La corrente alternata

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La corrente alternata"

Transcript

1 La corrente alternata

2 Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello stesso verso. Si possono anche avere dei generatori i cui poli cambiano si segno in modo continuo e periodico: in questo caso si hanno delle correnti che percorrono il circuito ora in un verso ora in un altro. Page 2

3 Grandezze variabili nel tempo Si definiscono grandezze variabili nel tempo quelle grandezze il cui valore varia istante per istante secondo una determinata legge. Page 3

4 Le grandezze periodiche grandezze variabili nel tempo che, per intervalli di tempo T uguali, a partire da un generico istante t, assumono valori uguali. L intervallo T prende il nome di periodo e viene misurato in secondi. Si dice frequenza f e viene misurata in hertz (Hz) il numero di periodi contenuto in un secondo: f = 1/T Page 4

5 Le grandezze alternate grandezze periodiche la cui rappresentazione grafica in un periodo T mostra che l area racchiusa dalla curva positiva è uguale a quella racchiusa dalla curva negativa (la media aritmetica dei valori assunti in un ciclo è uguale a zero) Page 5

6 Forme d onda alternate: grandezze sinusoidali Una grandezza alternata si dice sinusoidale quando l andamento nel tempo della grandezza ha la forma di una sinusoide. Indicando con YM il valore massimo e con T il periodo, il valore istantaneo di una grandezza sinusoidale è espresso dalla seguente relazione: y = YM sen( 2 π t / T) Una grandezza sinusoidale presenta due semiperiodi, quello positivo e quello negativo, uguali e simmetrici. Page 6

7 Grandezze alternate con forme d onda diverse Onda quadra Onda rettangolare Onda a dente di sega Page 7

8 Valori caratteristici delle grandezze variabili nel tempo Valor medio di una grandezza periodica (Ym): Valore dell ordinata che, moltiplicata per il periodo, determina l area di un rettangolo (Ym * T) uguale all area individuata dalla curva nello stesso periodo. Valore Massimo (Y M ): Massimo valore assunto dalla grandezza Page 8

9 Valore efficace di una grandezza periodica (Y): Le grandezze alternate variano nel tempo, pertanto per valutare i loro effetti (ad esempio la conversione di energia elettrica in lavoro meccanico o in calore) è utile riferirsi a quel valore della grandezza alternata che, se fosse costante, permetterebbe di ottenere la stessa potenza. Il valore efficace è maggiore del valore medio (Ym) ed inferiore al valore massimo (Y M ) e viene indicato con la lettera maiuscola della grandezza in esame. Page 9

10 Come si genera la corrente alternata? Le correnti elettriche alternate sinusoidali vengono generate mediante alternatori. Tali macchine, che trasformano in energia elettrica l energia meccanica di un albero in rotazione, basano il loro funzionamento sui principi dell induzione elettromagnetica. Page 10

11 Richiamiamo qualche concetto Immaginiamo di porre una spira di materiale conduttore all interno di un campo magnetico. In nero è mostrata la spira inserita nel campo magnetico. Le due differenti viste permettono di vedere come le linee di campo (disegnate in rosso) attraversino la superficie della spira stessa Page 11

12 Il flusso di campo magnetico passante attraverso una spira Per calcolare la quantità del flusso del campo magnetico che passa all interno della superficie della spira, si applica la definizione di flusso: Φ = S B cosα Dove per α si indica l angolo che si forma tra la normale alla superficie e le linee di forza del campo magnetico Page 12

13 Poniamo la spira in moto Applicando un moto rotatorio alla spira, questa comincerà a ruotare intorno al suo asse con velocità angolare ω. A causa del movimento rotatorio l angolo tra la normale alla superficie e le linee di flusso del campo magnetico cambierà al passare del tempo. Per trovare come varia l angolo in funzione del tempo, si parte dalla definizione di velocità angolare del moto circolare: ω = α/t Sostituendo tale espressione nella relazione Φ = S B cosα α = ω t otterremo che il flusso del campo magnetico che attraversa la spira sarà uguale, al passare del tempo, a: Φ = S B cosω t Page 13

14 La f.e.m. alternata indotta Le variazioni di flusso inducono ai capi della spira una f.e.m. alternata data, per la legge di Lenz, dalla derivata rispetto al tempo della funzione ossia da: Φ = S B cosω t E = Φ t = S B ω senωt Page 14

15 la corrente alternata Per vedere gli effetti della f.e.m. indotta dobbiamo collegare la stessa ad un circuito fatto di materiale ohmico, cioè che segue le leggi di Ohm. Partendo dalla legge di Ohm per cui i = E / R (dove R indica la resistenza interna al circuito), sostituendo il valore di E ricavato precedentemente otteniamo che la corrente misurata nel circuito e prodotta sempre dalla spira in rotazione sarà uguale ad: i = (S B ω senωt) / R Questa corrente ha la peculiarità di cambiare intensità ( al variare del tempo) e verso (ogni semiperiodo): questa è la CORRENTE ALTERNATA. Page 15

16 Qualche definizione Il valore massimo che la corrente assume si chiama ampiezza. Il periodo T è l intervallo di tempo che intercorre tra due massimi successivi. La frequenza f è definita come l inverso del periodo (f=1/t), è uguale al numero di periodi contenuti in un secondo e viene misurata in hertz. Page 16

17 Rappresentazione grafica della corrente alternata Osservando l equazione ricavata: i = (S B ω senωt) / R si vede che il fattore che modifica l intensità di corrente è il passare del tempo, perciò i fisici hanno riscritto questa formula ponendo ottenendo che ha il seguente grafico caratteristico: (S B ω) /R = I M i = I M senωt Page 17

18 Page 18

19 Riassumendo Una spira posta in movimento rotatorio con velocitàωcostante all interno di un campo magnetico è investita da un flusso di campo magnetico variabile Φ = S B cosα = S B cos ω t Per la Legge di Lenz ciò produrrà una f.e.m. indotta data da: E = Φ t = S B ω senωt Chiudendo la spira su un circuito ohmnico per la legge di Ohm i = E / R avremo che nel circuito circolerà una corrente indotta alternata da: i = (S B ω senωt) / R ponendo: (S B ω) /R = I M avremo: i = I M senωt Page 19

20 I valori efficaci di corrente e tensione Anche il passaggio di corrente alternata provoca il riscaldamento di un conduttore (effetto Joule). Si definisce intensità efficace di una corrente alternata quel valore di corrente continua che, passando in un conduttore, produce la stessa quantità di calore in uguale tempo. La corrente efficace è legata al valore massimo dalla relazione: i = I = eff I M 2 Analogamente per la tensione avremo: V eff = V = V M 2 Page 20

21 In elettrotecnica i valori misurati da un amperometro o da un voltmetro, inseriti in un circuito a corrente e tensione alternate sinusoidali, sono i valori efficaci della corrente e della tensione. Cosa significa dire che la tensione ai capi di una presa di corrente è di 220 volt? 220V è il valore efficace della tensione alternata, cioè la sua tensione continua equivalente. Una tensione alternata del valore efficace di 220 V, applicata ai capi di un resistore, sviluppa per effetto Joule la stessa energia di una corrente continua di uguale valore che agisce sullo stesso resistore. Page 21

22 I valori efficaci rendono possibile l estensione della legge di Ohm al caso dei circuiti percorsi da corrente alternata, purchè l utilizzatore sia di tipo ohmnico: V eff = R i eff Page 22

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha 1 easy matematica CORRENI ALERNAE Consideriamo una bobina ruotante, con velocità angolare ω costante all'interno di un campo magnetico uniforme B. Gli estremi della spira sono collegati a due anelli chiamati

Dettagli

ELETTROTECNICA. La corrente alternata. Livello 15. Andrea Ros sdb

ELETTROTECNICA. La corrente alternata. Livello 15. Andrea Ros sdb ELETTROTECNICA Livello 15 La corrente alternata Andrea Ros sdb Livello 15 La corrente alternata Sezione 1 Grandezze alternate La tensione ai capi di una batteria viene detta continua : il polo negativo

Dettagli

Cosa è un alternatore?

Cosa è un alternatore? L alternatore Cosa è un alternatore? L alternatore è una macchina elettrica rotante il cui funzionamento è basato sul fenomeno dell'induzione elettromagnetica. L alternatore trasforma energia meccanica

Dettagli

INTERPRETAZIONE CINEMATICA DELLA DERIVATA

INTERPRETAZIONE CINEMATICA DELLA DERIVATA INTERPRETAZIONE CINEMATICA DELLA DERIVATA Consideriamo un punto mobile sopra una qualsiasi linea Fissiamo su tale linea un punto O, come origine degli archi, e un verso di percorrenza come verso positivo;

Dettagli

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi.

