EQUAZIONE DELLA LINEA ELASTICA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "EQUAZIONE DELLA LINEA ELASTICA"

Transcript

1 ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9

2 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale: acciaio (E=0 GPa) (Prova scritta 5 luglio 0) Utilizziamo N e mm come unità di misura. Si avrà allora E = 0000 N/mm 8 J = = 887. mm Le reazioni vincolari al carrello a terra in B (R B ) ed al pattino a terra in A (M A ) possono essere calcolate con semplici equazioni di equilibrio della trave (per esempio alla traslazione in direzione verticale ed alla rotazione intorno al carrello B). Si ricava R B = 50 N ed M A = 50 Nmm.

3 Per calcolare lo spostamento verticale del pattino A è sufficiente scrivere l equazione della linea elastica nel tratto A-B. L equazione generale della linea elastica è la seguente ( ) M y' '=, valida per le seguenti convenzioni di segno: Scegliendo l origine delle ascisse in A, come dalla figura seguente, l equazione del momento flettente nel tratto A-B può essere scritta come: M ( ) = 50 + per 0 < < 00

4 L equazione della linea elastica nel tratto A-B (0<<00) vale pertanto 50 + y '' = per 0 < < 00 da cui y'' = + 50 () e, integrando in sequenza, y' = C () y = C + C () Le costanti C e C si possono determinare imponendo le opportune condizioni al contorno nel tratto A-B (0<<00): a) b) Nel punto A (=0), in corrispondenza del pattino, la rotazione della linea d asse della struttura deve essere nulla (il pattino non permette la rotazione della trave) Nel punto B (=00), in corrispondenza del carrello, lo spostamento verticale della linea d asse della struttura deve essere nullo (il carrello non permette spostamenti verticali) _ y ' = 0 in = 0 _ y = 0 in = 00 Imponendo la condizione a) nell equazione () si ricava: 0 0 = C e dunque C = 0 Imponendo la condizione b) nell equazione (), ed essendo C =0, si ricava:

5 = C 00 + C = C da cui C = + 50 = 7.97E6 L equazione () si può quindi scrivere come: y = E6 ed anche come y = E6 Lo spostamento verticale y del pattino si può quindi ricavare dalla precedente equazione imponendo il valore =0: y E6 = E6 0. mm + = = Poichè il valore di y è negativo, lo spostamento è diretto verso l alto (per le convenzioni scelte, y è positivo se diretto verso il basso). La deformata qualitativa (e non in scala) della struttura è rappresentata nella figura seguente. 5

6 Data la trave di figura (Alluminio; E = 70 GPa), si richiede di determinare l equazione della linea elastica nel tratto A-B e di calcolare (sfruttando l equazione della linea elastica) lo spostamento verticale della sezione C. (Prova scritta 8 gennaio 0) Nm N/mm C 6 8 A B 0 Utilizziamo N e mm come unità di misura. Si avrà allora E = N/mm π 6 π 8 J = = 06 mm Nmm N/mm 6 8 A B R A R B Le reazioni vincolari al carrello a terra in B (R B ) ed alla cerniera a terra in A (R A ) possono essere calcolate con semplici equazioni di equilibrio della trave (per esempio alla rotazione intorno al punto A ed alla traslazione in direzione verticale). Si ricava R A = 6 N ed R B = -06 N. 6

7 Nmm N/mm A B 6 N 06 N Per calcolare lo spostamento verticale della trave nel punto C è sufficiente utilizzare l equazione della linea elastica nel tratto A-B. L equazione generale della linea elastica è la seguente ( ) M y' '=, valida per le seguenti convenzioni di segno: Scegliendo l origine delle ascisse in B, come dalla figura seguente, Nmm N/mm A B 6 N 06 N l equazione del momento flettente nel tratto B-A può essere scritta come: 7

