ELETTROTECNICA ED ELETTRONICA Soluzione: prof. Stefano Mirandola PRIMA PARTE ) 2) Schema a blocchi e progetto
L Oscilloscopio e misure relative
Facoltà di INGEGNERIA II - Taranto Corso di Misure e Strumentazione Elettronica mod. I- L Oscilloscopio e misure relative 1 L oscilloscopio è attualmente uno dei più versatili e utili strumenti di misura
Il display BREVE GUIDA ALL'USO DEL TESTER DIGITALE
BREVE GUIDA ALL'USO DEL TESTER DIGITALE Un tester digitale si può acquistare oramai spendendo veramente poco: considerata l'utilità dello strumento, è un vero peccato non procurarsene uno, bisogna però
ELETTRONICA APPLICATA E MISURE
Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO B8 Esercizi parte B (2)» Generatore Q-T e Q» Monostabili» Laboratorio ELN-1 22/10/2013-1 ElapB8-2013 DDC Page 1 2013 DDC 1 Come
Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC
23. Guadagno di un quadripolo Filtri passivi isposta in frequenza dei circuiti C-L-LC In un quadripolo generico (fig. ) si definisce guadagno G il rapporto tra il valore d uscita e quello d ingresso della
Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton
Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton Esercizio 1? Si determini tramite misure la descrizione del due porte tramite matrice resistenza o
LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA
ALUNNO: Fratto Claudio CLASSE: IV B Informatico ESERCITAZIONE N : 5 LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA DATI: VIn = 20mV
Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1. Circuiti in corrente continua
Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1 Circuiti in corrente continua Scopo dell'esperienza 1. Utilizzo di voltmetro ed amperometro; 2. verifica della validità
Linee di trasmissione
Linee di trasmissione Finora esperienza con circuiti a costanti concentrate. E un approssimazione, valida solo per lunghezze d onda dei segnali grandi rispetto alle dimensioni del circuito. Esempio Sinusoidale
Misure su linee di trasmissione
Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare
Esercitazione 1 Misure e simulazioni su circuiti RC e RLC
Esercitazione 1 Misure e simulazioni su circuiti RC e RLC 1. Introduzione Scopo dell esercitazione Questa esercitazione sperimentale ha due obiettivi principali: - fornire le tecniche di base per l utilizzo
Laboratorio di Elettronica T Esperienza 6 Circuiti a diodi 1
Laboratorio di Elettronica T Esperienza 6 Circuiti a diodi 1 Cognome Nome Matricola Postazione N 1 Misura delle resistenze La corrente nei circuiti che dovrete analizzare nel seguito verranno misurate
AMPLIFICATORE INVERTENTE E NON INVERTENTE CON DIVERSO GUADAGNO RELATIVAMENTE ALLA SEMIONDA POSITIVA E ALLA SEMIONDA NEGATIVA DEL SEGNALE D INGRESSO
MPLIFICTOE INVETENTE E NON INVETENTE CON DIVESO GUDGNO ELTIVMENTE LL SEMIOND POSITIV E LL SEMIOND NEGTIV DEL SEGNLE D INGESSO Si diversifica l amplificazione relativamente alla semionda positiva (amplificazione
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione
Esercitazione n 2. Costruzione di grafici
Esercitazione n 2 Costruzione di grafici I grafici I grafici sono rappresentazione di dati numerici e/o di funzioni. Devono facilitare all utente la visualizzazione e la comprensione dei numeri e del fenomeno
LEZIONE DI ELETTRONICA
LEZIONE DI ELETTRONICA Analisi dei circuiti lineari in regime sinusoidale 2 MODULO : Analisi dei circuiti lineari in regime sinusoidale PREMESSA L analisi dei sistemi elettrici lineari, in regime sinusoidale,
Piano Lauree Scientifiche. Esperimento di Hebb
Piano Lauree Scientifiche Esperimento di Hebb Prof. Alessio Piana Liceo Scientifico F. Filelfo di Tolentino Ciro Biancofiore Dipartimento di Fisica dell Università di Camerino. Scopo dell esperimento Determinare
Esercitazione Misure su circuiti magnetici. 3 - Rilievo del ciclo di isteresi dinamico di un nucleo magnetico
Esercitazione Misure su circuiti magnetici - 1 Esercitazione Misure su circuiti magnetici 1 - Oggetto Caratterizzazione di materiali magnetici. Strumento virtuale per il rilievo del ciclo di isteresi dinamico.
R = 2.2 kω / 100 kω Tensione di alimentazione picco-picco ε = 2 V (R int = 600 Ω)
Strumentazione: oscilloscopio, generatore di forme d onda (utilizzato con onde sinusoidali), 2 sonde, basetta, componenti R,L,C Circuito da realizzare: L = 2 H (±10%) con resistenza in continua di R L
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni