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi. Corso di Laurea in Matematica Seconda prova in itinere di Fisica (Prof. E. Santovetti) 13 gennaio 016 Nome: La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE CIRCUITI IN REGIME SINUSOIDALE CIRCUITO PURAMENTE OHMICO Esaminiamo il comportamento dei circuiti in regime sinusoidale iniziando da un circuito puramente ohmico. Si consideri (figura 1) un circuito costituito

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

L induzione elettromagnetica

L induzione elettromagnetica L induzione elettromagnetica Alcune esperienze Consideriamo una bobina collegata ad un galvanometro a zero centrale (amperometro in grado di misurare correnti positive e negative di intensità molto piccola)

Dettagli

Note sui circuiti a corrente alternata

Note sui circuiti a corrente alternata Note sui circuiti a corrente alternata Versione provvisoria. Novembre 018 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Indice 1 Corrente alternata 1.1 Circuito

Dettagli

GRANDEZZE PERIODICHE

GRANDEZZE PERIODICHE GRANDEZZE PERIODICHE Una grandezza variabile nel tempo y(t) si definisce periodica quando assume nuovamente gli stessi valori dopo un determinato intervallo di tempo, detto periodo. Indicando con y(t 1

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

Applicazioni delle derivate alla Fisica

Applicazioni delle derivate alla Fisica Liceo Scientifico Statale S. Cannizzaro Applicazioni delle derivate alla Fisica erasmo@galois.it Indice 1 Intensità di corrente elettrica 1 2 Tensione e corrente ai capi di un condensatore 2 3 Forza elettromotrice

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici Sergio Benenti Prima versione settembre 2013 Revisione settembre 2017? ndice 21 Circuito elettrico elementare

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

INDUZIONE E AUTOINDUZIONE

INDUZIONE E AUTOINDUZIONE E possibile avere un effetto analogo anche in un singolo circuito Un circuito percorso da una corrente variabile può indurre una f.e.m., e quindi una corrente indotta su se stesso, in questo caso il fenomeno

Dettagli

Generatori di tensione

Generatori di tensione Correnti alternate Generatori di tensione Sinora come generatore di forza elettromotrice abbiamo preso in considerazione soltanto la pila elettrica. Questo generatore ha la caratteristica di fornire sempre

Dettagli

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A, ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di

Dettagli

Energia accumulata in un condensatore

Energia accumulata in un condensatore Energia accumulata in un condensatore In base alla seconda legge di Kirchhoff istante per istante avremo Sappiamo che potenza istantanea fornita dal generatore Sostituendo nella eq. diff. e integrando

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

MODULI DI FISICA (QUINTO ANNO)

MODULI DI FISICA (QUINTO ANNO) DIPARTIMENTO SCIENTIFICO Asse* Matematico Scientifico - tecnologico Triennio MODULI DI FISICA (QUINTO ANNO) SUPERVISORE DI AREA Prof. FRANCESCO SCANDURRA MODULO N. 1 ELETTROSTATICA 1-2 TRIMESTRE U.D. 1.

Dettagli

a/2+l/2 a/2-l/2 -a/2+l/2 -a/2-l/2

a/2+l/2 a/2-l/2 -a/2+l/2 -a/2-l/2 Esame scritto di Elettromagnetismo del 17 Giugno 014 - a.a. 013-014 proff. F. Lacava, F. icci, D. Trevese Elettromagnetismo 10 o 1 crediti: esercizi 1,,3 tempo 3 h e 30 min; ecupero di un esonero: esercizi

Dettagli

Grande rilevanza hanno in elettronica i segnali sinusoidali. Un. segnale sinusoidale è un segnale che varia nel tempo con una legge

Grande rilevanza hanno in elettronica i segnali sinusoidali. Un. segnale sinusoidale è un segnale che varia nel tempo con una legge I segnali sinusoidali Grande rilevanza hanno in elettronica i segnali sinusoidali. Un segnale sinusoidale è un segnale che varia nel tempo con una legge del seguente tipo u = U sen( ω t+ ϕ ) Figura A andamento

Dettagli

Induzione Elettromagnetica

Induzione Elettromagnetica Induzione Elettromagnetica Abbiamo visto che una corrente elettrica produce sempre un campo magnetico. Un campo magnetico è in grado di produrre una corrente? (se sì esso produrrà anche una ddp ed un campo

Dettagli

PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE

PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE Il trasformatore è costituito essenzialmente da un nucleo di lamierini ferromagnetici su cui sono avvolti due avvolgimenti in rame con diverso numero di spire

Dettagli

POTENZA ATTIVA - REATTIVA - APPARENTE

POTENZA ATTIVA - REATTIVA - APPARENTE POTENZA ATTIA - REATTIA - APPARENTE LA POTENZA ELETTRICA NEI CIRCUITI IN REGIME SINUSOIDALE Nei circuiti a corrente alternata, la potenza elettrica varia evidentemente da un istante all altro, perché variano

Dettagli

LA CORRENTE ALTERNATA

LA CORRENTE ALTERNATA CAPITOLO 39 LA COENTE ALTENATA L ALTENATOE È la legge di Faraday-Neumann, perché in linea di principio l alternatore è costituito da una spira che viene fatta ruotare all interno di un campo magnetico.

Dettagli

LABORATORIO DI FISICA

LABORATORIO DI FISICA Istituto Tecnico Aeronautico Statale Arturo Ferrarin CATANIA LABORATORIO DI FISICA Alunno: Michelangelo Giuffrida Classe: II B Titolo dell esercitazione: > Prima legge di Ohm Scopi: Studiare la relazione

Dettagli

Cosa è la dinamo? dinamo

Cosa è la dinamo? dinamo La dinamo Cosa è la dinamo? La dinamo è una macchina elettrica rotante per la trasformazione di lavoro meccanico in energia elettrica, sotto forma di corrente continua (DC, per gli inglesi, direct current).

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA LA CORRENTE ELETTRICA Giuseppe Frangiamore con la collaborazione di Antonino Palumbo Definizione di corrente elettrica La corrente elettrica è un qualsiasi moto ordinato di cariche elettriche, definita

Dettagli

Induzione Elettromagnetica

Induzione Elettromagnetica Induzione Elettromagnetica Un campo elettrico (che induce quindi una corrente elettrica produce un campo magnetico. Un campo magnetico è in grado di produrre un campo elettrico? Quando non c e moto relativo

Dettagli

Fisica Rapid Training. Principi di Kirchhoff e Induzione Elettromagnetica

Fisica Rapid Training. Principi di Kirchhoff e Induzione Elettromagnetica Fisica Rapid Training Principi di Kirchhoff e Induzione Elettromagnetica Introduzione alle Leggi di Kirchhoff Nello schema di un circuito elettrico si possono identificare: Maglie: percorsi chiusi che

Dettagli

Esercizi vari su legge di induzione di Faraday e fenomeni correlati

Esercizi vari su legge di induzione di Faraday e fenomeni correlati Università di Siena, DIISM, CdS in Ingegneria, Corso di fisica, slides lezione n.25, pag.1/11 In questa esercitazione: Esercizi vari su legge di induzione di Faraday e fenomeni correlati Università di

Dettagli

Esercizi di Fisica LB: Induzione Elettromagnetica

Esercizi di Fisica LB: Induzione Elettromagnetica Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con

Dettagli

Verifica scritta di Fisica Classe V

Verifica scritta di Fisica Classe V Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 19/01/2019 Verifica scritta di Fisica Classe V Soluzione Risolvi 4 degli 8 quesiti proposti. Ogni quesito vale 25 p.ti. 1. Una sbarra

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

La legge di Faraday-Neumann afferma che in un circuito attraversato da un campo magnetico il cui flusso varia nel tempo:

La legge di Faraday-Neumann afferma che in un circuito attraversato da un campo magnetico il cui flusso varia nel tempo: tibo5794_em11_test1 Nome Classe Data 1 - Scelta multipla La legge di Faraday-Neumann afferma che in un circuito attraversato da un campo magnetico il cui flusso varia nel tempo: esiste una forza esterna

Dettagli

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1 Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:

Dettagli

Esercizi aggiuntivi Unità A2

Esercizi aggiuntivi Unità A2 Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 A2 ircuiti in corrente alternata monofase 1 Un circuito serie, con 60 Ω e 30 mh, è alimentato con tensione V 50 V e assorbe la corrente 0,4 A. alcolare:

Dettagli

CORRENTI, TENSIONI, MATERIALI

CORRENTI, TENSIONI, MATERIALI CORRENTI, TENSIONI, MATERIALI 1 [C] = 1 / (1,6 * 10-19 ) = 0,62 * 10 19 = 6,2 * 10 18 [e] Forza di Coulomb : 2 cariche uguali di 1 [C] poste nel vuoto a distanza di 1 [m] si respingono con una Forza di

Dettagli

Nel circuito di figura con R1=1Ω R2=2Ω ed R3=3Ω calcola la resistenza vista fra i morsetti AB col tasto T nelle tre posizioni 1,2 e 3..