8 M ( ) = 06 per 0 < < 00 L equazione della linea elastica nel tratto B-A (0<<00) vale pertanto y '' = = + per 0 < < 00 da cui y' ' = 06 ( ) e, integrando in sequenza, y' = 06 + C () y = 06 + C + C 6 () Le costanti C e C si possono determinare imponendo le opportune condizioni al contorno nel tratto B-A (0<<00): a) b) Nel punto B (=0), in corrispondenza del carrello, lo spostamento verticale della linea d asse della struttura deve essere nullo (il carrello non permette spostamenti verticali) Nel punto A (=00), in corrispondenza della cerniera, lo spostamento verticale della linea d asse della struttura deve essere nullo (la cerniera non permette spostamenti verticali) _ y = 0 in = 0 _ y = 0 in = 00 Imponendo la condizione a) nell equazione () si ricava: 0 0 = 06 + C 0 + C = C 6 e dunque C = 0 Imponendo la condizione b) sempre nell equazione (), ed essendo C =0, si ricava: 8

9 da cui 00 = C C = L equazione () si può quindi scrivere come: y = ed anche come y = Lo spostamento verticale y della linea d asse della trave nel punto C si può quindi ricavare dalla precedente equazione imponendo il valore =70 (poichè l origine delle è in B): 70 y = = ( 6.07E6) = 0. mm Poichè il valore di y è negativo, lo spostamento è diretto verso l alto (per le convenzioni scelte, y è positivo se diretto verso l alto). La deformata qualitativa (non in scala) della struttura è rappresentata nella figura seguente. 9

10 Calcolare la rotazione (in gradi) della linea d asse della struttura nel punto A utilizzando l equazione della linea elastica. Materiale: acciaio (E=0 GPa) (Prova scritta gennaio 00) Utilizziamo N e mm come unità di misura. Si avrà allora E = 0000 N/mm 8 6 J = + = 995. mm Le reazioni vincolari al pattino a terra C (M C ) ed alla cerniera a terra B (R B ) possono essere calcolate con semplici equazioni di equilibrio della trave (per esempio alla traslazione in direzione verticale ed alla rotazione intorno al punto B). Si ricava R B = 00 N ed M C = -500 Nmm. 0

11 C A N/mm 500 Nmm 0 B N Per calcolare la rotazione della trave nel punto A possiamo scrivere l equazione della linea elastica nel tratto C-B. L equazione generale della linea elastica è: ( ) M y' '=, valida per le seguenti convenzioni di segno: Scegliendo l origine delle ascisse in C, come dalla figura seguente, C N/mm 500 Nmm B N l equazione del momento flettente nel tratto C-B può essere scritta come: M ( ) = 500 per 0 < < 0

12 L equazione della linea elastica nel tratto C-B (0<<0) vale pertanto y '' = = per 0 < < 0 da cui y' ' = 500 () e, integrando in sequenza, y' = C () y = C + C () Le costanti C e C si possono determinare imponendo le opportune condizioni al contorno nel tratto C-B (0<<0): a) b) Nel punto C (=0), in corrispondenza del pattino, la rotazione della linea d asse della struttura deve essere nulla (il pattino non permette la rotazione della trave) Nel punto B (=0), in corrispondenza della cerniera, lo spostamento verticale della linea d asse della struttura deve essere nullo (la cerniera non permette spostamenti verticali) _ y ' = 0 in = 0 _ y = 0 in = 00 Imponendo la condizione a) nell equazione () si ricava: 0 = C e dunque C = 0 Imponendo la condizione b) nell equazione (), ed essendo C =0, si ricava: 0 0 = C da cui 0 C = 500 =.5E7

13 L equazione () si può quindi scrivere come: y' = 500 ed anche come y' = (500 ) La rotazione della linea d asse della trave nel punto A è espressa dal valore della y in =0: 80 y ' = (500 0) = = rad = ( ) = π α = 0.07 La deformata qualitativa (e non in scala) della struttura è rappresentata nella figura seguente. L equazione (), y = 500.5E7, permette invece di determinare lo spostamento δ del punto A, calcolando il valore di y per = 0 mm: 0 y = 500.5E7 = 0. 08mm δ = 0.08 mm

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE 1 PROVA SCRITTA 11 gennaio 2013 - Esercizio 2 Data la struttura di figura, ricavare le equazioni delle azioni interne (M, N, T) e tracciarne

