EQUAZIONE DELLA LINEA ELASTICA
|
|
|
- Paola Belloni
- 8 anni fa
- Visualizzazioni
Transcript
1 ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9
2 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale: acciaio (E=0 GPa) (Prova scritta 5 luglio 0) Utilizziamo N e mm come unità di misura. Si avrà allora E = 0000 N/mm 8 J = = 887. mm Le reazioni vincolari al carrello a terra in B (R B ) ed al pattino a terra in A (M A ) possono essere calcolate con semplici equazioni di equilibrio della trave (per esempio alla traslazione in direzione verticale ed alla rotazione intorno al carrello B). Si ricava R B = 50 N ed M A = 50 Nmm.
3 Per calcolare lo spostamento verticale del pattino A è sufficiente scrivere l equazione della linea elastica nel tratto A-B. L equazione generale della linea elastica è la seguente ( ) M y' '=, valida per le seguenti convenzioni di segno: Scegliendo l origine delle ascisse in A, come dalla figura seguente, l equazione del momento flettente nel tratto A-B può essere scritta come: M ( ) = 50 + per 0 < < 00
4 L equazione della linea elastica nel tratto A-B (0<<00) vale pertanto 50 + y '' = per 0 < < 00 da cui y'' = + 50 () e, integrando in sequenza, y' = C () y = C + C () Le costanti C e C si possono determinare imponendo le opportune condizioni al contorno nel tratto A-B (0<<00): a) b) Nel punto A (=0), in corrispondenza del pattino, la rotazione della linea d asse della struttura deve essere nulla (il pattino non permette la rotazione della trave) Nel punto B (=00), in corrispondenza del carrello, lo spostamento verticale della linea d asse della struttura deve essere nullo (il carrello non permette spostamenti verticali) _ y ' = 0 in = 0 _ y = 0 in = 00 Imponendo la condizione a) nell equazione () si ricava: 0 0 = C e dunque C = 0 Imponendo la condizione b) nell equazione (), ed essendo C =0, si ricava:
5 = C 00 + C = C da cui C = + 50 = 7.97E6 L equazione () si può quindi scrivere come: y = E6 ed anche come y = E6 Lo spostamento verticale y del pattino si può quindi ricavare dalla precedente equazione imponendo il valore =0: y E6 = E6 0. mm + = = Poichè il valore di y è negativo, lo spostamento è diretto verso l alto (per le convenzioni scelte, y è positivo se diretto verso il basso). La deformata qualitativa (e non in scala) della struttura è rappresentata nella figura seguente. 5
6 Data la trave di figura (Alluminio; E = 70 GPa), si richiede di determinare l equazione della linea elastica nel tratto A-B e di calcolare (sfruttando l equazione della linea elastica) lo spostamento verticale della sezione C. (Prova scritta 8 gennaio 0) Nm N/mm C 6 8 A B 0 Utilizziamo N e mm come unità di misura. Si avrà allora E = N/mm π 6 π 8 J = = 06 mm Nmm N/mm 6 8 A B R A R B Le reazioni vincolari al carrello a terra in B (R B ) ed alla cerniera a terra in A (R A ) possono essere calcolate con semplici equazioni di equilibrio della trave (per esempio alla rotazione intorno al punto A ed alla traslazione in direzione verticale). Si ricava R A = 6 N ed R B = -06 N. 6
7 Nmm N/mm A B 6 N 06 N Per calcolare lo spostamento verticale della trave nel punto C è sufficiente utilizzare l equazione della linea elastica nel tratto A-B. L equazione generale della linea elastica è la seguente ( ) M y' '=, valida per le seguenti convenzioni di segno: Scegliendo l origine delle ascisse in B, come dalla figura seguente, Nmm N/mm A B 6 N 06 N l equazione del momento flettente nel tratto B-A può essere scritta come: 7