Nel circuito di figura con R1=1Ω R2=2Ω ed R3=3Ω calcola la resistenza vista fra i morsetti AB col tasto T nelle tre posizioni 1,2 e 3.. Nel circuito di figura con =Ω =Ω ed 3=3Ω calcola la resistenza vista fra i morsetti AB col tasto T nelle tre posizioni, e 3.. Come misurare la corrente e la differenza di potenziale in un circuito reale?

Dettagli

Lez.27 La macchina in corrente continua. Cenni.

Lez.27 La macchina in corrente continua. Cenni. Lez.27 La macchina in corrente continua. Cenni. Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 27 Pagina 1 Conduttore in moto in un campo magnetico Supponiamo

Dettagli

La corrente elettrica

La corrente elettrica 1 La corrente elettrica All interno di ogni conduttore metallico vi sono degli elettroni che sono debolmente legati ai nuclei. Questi elettroni sono liberi di muoversi all interno del metallo e sono detti

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

Componenti di un circuito elettrico in regime sinusoidale

Componenti di un circuito elettrico in regime sinusoidale omponenti di un circuito elettrico in regime sinusoidale omponenti di un circuito elettrico in regime sinusoidale Introduzione: a corrente elettrica, nel suo passaggio all interno di un conduttore, produce

Dettagli

Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne

Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne Elettrodinamica 1. La corrente elettrica continua 2. I circuiti elettrici Prof. Giovanni Ianne 1 La corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche. La lampada ad

Dettagli

Cariche e Campi Elettrici

Cariche e Campi Elettrici PROGRAMMA FINALE di FISICA A.S. 2016/2017 5 Liceo Classico LIBRO DI TESTO Parodi, Ostili, Onori Il Linguaggio della Fisica 3 - Linx MODULO N. 1 Cariche e Campi Elettrici U.D. 1 Carica Elettrica e Legge

Dettagli

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e:

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e: Oscillazioni Applicando la legge di Faraday: E d l d ma Φ B con d l in direzione d E dl ovvero ovvero d + q / n base alla nostra scelta di polarizzazione di pero', si ha' che: dq Segue che: A d d q Allora,

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Fisica II. 7 Esercitazioni

Fisica II. 7 Esercitazioni Esercizi svolti Esercizio 7.1 Il campo magnetico che agisce perpendicolarmente ad un circuito costituito da 3 spire di 3 cm di diametro, passa da un valore di.4t a -.65T in 18 msec. Calcolare la tensione

Dettagli

(a) ;

(a) ; Corso di Fisica Generale II - A.A. 2005/2006 Proff. S. Amoruso, M. Iacovacci, G. La Rana Esercizi di preparazione alle prove intercorso ------------------------- Cap. VIII Campi elettrici e magnetici variabili

Dettagli

Q t dq dt. 1 Ampere (A) = 1 C/s. Q t. lim. l A. P = L / t = i V = V 2 /R= R i 2

Q t dq dt. 1 Ampere (A) = 1 C/s. Q t. lim. l A. P = L / t = i V = V 2 /R= R i 2 i i Q t lim t0 Q t dq dt Ampere (A) = C/s V i l A l A P = L / t = i V = V /= i I circuiti elettrici Per mantenere attivo il flusso di cariche all interno di un conduttore, è necessario che i due estremi

Dettagli

Lezione 19 - Induzione elettromagnetica

Lezione 19 - Induzione elettromagnetica Lezione 19 - Induzione elettromagnetica Una spira percorsa da corrente è equivalente ad un momento magnetico: se si pone questa spira in un campo magnetico esterno essa subisce un momento torcente Si verifica

Dettagli

Elementi di base delle vibrazioni meccaniche

Elementi di base delle vibrazioni meccaniche Elementi di base delle vibrazioni meccaniche Vibrazioni Le vibrazioni sono fenomeni dinamici che ci circondano costantemente. La luce, il suono, il calore sono i fenomeni vibratori a noi più evidenti.