Dettagli

Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA

Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA Trave a mensola, di rigidezza flessionale costante pari a EI, soggetta a forza verticale agente all estremo liero. Determinare

Dettagli

Tutti i diritti riservati

Tutti i diritti riservati Statica - Fondamenti di meccanica strutturale /ed Copright 00 The Companies srl e Corbusier - Progetto per il palazzo dei Soviet a osca 9 Problema. Impostiamo ora il problema deformativo per la trave di

Dettagli

Gradi di libertà e vincoli. Moti del corpo libero

Gradi di libertà e vincoli. Moti del corpo libero Gradi di libertà e vincoli Moti del corpo libero Punto materiale Il punto materiale descrive un corpo di cui interessa individuare solo la sua posizione Nel piano la posizione di un punto si individua

Dettagli

-gdl>gdv il sistema è staticamente labile (trave labile, cioè in grado di muoversi);

-gdl>gdv il sistema è staticamente labile (trave labile, cioè in grado di muoversi); Meccanica a trave Trave in equilibrio con due vincoli I gradi di libertà per un corpo sul piano sono 3, mentre quelli di un corpo nello spazio sono 6. Consideriamo un sistema di riferimento formato da:

Dettagli

Linea elastica, scalata per la rappresentazione grafica

Linea elastica, scalata per la rappresentazione grafica Esercizio N.1 a trave a mensola ha sezione trasversale costante e porta un carico F nella sua estremità libera. Determinare l euazione della linea elastica, lo spostamento e la rotazione in. Ricordiamo

Dettagli

Esercizi svolti e proposti Caratteristiche della sollecitazione su sistemi piani di travi

Esercizi svolti e proposti Caratteristiche della sollecitazione su sistemi piani di travi Esercizi svolti e proposti Caratteristiche della sollecitazione su sistemi piani di travi Travi singole Trave app.-app. con carico distribuito 50 lb/ft 4 ft 4 ft A C 4 ft 4 ft 50 lb/ft C A C 400 lb 4 ft

Dettagli

BOZZA. Lezione n. 6. Rigidezze e coefficienti di trasmissione

BOZZA. Lezione n. 6. Rigidezze e coefficienti di trasmissione ezione n. 6 Rigidezze e coefficienti di trasmissione ffinché si possa utilizzare efficacemente il metodo dell equilibrio nella soluzione di travature iperstatiche, occorre ricavare, per le varie membrature,

Dettagli

ESERCIZI SVOLTI. Travi. 4 Forze in equilibrio e vincoli 4.2 Vincoli e reazioni vincolari 1

ESERCIZI SVOLTI. Travi. 4 Forze in equilibrio e vincoli 4.2 Vincoli e reazioni vincolari 1 4 Forze in equilibrio e vincoli 4. Vincoli e reazioni vincolari 1 ESERCIZI SVOLTI Travi 1 Si richiede il calcolo grafico e analitico delle reazioni vincolari della trave riportata in figura appoggiata

Dettagli

ESERCIZI SVOLTI. 12 Travi iperstatiche 12.2 Travi continue

ESERCIZI SVOLTI. 12 Travi iperstatiche 12.2 Travi continue 1 Travi iperstatiche 1. Travi continue 1 ESERCIZI SVOLTI 1 1..4 Travi continue con sbalzi e con incastri Studiare la trave continua omogenea e a sezione costante rappresentata in figura, soggetta ai carichi

Dettagli

Costruzione di Macchine Verifica a fatica degli elementi delle macchine

Costruzione di Macchine Verifica a fatica degli elementi delle macchine Costruzione di Macchine Verifica a fatica degli elementi delle macchine In figura 1 è rappresentato schematicamente un mescolatore: l albero con la paletta è mosso da un motore elettrico asincrono trifase

Dettagli

Le deformazioni nelle travi rettilinee inflesse

Le deformazioni nelle travi rettilinee inflesse 2 Le deformazioni nelle travi rettilinee inflesse Tema 2.1 Per la struttura riportata in figura 2.1 determinare l espressione analitica delle funzioni di rotazione ed abbassamento, integrando le equazioni