8 M ( ) = 06 per 0 < < 00 L equazione della linea elastica nel tratto B-A (0<<00) vale pertanto y '' = = + per 0 < < 00 da cui y' ' = 06 ( ) e, integrando in sequenza, y' = 06 + C () y = 06 + C + C 6 () Le costanti C e C si possono determinare imponendo le opportune condizioni al contorno nel tratto B-A (0<<00): a) b) Nel punto B (=0), in corrispondenza del carrello, lo spostamento verticale della linea d asse della struttura deve essere nullo (il carrello non permette spostamenti verticali) Nel punto A (=00), in corrispondenza della cerniera, lo spostamento verticale della linea d asse della struttura deve essere nullo (la cerniera non permette spostamenti verticali) _ y = 0 in = 0 _ y = 0 in = 00 Imponendo la condizione a) nell equazione () si ricava: 0 0 = 06 + C 0 + C = C 6 e dunque C = 0 Imponendo la condizione b) sempre nell equazione (), ed essendo C =0, si ricava: 8
9 da cui 00 = C C = L equazione () si può quindi scrivere come: y = ed anche come y = Lo spostamento verticale y della linea d asse della trave nel punto C si può quindi ricavare dalla precedente equazione imponendo il valore =70 (poichè l origine delle è in B): 70 y = = ( 6.07E6) = 0. mm Poichè il valore di y è negativo, lo spostamento è diretto verso l alto (per le convenzioni scelte, y è positivo se diretto verso l alto). La deformata qualitativa (non in scala) della struttura è rappresentata nella figura seguente. 9
10 Calcolare la rotazione (in gradi) della linea d asse della struttura nel punto A utilizzando l equazione della linea elastica. Materiale: acciaio (E=0 GPa) (Prova scritta gennaio 00) Utilizziamo N e mm come unità di misura. Si avrà allora E = 0000 N/mm 8 6 J = + = 995. mm Le reazioni vincolari al pattino a terra C (M C ) ed alla cerniera a terra B (R B ) possono essere calcolate con semplici equazioni di equilibrio della trave (per esempio alla traslazione in direzione verticale ed alla rotazione intorno al punto B). Si ricava R B = 00 N ed M C = -500 Nmm. 0
11 C A N/mm 500 Nmm 0 B N Per calcolare la rotazione della trave nel punto A possiamo scrivere l equazione della linea elastica nel tratto C-B. L equazione generale della linea elastica è: ( ) M y' '=, valida per le seguenti convenzioni di segno: Scegliendo l origine delle ascisse in C, come dalla figura seguente, C N/mm 500 Nmm B N l equazione del momento flettente nel tratto C-B può essere scritta come: M ( ) = 500 per 0 < < 0
12 L equazione della linea elastica nel tratto C-B (0<<0) vale pertanto y '' = = per 0 < < 0 da cui y' ' = 500 () e, integrando in sequenza, y' = C () y = C + C () Le costanti C e C si possono determinare imponendo le opportune condizioni al contorno nel tratto C-B (0<<0): a) b) Nel punto C (=0), in corrispondenza del pattino, la rotazione della linea d asse della struttura deve essere nulla (il pattino non permette la rotazione della trave) Nel punto B (=0), in corrispondenza della cerniera, lo spostamento verticale della linea d asse della struttura deve essere nullo (la cerniera non permette spostamenti verticali) _ y ' = 0 in = 0 _ y = 0 in = 00 Imponendo la condizione a) nell equazione () si ricava: 0 = C e dunque C = 0 Imponendo la condizione b) nell equazione (), ed essendo C =0, si ricava: 0 0 = C da cui 0 C = 500 =.5E7
13 L equazione () si può quindi scrivere come: y' = 500 ed anche come y' = (500 ) La rotazione della linea d asse della trave nel punto A è espressa dal valore della y in =0: 80 y ' = (500 0) = = rad = ( ) = π α = 0.07 La deformata qualitativa (e non in scala) della struttura è rappresentata nella figura seguente. L equazione (), y = 500.5E7, permette invece di determinare lo spostamento δ del punto A, calcolando il valore di y per = 0 mm: 0 y = 500.5E7 = 0. 08mm δ = 0.08 mm