Dettagli

Indice Generale. Descrizione della procedura. Principio di funzionamento della misura. Elaborazione dati e discussione dei risultati

Indice Generale. Descrizione della procedura. Principio di funzionamento della misura. Elaborazione dati e discussione dei risultati Induzione Magnetica Indice Generale Obiettivi generali Materiale necessario Descrizione della procedura Principio di funzionamento della misura Elaborazione dati e discussione dei risultati Considerazioni

Dettagli

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI FISICA LES SAPERI MINIMI CLASSE TERZA LE GRANDEZZE FISICHE E LA LORO MISURA Nuovi principi per indagare la natura. Il concetto di grandezza fisica. Misurare una grandezza fisica. L impossibilità di ottenere

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

La risposta dei circuiti. alla corrente elettrica alternata

La risposta dei circuiti. alla corrente elettrica alternata La risposta dei circuiti alla corrente elettrica alternata Lezioni d'autore di Claudio Cigognetti VIDEO ideali alla corrente alternata (I) Una semplice bobina, un filo conduttore avvolto a spirale su un

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

q t i = C s CORRENTE ELETTRICA CORRENTE ELETTRICA LEGGI DI OHM

q t i = C s CORRENTE ELETTRICA CORRENTE ELETTRICA LEGGI DI OHM CORRENTE ELETTRICA Applicando una d.d.p. ai capi di un filo conduttore si produce una corrente elettrica. Il verso della corrente è quello del moto delle cariche positive (opposto a quello delle cariche

Dettagli

Il campo magnetico rotante

Il campo magnetico rotante Il campo magnetico rotante Data una bobina circolare di raggio R, situata nel piano xy e percorsa da una corrente I, il campo I magnetico generato da I nel centro della bobina vale H = zˆ, dove il verso

Dettagli

Unità 5. La corrente elettrica continua

Unità 5. La corrente elettrica continua Unità 5 La corrente elettrica continua 1. L'intensità della corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche. In un filo metallico (come il filamento di una lampadina)

Dettagli

Potenza elettrica circuito elettrico effetto Joule

Potenza elettrica circuito elettrico effetto Joule Potenza elettrica Si chiama circuito elettrico un generico percorso chiuso in cui le cariche possono muoversi con continuità, costituito da un insieme di componenti collegati tra loro mediante fili conduttori.

Dettagli

Nel circuito di figura con R1=1Ω R2=2Ω ed R3=3Ω calcola la resistenza vista fra i morsetti AB col tasto T nelle tre posizioni 1,2 e 3..

Nel circuito di figura con R1=1Ω R2=2Ω ed R3=3Ω calcola la resistenza vista fra i morsetti AB col tasto T nelle tre posizioni 1,2 e 3.. Nel circuito di figura con =Ω =Ω ed 3=3Ω calcola la resistenza vista fra i morsetti AB col tasto T nelle tre posizioni, e 3.. Dati i valori delle tre resistenze =5Ω =8Ω 3=4Ω e considerando una d.d.p. di

Dettagli

Secondo tema. Risoluzione del problema Il testo stabilisce che il resistore con resistenza R 3 dissipa una potenza P 3 = 40,0 W. Dalla relazione (18)

Secondo tema. Risoluzione del problema Il testo stabilisce che il resistore con resistenza R 3 dissipa una potenza P 3 = 40,0 W. Dalla relazione (18) Secondo tema Nel circuito riportato in figura V = 3,60 10 2 V, R 1 = 1,20 10 2 Ω, R 2 = 2,40 10 2 Ω, R 3 = 3,60 10 2 Ω, R 4 è un resistore variabile di resistenza massima pari a 1,80 10 2 Ω. Considerando

Dettagli

Proprietà dei sistemi ed operatori

Proprietà dei sistemi ed operatori Segnali e Sistemi Un segnale è una qualsiasi grandezza che evolve nel tempo. Sono funzioni che hanno come dominio il tempo e codominio l insieme di tutti i valori che può assumere la grandezza I sistemi

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO Quando un punto materiale P si sposta di un tratto s per effetto di una forza F costante applicata

Dettagli

Secondo Parziale Fisica Generale T-B

Secondo Parziale Fisica Generale T-B Secondo Parziale Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli 20/12/2012 Soluzioni Esercizi Ex. 1 Due fasci di particelle, uno composto da nuclei di elio (m He = 6.65

Dettagli

ELETTRICITÀ CORRENTE CONTINUA LEZIONE N. 29

ELETTRICITÀ CORRENTE CONTINUA LEZIONE N. 29 LEZIONE N. 29 (LA CONDUZIONE ELETTRICA NEI METALLI) Nei metalli gli atomi sono talmente vicini che qualche elettrone esterno viene a trovarsi nel campo elettrico dell atomo più vicino. Per questo motivo