Dettagli

CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO VERIFICA DI RIGIDEZZA DI ALBERO

CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO VERIFICA DI RIGIDEZZA DI ALBERO CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO 25-6 VERIFICA DI RIGIDEZZA DI ALBERO E' dato l'albero riportato in Figura, recante all'estermità

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

Corso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1

Corso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1 orso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1 1) Un triangolo rettangolo presenta l ipotenusa lunga 5m mentre l angolo formato con uno dei due cateti

Dettagli

PressoFlessione. b=33. Trasportando la forza P verso l alto della quantità b = -33 mm, abbiamo la seguente situazione:

PressoFlessione. b=33. Trasportando la forza P verso l alto della quantità b = -33 mm, abbiamo la seguente situazione: Esercizio N.1 Sapendo che la grandezza della forza orizzontale P è 8 kn, determinare la tensione (a) nel punto A, (b) nel punto B. Lo schema statico e le azioni interne sull asta sono le seguenti. P b=33

Dettagli

Esercizi svolti Calcolo reazioni vincolari

Esercizi svolti Calcolo reazioni vincolari Esercizi svolti Calcolo reazioni vincolari prof. Carlucci Vincenzo ITIS Einstein Potenza 1 Esercizio 1 Calcolare le reazioni vincolari della struttura isostatica riportata in figura. Prima di procedere

Dettagli

za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 -

za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 - 11 Calcolo di spostamenti e rotazioni in travature isostatiche 81 11 Calcolo di spostamenti e rotazioni in travature isostatiche Consideriamo d ora in avanti travature linearmente termoelastiche dello

Dettagli

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare

Dettagli

Il Principio dei lavori virtuali

Il Principio dei lavori virtuali Il Principio dei lavori virtuali Il P..V. rientra nella classe di quei principi energetici che indicano che i sistemi evolvono nel senso di minimizzare l energia associata ad ogni stato di possibile configurazione.

Dettagli

ELEMENTI MONODIMENSIONALI : TRAVE

ELEMENTI MONODIMENSIONALI : TRAVE ELEMENTI MONODIMENSIONALI : TRAVE La trave è un elemento strutturale con una dimensione predominante sulle altre due. baricentro G sezione trasversale linea d asse rappresentazione schematica 1 ELEMENTI

Dettagli

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che

Dettagli

Controlli Automatici L-A - Esercitazione

Controlli Automatici L-A - Esercitazione Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli

Dettagli

ESERCIZIO 1 (Punti 9)

ESERCIZIO 1 (Punti 9) UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data

Dettagli

Lezione Analisi Statica di Travi Rigide

Lezione Analisi Statica di Travi Rigide Lezione Analisi Statica di Travi Rigide Analisi statica dei sistemi di travi rigide Dato un sistema di travi rigide soggetto a forze esterne. Il sistema è detto equilibrato se esiste un sistema di reazioni

Dettagli

MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ.

MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ. Meccanica delle strutture Componenti di spostamento Sistemi iperstatici di travi Linea elastica e metodo di Ritz. Componenti di spostamento in sistemi isostatici di travi MST.1.01 Sia dato il portale in

Dettagli

Esercitazioni. Costruzione di Macchine A.A

Esercitazioni. Costruzione di Macchine A.A Esercitazioni di Costruzione di Macchine A.A. 2002-200 Manovellismo ordinario centrato Esercitazione n 1 2 Una macchina per prove di fatica su molle a balestra aziona, attraverso un giunto che trasmette

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

Soluzione dei compiti del Corso di Tecnica delle Costruzioni

Soluzione dei compiti del Corso di Tecnica delle Costruzioni Corso di Laurea CEA Indirizzi Ambiente ed Infrastrutture Soluzione dei compiti del Corso di Tecnica delle Costruzioni Maurizio Orlando Lorenzo R. Piscitelli Versione 1.0 aggiornamento 15 GENNAIO 2017 Pagina

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Verifica di una trave in legno soggetta a flessione e taglio

Verifica di una trave in legno soggetta a flessione e taglio 1 Sussidi didattici per il corso di PROGEZIONE, COSRUZIONI E IPINI Verifica di una trave in legno soggetta a flessione e taglio Esercizio n. Verificare la trave in legno dello schema statico rappresentato