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE 1 PROVA SCRITTA 11 gennaio 2013 - Esercizio 2 Data la struttura di figura, ricavare le equazioni delle azioni interne (M, N, T) e tracciarne
Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA
Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA Trave a mensola, di rigidezza flessionale costante pari a EI, soggetta a forza verticale agente all estremo liero. Determinare
Tutti i diritti riservati
Statica - Fondamenti di meccanica strutturale /ed Copright 00 The Companies srl e Corbusier - Progetto per il palazzo dei Soviet a osca 9 Problema. Impostiamo ora il problema deformativo per la trave di
Gradi di libertà e vincoli. Moti del corpo libero
Gradi di libertà e vincoli Moti del corpo libero Punto materiale Il punto materiale descrive un corpo di cui interessa individuare solo la sua posizione Nel piano la posizione di un punto si individua
-gdl>gdv il sistema è staticamente labile (trave labile, cioè in grado di muoversi);
Meccanica a trave Trave in equilibrio con due vincoli I gradi di libertà per un corpo sul piano sono 3, mentre quelli di un corpo nello spazio sono 6. Consideriamo un sistema di riferimento formato da:
Linea elastica, scalata per la rappresentazione grafica
Esercizio N.1 a trave a mensola ha sezione trasversale costante e porta un carico F nella sua estremità libera. Determinare l euazione della linea elastica, lo spostamento e la rotazione in. Ricordiamo
Esercizi svolti e proposti Caratteristiche della sollecitazione su sistemi piani di travi
Esercizi svolti e proposti Caratteristiche della sollecitazione su sistemi piani di travi Travi singole Trave app.-app. con carico distribuito 50 lb/ft 4 ft 4 ft A C 4 ft 4 ft 50 lb/ft C A C 400 lb 4 ft
BOZZA. Lezione n. 6. Rigidezze e coefficienti di trasmissione
ezione n. 6 Rigidezze e coefficienti di trasmissione ffinché si possa utilizzare efficacemente il metodo dell equilibrio nella soluzione di travature iperstatiche, occorre ricavare, per le varie membrature,
ESERCIZI SVOLTI. Travi. 4 Forze in equilibrio e vincoli 4.2 Vincoli e reazioni vincolari 1
4 Forze in equilibrio e vincoli 4. Vincoli e reazioni vincolari 1 ESERCIZI SVOLTI Travi 1 Si richiede il calcolo grafico e analitico delle reazioni vincolari della trave riportata in figura appoggiata
ESERCIZI SVOLTI. 12 Travi iperstatiche 12.2 Travi continue
1 Travi iperstatiche 1. Travi continue 1 ESERCIZI SVOLTI 1 1..4 Travi continue con sbalzi e con incastri Studiare la trave continua omogenea e a sezione costante rappresentata in figura, soggetta ai carichi
Costruzione di Macchine Verifica a fatica degli elementi delle macchine
Costruzione di Macchine Verifica a fatica degli elementi delle macchine In figura 1 è rappresentato schematicamente un mescolatore: l albero con la paletta è mosso da un motore elettrico asincrono trifase
Le deformazioni nelle travi rettilinee inflesse
2 Le deformazioni nelle travi rettilinee inflesse Tema 2.1 Per la struttura riportata in figura 2.1 determinare l espressione analitica delle funzioni di rotazione ed abbassamento, integrando le equazioni
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO VERIFICA DI RIGIDEZZA DI ALBERO
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO 25-6 VERIFICA DI RIGIDEZZA DI ALBERO E' dato l'albero riportato in Figura, recante all'estermità
Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.
Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula
Corso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1
orso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1 1) Un triangolo rettangolo presenta l ipotenusa lunga 5m mentre l angolo formato con uno dei due cateti
PressoFlessione. b=33. Trasportando la forza P verso l alto della quantità b = -33 mm, abbiamo la seguente situazione:
Esercizio N.1 Sapendo che la grandezza della forza orizzontale P è 8 kn, determinare la tensione (a) nel punto A, (b) nel punto B. Lo schema statico e le azioni interne sull asta sono le seguenti. P b=33
Esercizi svolti Calcolo reazioni vincolari
Esercizi svolti Calcolo reazioni vincolari prof. Carlucci Vincenzo ITIS Einstein Potenza 1 Esercizio 1 Calcolare le reazioni vincolari della struttura isostatica riportata in figura. Prima di procedere
za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 -
11 Calcolo di spostamenti e rotazioni in travature isostatiche 81 11 Calcolo di spostamenti e rotazioni in travature isostatiche Consideriamo d ora in avanti travature linearmente termoelastiche dello
Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h
Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare
Il Principio dei lavori virtuali
Il Principio dei lavori virtuali Il P..V. rientra nella classe di quei principi energetici che indicano che i sistemi evolvono nel senso di minimizzare l energia associata ad ogni stato di possibile configurazione.
ELEMENTI MONODIMENSIONALI : TRAVE
ELEMENTI MONODIMENSIONALI : TRAVE La trave è un elemento strutturale con una dimensione predominante sulle altre due. baricentro G sezione trasversale linea d asse rappresentazione schematica 1 ELEMENTI
Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale
Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che
Controlli Automatici L-A - Esercitazione
Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli
ESERCIZIO 1 (Punti 9)
UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data
Lezione Analisi Statica di Travi Rigide
Lezione Analisi Statica di Travi Rigide Analisi statica dei sistemi di travi rigide Dato un sistema di travi rigide soggetto a forze esterne. Il sistema è detto equilibrato se esiste un sistema di reazioni
MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ.
Meccanica delle strutture Componenti di spostamento Sistemi iperstatici di travi Linea elastica e metodo di Ritz. Componenti di spostamento in sistemi isostatici di travi MST.1.01 Sia dato il portale in
Esercitazioni. Costruzione di Macchine A.A
Esercitazioni di Costruzione di Macchine A.A. 2002-200 Manovellismo ordinario centrato Esercitazione n 1 2 Una macchina per prove di fatica su molle a balestra aziona, attraverso un giunto che trasmette
ESERCIZIO SOLUZIONE. 13 Aprile 2011
ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto
Soluzione dei compiti del Corso di Tecnica delle Costruzioni
Corso di Laurea CEA Indirizzi Ambiente ed Infrastrutture Soluzione dei compiti del Corso di Tecnica delle Costruzioni Maurizio Orlando Lorenzo R. Piscitelli Versione 1.0 aggiornamento 15 GENNAIO 2017 Pagina
Esercitazione 2. Soluzione
Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale
Verifica di una trave in legno soggetta a flessione e taglio
1 Sussidi didattici per il corso di PROGEZIONE, COSRUZIONI E IPINI Verifica di una trave in legno soggetta a flessione e taglio Esercizio n. Verificare la trave in legno dello schema statico rappresentato
TEOREMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco)
Capitolo 5 TEOEMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco) 5.1 Teorema di Betti Siano S 1 = {b 1, p 1, û 1 } ed S 2 = {b 2, p 2, û 2 } due differenti sistemi di sollecitazioni agenti sul medesimo
Con riferimento alla trave reticolare rappresentata in figura, determinare gli sforzi nelle aste. Equilibrio alla rotazione intorno a Q :
UIVERSITA DEGLI STUDI ROMA TRE Facolta di Ingegneria Corso di Laurea in Ingegneria Civile Anno Accademico 0/0 Corso di Tecnica delle Costruzioni Prof. Gianmarco de Felice ESERCITAZIOE COSTRUZIOI I ACCIAIO:
STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE v 1.0 1 I PROVA DI VALUTAZIONE 15 Novembre 2006 - Esercizio 2 Data la struttura di figura, ricavare
Esercitazione sulle azioni interne
Appunti di Elementi di eccanica Esercitazione sulle azioni interne v 1.0 14 ottobre 2008 Figura 1: Rappresentazione di un corpo diviso in due parti 1 Calcolo delle azioni interne La scrittura delle equazioni
Fisica Generale I (primo modulo) A.A , 9 febbraio 2009
Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in
Esame 28 Giugno 2017
Esame 28 Giugno 2017 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Dipartimento di atematica Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esame - Fisica Generale I 28
Progetto di un Telaio Piano in C.A.