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHESIS _ ROMA CORSO di AGGIORNAMENTO di FISICA ELETTROMAGNETISMO LEZIONE N. 2 RELATORE : SERGIO SAVARINO I.T:T. COLOMBO via Panisperna, 255 24 febbraio 2016 Campo magnetico Forza di Lorentz: F=i l B

Dettagli

Modellistica dei Sistemi Elettro-Meccanici

Modellistica dei Sistemi Elettro-Meccanici 1 Prof. Carlo Cosentino Fondamenti di Automatica, A.A. 2016/17 Corso di Fondamenti di Automatica A.A. 2016/17 Modellistica dei Sistemi Elettro-Meccanici Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

GENERATORI MECCANICI DI CORRENTE

GENERATORI MECCANICI DI CORRENTE GENERATORI MECCANICI DI CORRENTE IL MAGNETISMO Il termine deriva da un minerale del ferro: la magnetite (o calamita naturale), che ha la proprietà di attrarre alcuni metalli. Il campo magnetico è lo spazio

Dettagli

PROBLEMA N.2 Il motorino elettrico

PROBLEMA N.2 Il motorino elettrico PROBLEMA N.2 Il motorino elettrico Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della dinamica in presenza

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1 Scopo dell'esperienza: Circuiti in corrente continua 1. Utilizzo di voltmetro ed amperometro; 2. verifica della validita'

Dettagli

1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt

1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt 1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO i(t) Tensione applicata : v(t) v(t) = V M sen ωt V(t) = V M e jωt : vettore ruotante che genera la sinusoide RESISTORE i(t) = v(t) / R = V M / R sen

Dettagli

Risolvere la seguente disequazione significa determinare gli archi aventi estremo di ordinata 1 maggiore di

Risolvere la seguente disequazione significa determinare gli archi aventi estremo di ordinata 1 maggiore di Trigonometria parte 5 easy matematica Eliana pagina 5 DISEQUAZIONI GONIOMETRICHE Disequazioni goniometriche elementari: Si definisce disequazione goniometrica elementare un equazione della forma sen

Dettagli

Esame Scritto Fisica Generale T-B

Esame Scritto Fisica Generale T-B Esame Scritto Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli III Appello - 12/02/2013 Soluzioni Esercizi - Compito A Ex. 1 Si consideri un sistema costituito da tre conduttori

Dettagli

GRANDEZZE ALTERNATE. tutti i suoi valori in un secondo: f. = 1. T La frequenza si misura in sec -1 e si chiama Hertz (Hz) o periodi al secondo (p/s).

GRANDEZZE ALTERNATE. tutti i suoi valori in un secondo: f. = 1. T La frequenza si misura in sec -1 e si chiama Hertz (Hz) o periodi al secondo (p/s). GRANDEZZE ALERNAE Sono state considerate, finora, correnti continue, cioè correnti di valore costante e determinato. Le correnti di maggiori applicazioni industriali sono quelle che si propagano lungo

Dettagli

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1 Fisica 18 Febbraio 2013 ˆ Esame meccanica: problemi 1, 2 e 3. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema 1 Un corpo di massa M = 12 kg, inizialmente in quiete, viene spinto da una forza di

Dettagli

Induzione magnetica 1

Induzione magnetica 1 l flusso concatenato nduzione magnetica 1 è solenoidale è definito il flusso di concatenato con una linea chiusa e orientata Φ () n d (verso della normale n indotto dalla percorrenza della linea secondo

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt . METODO SIMBOLIO, O METODO DEI FASORI..Introduzione Questo metodo applicato a reti lineari permanenti consente di determinare la soluzione in regime sinusoidale solamente per quanto attiene il regime

Dettagli

Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW , 27.6

Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW , 27.6 Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW 27.1-27.4, 27.6 1 1. L esperimento di Faraday Una corrente elettrica produce un campo magnetico. Vale anche per l opposto!

Dettagli

Corso di Sistemi Prof. Aniello Celentano anno scolastico 2015/2016 ITIS G. Ferraris (NA)

Corso di Sistemi Prof. Aniello Celentano anno scolastico 2015/2016 ITIS G. Ferraris (NA) I Numeri complessi I numeri complessi sono costituiti da una coppia di numeri reali (a,b). Il numero reale a è la parte reale, mentre b è la parte immaginaria. La parte immaginaria è sempre accompagnata

Dettagli

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Circuiti elettrici Possiamo combinare molti oggetti già studiati per fare circolare corrente nel modo che ci conviene Possiamo usare condensatori e solenoidi Introdurremo anche generatori (i motori delle

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzione elettromagnetica Una corrente elettrica produce un campo magnetico Un campo magnetico esercita una forza sui circuiti percorsi da corrente È possibile generare correnti per mezzo di campi magnetici?