Dettagli

TEOREMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco)

TEOREMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco) Capitolo 5 TEOEMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco) 5.1 Teorema di Betti Siano S 1 = {b 1, p 1, û 1 } ed S 2 = {b 2, p 2, û 2 } due differenti sistemi di sollecitazioni agenti sul medesimo

Dettagli

Con riferimento alla trave reticolare rappresentata in figura, determinare gli sforzi nelle aste. Equilibrio alla rotazione intorno a Q :

Con riferimento alla trave reticolare rappresentata in figura, determinare gli sforzi nelle aste. Equilibrio alla rotazione intorno a Q : UIVERSITA DEGLI STUDI ROMA TRE Facolta di Ingegneria Corso di Laurea in Ingegneria Civile Anno Accademico 0/0 Corso di Tecnica delle Costruzioni Prof. Gianmarco de Felice ESERCITAZIOE COSTRUZIOI I ACCIAIO:

Dettagli

STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE

STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE v 1.0 1 I PROVA DI VALUTAZIONE 15 Novembre 2006 - Esercizio 2 Data la struttura di figura, ricavare

Dettagli

Esercitazione sulle azioni interne

Esercitazione sulle azioni interne Appunti di Elementi di eccanica Esercitazione sulle azioni interne v 1.0 14 ottobre 2008 Figura 1: Rappresentazione di un corpo diviso in due parti 1 Calcolo delle azioni interne La scrittura delle equazioni

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

Esame 28 Giugno 2017

Esame 28 Giugno 2017 Esame 28 Giugno 2017 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Dipartimento di atematica Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esame - Fisica Generale I 28

Dettagli

Progetto di un Telaio Piano in C.A.

Progetto di un Telaio Piano in C.A. Seconda Esercitazione Progettuale Progetto di un Telaio Piano in C.A. Analisi delle Sollecitazioni secondo il Metodo di Cross con vincoli ausiliari Seconda Esercitazione Progettuale (EP2) ~ 1 ~ a cura

Dettagli

Lezione 44 - Le linee di influenza per distorsioni viaggianti.

Lezione 44 - Le linee di influenza per distorsioni viaggianti. Lezione 44 - Le linee di influenza per distorsioni viaggianti. ü [A.a. 2013-2014 : ultima revisione 8 Aprile 2014] In questa Lezione si termina lo studio delle linee di influenza, affrontando il terzo

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

C.BRUTTI Ordinario di Progettazione Meccanica e Costruzione di Macchine ELEMENTI COSTRUTTIVI DELLE MACCHINE ESERCIZI E APPROFONDIMENTI

C.BRUTTI Ordinario di Progettazione Meccanica e Costruzione di Macchine ELEMENTI COSTRUTTIVI DELLE MACCHINE ESERCIZI E APPROFONDIMENTI .BRUTTI Ordinario di Progettazione eccanica e ostruzione di acchine EEENTI OSTRUTTIVI DEE HINE ESERIZI E PPROFONDIENTI.. 01-01 P.1 RIHII DI ENI DEE STRUTTURE 1.1 Deformazione di una trave isostatica Questo

Dettagli

Lezione 6 - Analisi statica

Lezione 6 - Analisi statica ezione 6 - nalisi statica ü [.a. 211-212 : ultima revisione 7 ottobre 212] Si consideri la stessa struttura bidimensionale della lezione precedente, ossia un insieme di travi collegate tra loro ed al suolo

Dettagli

Alcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità.

Alcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità. lcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità. osservazione diretta mostra che il comportamento delle travi

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

SOLUZIONE DELLA TRACCIA N 2

SOLUZIONE DELLA TRACCIA N 2 SOLUZIONE DELLA TRACCIA N La presente soluzione verrà redatta facendo riferimento al manuale: Caligaris, Fava, Tomasello Manuale di Meccanica Hoepli. - Studio delle sollecitazioni in gioco Si calcolano

Dettagli

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano

Dettagli

Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari

Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari Statica del corpo rigido Condizioni di equilibrio Calcolo delle Reazioni incolari Obiettivo della lezione: apprendere le equazioni cardinali della statica e applicarle al calcolo delle reazioni vincolari.