Seconda Esercitazione Progettuale Progetto di un Telaio Piano in C.A. Analisi delle Sollecitazioni secondo il Metodo di Cross con vincoli ausiliari Seconda Esercitazione Progettuale (EP2) ~ 1 ~ a cura
Lezione 44 - Le linee di influenza per distorsioni viaggianti.
Lezione 44 - Le linee di influenza per distorsioni viaggianti. ü [A.a. 2013-2014 : ultima revisione 8 Aprile 2014] In questa Lezione si termina lo studio delle linee di influenza, affrontando il terzo
Dinamica del punto materiale: problemi con gli oscillatori.
Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad
C.BRUTTI Ordinario di Progettazione Meccanica e Costruzione di Macchine ELEMENTI COSTRUTTIVI DELLE MACCHINE ESERCIZI E APPROFONDIMENTI
.BRUTTI Ordinario di Progettazione eccanica e ostruzione di acchine EEENTI OSTRUTTIVI DEE HINE ESERIZI E PPROFONDIENTI.. 01-01 P.1 RIHII DI ENI DEE STRUTTURE 1.1 Deformazione di una trave isostatica Questo
Lezione 6 - Analisi statica
ezione 6 - nalisi statica ü [.a. 211-212 : ultima revisione 7 ottobre 212] Si consideri la stessa struttura bidimensionale della lezione precedente, ossia un insieme di travi collegate tra loro ed al suolo
Alcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità.
lcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità. osservazione diretta mostra che il comportamento delle travi
Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.
Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa
Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007
Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il
Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione
Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati
Argomento 6: Derivate Esercizi. I Parte - Derivate
6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)
SOLUZIONE DELLA TRACCIA N 2
SOLUZIONE DELLA TRACCIA N La presente soluzione verrà redatta facendo riferimento al manuale: Caligaris, Fava, Tomasello Manuale di Meccanica Hoepli. - Studio delle sollecitazioni in gioco Si calcolano
Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)
1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano
Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari
Statica del corpo rigido Condizioni di equilibrio Calcolo delle Reazioni incolari Obiettivo della lezione: apprendere le equazioni cardinali della statica e applicarle al calcolo delle reazioni vincolari.
Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI CONTINUE AGGIORNAMENTO DEL 27/10/2011
Sussidi didattici per il corso di OSRUZIONI EILI Prof. Ing. Francesco Zanghì RVI ONINUE GGIORNMENO EL 7/0/0 orso di OSRUZIONI EILI Prof. Ing. Francesco Zanghì Per trave continua intendiamo una trave unica,
Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm
Esercizio N.1 (pag. 81) La coppia M agisce in un piano verticale passante per l asse baricentrico di una trave la cui sezione trasversale è mostrata in figura. Determinare la tensione nel punto A. Soluzione
Capitolo 2 LA STATICA DELLE TRAVI
Capitolo 2 LA STATICA DELLE TRAVI 2-1. LA TRAVE Definizione: La TRAVE è un solido generato da un area piana di forma e dimensioni variabili con continuità, che si muove nello spazio mantenendosi normale
Il progetto di travi in c.a.p Iperstatiche Il calcolo delle reazioni iperstatiche dovute alla precompressione
Università degli Studi di Roma Tre - Facoltà di Ingegneria Laurea magistrale in Ingegneria Civile in Protezione Corso di Cemento Armato Precompresso A/A 2016-17 Il progetto di travi in c.a.p Iperstatiche
Teoria e Progetto dei Ponti
Corso di Teoria e Progetto dei Ponti Università degli Studi di Pavia Teoria e Progetto dei Ponti 1/51 Teoria e Progetto dei Ponti Anno Accademico 08/09 Prof. Gian Michele Calvi Corso di Teoria e Progetto
Compito del 14 giugno 2004
Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica
A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1
Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni
Metodo delle Forze nelle strutture a nodi spostabili
Metodo delle Forze nelle strutture a nodi spostabili L inserimento delle cerniere nelle strutture a nodi spostabili rende queste labili ma quest operazione si rende necessaria se vogliamo utilizzare i
Esercitazione 2. Soluzione
Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale
MECCANICA APPLICATA E MACCHINE A FLUIDO
Meccanica e Macchine ese 01 MECCNIC PPLICT E MCCHINE FLUIDO Sessione ordinaria 01 Lo schema di fig. 1 rappresenta un albero per motore elettrico che deve trascinare una puleggia calettata ad una estremità.