Dettagli

LA CORRENTE ELETTRICA E I CIRCUITI IN CORRENTE CONTINUA

LA CORRENTE ELETTRICA E I CIRCUITI IN CORRENTE CONTINUA LA CORRENTE ELETTRICA E I CIRCUITI IN CORRENTE CONTINUA Consideriamo due conduttori A e B +Qa -Qb A B Va Va > Vb Vb Tra i conduttori A e B esiste una differenza di potenziale (ddp) V a - V b. Colleghiamo

Dettagli

Esame di Stato 2019 Liceo scientifico 20 giugno Prova scritta di MATEMATICA e FISICA. PROBLEMA 2 soluzione a cura di D. Falciai e L.

Esame di Stato 2019 Liceo scientifico 20 giugno Prova scritta di MATEMATICA e FISICA. PROBLEMA 2 soluzione a cura di D. Falciai e L. Esame di Stato 2019 Liceo scientifico 20 giugno 2019 Prova scritta di MATEMATICA e FISICA PROBLEMA 2 soluzione a cura di D. Falciai e L. Tomasi 1 Soluzione Punto 1 Il parametro a deve essere omogeneo all

Dettagli

Cause e conseguenze di un basso fattore di potenza

Cause e conseguenze di un basso fattore di potenza Cause e conseguenze di un basso fattore di potenza 1.1 Il fattore di potenza Nei circuiti a corrente alternata la corrente assorbita dalla maggior parte degli utilizzatori si può considerare come costituita

Dettagli

PROVA DI INGRESSO DI FISICA 9 Settembre 2015

PROVA DI INGRESSO DI FISICA 9 Settembre 2015 PROVA DI INGRESSO DI FISICA 9 Settembre 2015 1 1. Indicando con x, v, a rispettivamente una distanza, una velocità e una accelerazione, la relazione x = v n /(2a) è dimensionalmente corretta se l esponente

Dettagli

a.a. 2017/2018 Stefano Bifaretti Vincenzo Bonaiuto Dipartimento di Ingegneria Industriale

a.a. 2017/2018 Stefano Bifaretti Vincenzo Bonaiuto Dipartimento di Ingegneria Industriale a.a. 2017/2018 Stefano Bifaretti Vincenzo Bonaiuto Dipartimento di Ingegneria Industriale Le macchine in c.a. impiegate negli azionamenti industriali sono caratterizzate da un circuito elettrico di statore

Dettagli

approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica

approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica Lavoro meccanico ed energia elettrica -trattazione qualitativa

Dettagli

&$0320$*1(7,&2527$17(

&$0320$*1(7,&2527$17( La teoria del campo magnetico rotante verrà utilizzata nel seguito per lo studio delle macchine asincrone e sincrone. Essa richiede la preliminare conoscenza di qualche nozione costruttiva che ora esporremo

Dettagli

ELETTRONICA : Compiti delle vacanze. Nome e Cognome:.

ELETTRONICA : Compiti delle vacanze. Nome e Cognome:. POR FSE 04-00 PARTE : LEGGI I SEGUENTI CAPITOLI DEL LIBRO DEL LIBRO L ENERGIA ELETTRICA, E RISPONDI ALLE DOMANDE. Capitoli 0- del libro L energia elettrica.. Che cosa è il magnetismo?e cosa si intende

Dettagli

Luciano De Menna Corso di Elettrotecnica 153

Luciano De Menna Corso di Elettrotecnica 153 Luciano De Menna Corso di Elettrotecnica 153 Per le funzione periodiche si può dimostrare una importante proprietà che prende il nome di sviluppo in serie di Fourier. ale proprietà consente di porre una

Dettagli

Liberamente tratto da Prima Legge di Ohm

Liberamente tratto da  Prima Legge di Ohm Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale

Dettagli

SANDRO RONCA. Correnti alternate. I concetti, il formalismo matematico, le reti e la potenza elettrica in corrente alternata

SANDRO RONCA. Correnti alternate. I concetti, il formalismo matematico, le reti e la potenza elettrica in corrente alternata SANDRO RONCA Correnti alternate I concetti, il formalismo matematico, le reti e la potenza elettrica in corrente alternata 2012 Sandro Ronca Tutti i diritti riservati Prima edizione: febbraio 2012 ISBN:

Dettagli