Dettagli

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI CONTINUE AGGIORNAMENTO DEL 27/10/2011

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI CONTINUE AGGIORNAMENTO DEL 27/10/2011 Sussidi didattici per il corso di OSRUZIONI EILI Prof. Ing. Francesco Zanghì RVI ONINUE GGIORNMENO EL 7/0/0 orso di OSRUZIONI EILI Prof. Ing. Francesco Zanghì Per trave continua intendiamo una trave unica,

Dettagli

Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm

Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm Esercizio N.1 (pag. 81) La coppia M agisce in un piano verticale passante per l asse baricentrico di una trave la cui sezione trasversale è mostrata in figura. Determinare la tensione nel punto A. Soluzione

Dettagli

Capitolo 2 LA STATICA DELLE TRAVI

Capitolo 2 LA STATICA DELLE TRAVI Capitolo 2 LA STATICA DELLE TRAVI 2-1. LA TRAVE Definizione: La TRAVE è un solido generato da un area piana di forma e dimensioni variabili con continuità, che si muove nello spazio mantenendosi normale

Dettagli

Il progetto di travi in c.a.p Iperstatiche Il calcolo delle reazioni iperstatiche dovute alla precompressione

Il progetto di travi in c.a.p Iperstatiche Il calcolo delle reazioni iperstatiche dovute alla precompressione Università degli Studi di Roma Tre - Facoltà di Ingegneria Laurea magistrale in Ingegneria Civile in Protezione Corso di Cemento Armato Precompresso A/A 2016-17 Il progetto di travi in c.a.p Iperstatiche

Dettagli

Teoria e Progetto dei Ponti

Teoria e Progetto dei Ponti Corso di Teoria e Progetto dei Ponti Università degli Studi di Pavia Teoria e Progetto dei Ponti 1/51 Teoria e Progetto dei Ponti Anno Accademico 08/09 Prof. Gian Michele Calvi Corso di Teoria e Progetto

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1 Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni

Dettagli

Metodo delle Forze nelle strutture a nodi spostabili

Metodo delle Forze nelle strutture a nodi spostabili Metodo delle Forze nelle strutture a nodi spostabili L inserimento delle cerniere nelle strutture a nodi spostabili rende queste labili ma quest operazione si rende necessaria se vogliamo utilizzare i

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

MECCANICA APPLICATA E MACCHINE A FLUIDO

MECCANICA APPLICATA E MACCHINE A FLUIDO Meccanica e Macchine ese 01 MECCNIC PPLICT E MCCHINE FLUIDO Sessione ordinaria 01 Lo schema di fig. 1 rappresenta un albero per motore elettrico che deve trascinare una puleggia calettata ad una estremità.

Dettagli

FUNZIONI 3. calcolare: a) lim f ( x)

FUNZIONI 3. calcolare: a) lim f ( x) ) Data la funzione di equazione a) lim f ( ) b) lim f ( ) f FUNZIONI ), scriverne il dominio poi calcolare: 5 c) lim f ( ) d) lim f ( ) ( ± 5 ) Data la funzione di equazione f ( ) 5, scriverne il dominio

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI

Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI . Travi isostatiche ad asse rettilineo ESERCIZI PROPOSTI Con riferimento alle tre strutture isostatiche di figura, costituite da tre tratti, determinare: ) Reazioni vincolari; ) Diagrammi del momento flettente

Dettagli

Calcolo di una trave a C

Calcolo di una trave a C Calcolo di una trave a C Analisi matematica e FEM con Abaqus Giacomo Barile 26/01/2015 Calcolo analitico e simulato di una trave a C di differenti materiali (ERGAL e Graphite/Epoxy) sottoposta ad uno sforzo

Dettagli

BOZZA. Lezione n. 10. Il metodo dell equilibrio: esempio #4 La rigidezza alla traslazione