FUNZIONI 3. calcolare: a) lim f ( x)
) Data la funzione di equazione a) lim f ( ) b) lim f ( ) f FUNZIONI ), scriverne il dominio poi calcolare: 5 c) lim f ( ) d) lim f ( ) ( ± 5 ) Data la funzione di equazione f ( ) 5, scriverne il dominio
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica
Soluzioni dei problemi della maturità scientifica A.S. 2012/2013
Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +
Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI
. Travi isostatiche ad asse rettilineo ESERCIZI PROPOSTI Con riferimento alle tre strutture isostatiche di figura, costituite da tre tratti, determinare: ) Reazioni vincolari; ) Diagrammi del momento flettente
Calcolo di una trave a C
Calcolo di una trave a C Analisi matematica e FEM con Abaqus Giacomo Barile 26/01/2015 Calcolo analitico e simulato di una trave a C di differenti materiali (ERGAL e Graphite/Epoxy) sottoposta ad uno sforzo
BOZZA. Lezione n. 10. Il metodo dell equilibrio: esempio #4 La rigidezza alla traslazione
ezione n. 10 Il metodo dell equilibrio: esempio #4 a rigidezza alla traslazione E opportuno estendere lo studio effettuato fino a questo punto anche al caso di strutture in cui siano possibili spostamenti
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
Meccanica Applicata alle Macchine
Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali
Microeconomia, Esercitazione 5. 1 Esercizi. 1.1 Monopolio/ Monopolio/2. A cura di Giuseppe Gori
Microeconomia, Esercitazione 5. A cura di Giuseppe Gori ([email protected]) Esercizi.. Monopolio/ Supponete che in un ipotetico mercato, curva di domanda, costi marginali dell impresa monopolista
Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1
Formulazione dell equazione del moto Prof. Adolfo Santini - Dinamica delle Strutture 1 Sistema a un grado di libertà In alcuni sistemi strutturali la massa, lo smorzamento e la rigidezza sono concentrati
Reazioni vincolari e equilibrio del corpo rigido. M. Guagliano
Reazioni vincolari e equilibrio del corpo rigido Reazioni vincolari del corpo rigido 2 I corpi rigidi sono generalmente vincolati al riferimento fisso tramite i vincoli, che esercitano delle forze sul
Esame di Matematica Generale 7 Febbraio Soluzione Traccia E
Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.
Macchina a regime periodico
Macchina a regime periodico rev. 1.2 J m J v τ, η t r φ motore l m F x, ẋ, ẍ (P.M.E.) p m p a Figura 1: Schema dell impianto di pompaggio Della pompa volumetrica a stantuffo a singolo effetto rappresentata
Soluzione Problema 1
Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed
Tesina UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-PESCARA FACOLTÀ DI ARCHITETTURA F 1. π/4
UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-ESCARA FACOLTÀ DI ARCHITETTURA CORSO DI LAUREA SECIALISTICA, CORSI DI LAUREA TRIENNALI SCIENZA DELLE COSTRUZIONI E TEORIA DELLE STRUTTURE (Canali B,C) a.a.