BOZZA. Lezione n. 10. Il metodo dell equilibrio: esempio #4 La rigidezza alla traslazione ezione n. 10 Il metodo dell equilibrio: esempio #4 a rigidezza alla traslazione E opportuno estendere lo studio effettuato fino a questo punto anche al caso di strutture in cui siano possibili spostamenti

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali

Dettagli

Microeconomia, Esercitazione 5. 1 Esercizi. 1.1 Monopolio/ Monopolio/2. A cura di Giuseppe Gori

Microeconomia, Esercitazione 5. 1 Esercizi. 1.1 Monopolio/ Monopolio/2. A cura di Giuseppe Gori Microeconomia, Esercitazione 5. A cura di Giuseppe Gori ([email protected]) Esercizi.. Monopolio/ Supponete che in un ipotetico mercato, curva di domanda, costi marginali dell impresa monopolista

Dettagli

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1 Formulazione dell equazione del moto Prof. Adolfo Santini - Dinamica delle Strutture 1 Sistema a un grado di libertà In alcuni sistemi strutturali la massa, lo smorzamento e la rigidezza sono concentrati

Dettagli

Reazioni vincolari e equilibrio del corpo rigido. M. Guagliano

Reazioni vincolari e equilibrio del corpo rigido. M. Guagliano Reazioni vincolari e equilibrio del corpo rigido Reazioni vincolari del corpo rigido 2 I corpi rigidi sono generalmente vincolati al riferimento fisso tramite i vincoli, che esercitano delle forze sul

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Macchina a regime periodico

Macchina a regime periodico Macchina a regime periodico rev. 1.2 J m J v τ, η t r φ motore l m F x, ẋ, ẍ (P.M.E.) p m p a Figura 1: Schema dell impianto di pompaggio Della pompa volumetrica a stantuffo a singolo effetto rappresentata

Dettagli

Soluzione Problema 1

Soluzione Problema 1 Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed

Dettagli

Tesina UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-PESCARA FACOLTÀ DI ARCHITETTURA F 1. π/4

Tesina UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-PESCARA FACOLTÀ DI ARCHITETTURA F 1. π/4 UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-ESCARA FACOLTÀ DI ARCHITETTURA CORSO DI LAUREA SECIALISTICA, CORSI DI LAUREA TRIENNALI SCIENZA DELLE COSTRUZIONI E TEORIA DELLE STRUTTURE (Canali B,C) a.a.

Dettagli

Esercitazione 3 - Calcolo delle azioni interne

Esercitazione 3 - Calcolo delle azioni interne Università degli Studi di ergamo orso di Laurea in Ingegneria Tessile orso di Elementi di Meccanica Esercitazione - alcolo delle azioni interne Esercizio n. La struttura di figura.a è composta da due aste

Dettagli

Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica)

Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica) Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica) Corso di Meccanica Analitica e dei Continui (Corso di Laurea Specialistica in Ingegneria Nucleare e della Sicurezza

Dettagli

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1 CENTR DI TAGLI E TRSINE SPURIA IN TRAVI A PARETE STTILE ESERCIZI 1 La sezione di figura, sietrica rispetto ad un asse orizzontale passante per, è soggetta all azione di taglio T agente in direzione verticale

Dettagli

Flessione semplice. , il corrispondente raggio di curvatura R del tubo vale:

Flessione semplice. , il corrispondente raggio di curvatura R del tubo vale: Esercizio N.1 Il tubo rettangolare mostrato è estruso da una lega di alluminio per la quale σ sn = 280 MPa e σ U = 420 Mpa e E = 74 GPa. Trascurando l effetto dei raccordi, determinare (a) il momento flettente

Dettagli

ESERCIZIO 2 (punti 13) La sezione di figura è

ESERCIZIO 2 (punti 13) La sezione di figura è SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema A : allievo ESERCIZIO 1 (punti 13) Data la struttura una volta iperstatica di figura, soggetta alla variazione termica uniforme sulla biella

Dettagli

MECCANICA APPLICATA ALLE MACCHINE L

MECCANICA APPLICATA ALLE MACCHINE L Università degli Studi di Bologna II Facoltà di Ingegneria con sede a Cesena MECCANICA ALICATA ALLE MACCHINE L Corso di Laurea in INGEGNEIA MECCANICA Corso di Laurea in INGEGNEIA AEOSAZIALE Anno Accademico

Dettagli

PROVA DI RECUPERO 11/09/2001

PROVA DI RECUPERO 11/09/2001 Esercizio n Cemento Armato PROVA DI RECUPERO 11/09/001 Si consideri il portale in cemento armato indicato in figura costituito da una trave di base b t 30 cm e altezza h t 60 cm, e da due pilastri identici

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Università degli Studi della Basilicata Facoltà di Ingegneria

Università degli Studi della Basilicata Facoltà di Ingegneria Università degli Studi della Basilicata Facoltà di Ingegneria Corso di TECNICA DELLE COSTRUZIONI Docente: Collaboratori: Prof. Ing. Angelo MASI Dr. Ing. Giuseppe Santarsiero Ing. Vincenzo Manfredi RICHIAMI

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza

Dettagli

ESERCITAZIONE 1 ESTENSIMETRIA

ESERCITAZIONE 1 ESTENSIMETRIA UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTA DI INGEGNERIA E ARCHITETTURA DIPARTIMENTO DI MECCANICA, CHIMICA E MATERIALI CORSO DI LAUREA IN INGEGNERIA MECCANICA ESERCITAZIONE 1 ESTENSIMETRIA Relazione del

Dettagli

Lezione 40 - I corollari di Mohr

Lezione 40 - I corollari di Mohr ezione 40 - I corollari di Mohr ü [.a. 011-01 : ultima revisione 9 agosto 011] In questa ezione si illustra un metodo per calcolare lo spostamento o la rotazione di un punto di una trave rettilinea, sfruttando

Dettagli

EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO

EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO Equilibrio di un Punto Materiale Definizione 1 Un punto materiale è in una posizione di equilibrio quando posto in quella posizione

Dettagli

DIAGRAMMI DELLE SOLLECITAZIONI

DIAGRAMMI DELLE SOLLECITAZIONI 1 DISPENSA N 5 DIAGRAMMI DELLE SOLLECITAZIONI Consideriamo una struttura qualsiasi, per esempio una trave appoggiata, sollecitata da carichi generici. Dopo avere trovato le reazioni vincolari, il prossimo

Dettagli

Esercizio_1. Una barra metallica cilindrica di diametro pari a 1.25cm è. MPa. Soluzione: m 2

Esercizio_1. Una barra metallica cilindrica di diametro pari a 1.25cm è. MPa. Soluzione: m 2 Esercizio_1 Una barra metallica cilindrica di diametro pari a 1.5cm è sottoposta ad un carico pari a 500Kg.Calcolare lo sforzo in MPa. Soluzione: Kg m F m g 500 9.81 455 455N s d 0.015 4 A0 πr π π 1. 10

Dettagli

Lezione 33- Le travi ad una campata II

Lezione 33- Le travi ad una campata II ezione 33- e travi ad una campata II ü [.a. 2011-2012 : ultima revisione 14 giugno 2012] In questa lezione si studiano le travi ad una sola campata con i piu' comuni tipi di vincolo e soggetti ai piu'

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Esercizio 1. Un corsoio di massa m scorre su un piano orizzontale con attrito radente di coefficiente f d. Al corsoio, in C, è collegata la biella B C, di lunghezza b e

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della

Dettagli

Dimensionamento della trasmissione flessibile a cinghie trapezoidali.

Dimensionamento della trasmissione flessibile a cinghie trapezoidali. SOLUZIONE TRACCIA II PROVA SCRITTA DI MECCANICA E MACCHINE ESAME DI STATO 005/06 Lo schema della trasmissione può essere schematizzato come indicato in figura, ove il motore elettrico è separato dalla

Dettagli

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea)

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) ESERCIZIO n. 1 - Scelte di consumo (scelta ottimale, variazione di prezzo, variazione di reddito) Un consumatore ha preferenze rappresentate dalla seguente funzione di utilità: a) Determinare la scelta

Dettagli

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,

Dettagli