Esercitazione 3 - Calcolo delle azioni interne
Università degli Studi di ergamo orso di Laurea in Ingegneria Tessile orso di Elementi di Meccanica Esercitazione - alcolo delle azioni interne Esercizio n. La struttura di figura.a è composta da due aste
Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica)
Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica) Corso di Meccanica Analitica e dei Continui (Corso di Laurea Specialistica in Ingegneria Nucleare e della Sicurezza
CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1
CENTR DI TAGLI E TRSINE SPURIA IN TRAVI A PARETE STTILE ESERCIZI 1 La sezione di figura, sietrica rispetto ad un asse orizzontale passante per, è soggetta all azione di taglio T agente in direzione verticale
Flessione semplice. , il corrispondente raggio di curvatura R del tubo vale:
Esercizio N.1 Il tubo rettangolare mostrato è estruso da una lega di alluminio per la quale σ sn = 280 MPa e σ U = 420 Mpa e E = 74 GPa. Trascurando l effetto dei raccordi, determinare (a) il momento flettente
ESERCIZIO 2 (punti 13) La sezione di figura è
SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema A : allievo ESERCIZIO 1 (punti 13) Data la struttura una volta iperstatica di figura, soggetta alla variazione termica uniforme sulla biella
MECCANICA APPLICATA ALLE MACCHINE L
Università degli Studi di Bologna II Facoltà di Ingegneria con sede a Cesena MECCANICA ALICATA ALLE MACCHINE L Corso di Laurea in INGEGNEIA MECCANICA Corso di Laurea in INGEGNEIA AEOSAZIALE Anno Accademico
PROVA DI RECUPERO 11/09/2001
Esercizio n Cemento Armato PROVA DI RECUPERO 11/09/001 Si consideri il portale in cemento armato indicato in figura costituito da una trave di base b t 30 cm e altezza h t 60 cm, e da due pilastri identici
TEMI D ESAME DI ANALISI MATEMATICA I
TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare
Università degli Studi della Basilicata Facoltà di Ingegneria
Università degli Studi della Basilicata Facoltà di Ingegneria Corso di TECNICA DELLE COSTRUZIONI Docente: Collaboratori: Prof. Ing. Angelo MASI Dr. Ing. Giuseppe Santarsiero Ing. Vincenzo Manfredi RICHIAMI
FUNZIONI GONIOMETRICHE
FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza
ESERCITAZIONE 1 ESTENSIMETRIA
UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTA DI INGEGNERIA E ARCHITETTURA DIPARTIMENTO DI MECCANICA, CHIMICA E MATERIALI CORSO DI LAUREA IN INGEGNERIA MECCANICA ESERCITAZIONE 1 ESTENSIMETRIA Relazione del
Lezione 40 - I corollari di Mohr
ezione 40 - I corollari di Mohr ü [.a. 011-01 : ultima revisione 9 agosto 011] In questa ezione si illustra un metodo per calcolare lo spostamento o la rotazione di un punto di una trave rettilinea, sfruttando
EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO
EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO Equilibrio di un Punto Materiale Definizione 1 Un punto materiale è in una posizione di equilibrio quando posto in quella posizione
DIAGRAMMI DELLE SOLLECITAZIONI
1 DISPENSA N 5 DIAGRAMMI DELLE SOLLECITAZIONI Consideriamo una struttura qualsiasi, per esempio una trave appoggiata, sollecitata da carichi generici. Dopo avere trovato le reazioni vincolari, il prossimo
Esercizio_1. Una barra metallica cilindrica di diametro pari a 1.25cm è. MPa. Soluzione: m 2
Esercizio_1 Una barra metallica cilindrica di diametro pari a 1.5cm è sottoposta ad un carico pari a 500Kg.Calcolare lo sforzo in MPa. Soluzione: Kg m F m g 500 9.81 455 455N s d 0.015 4 A0 πr π π 1. 10
Lezione 33- Le travi ad una campata II
ezione 33- e travi ad una campata II ü [.a. 2011-2012 : ultima revisione 14 giugno 2012] In questa lezione si studiano le travi ad una sola campata con i piu' comuni tipi di vincolo e soggetti ai piu'
DINAMICA DI SISTEMI AEROSPAZIALI
DINAMICA DI SISTEMI AEROSPAZIALI Esercizio 1. Un corsoio di massa m scorre su un piano orizzontale con attrito radente di coefficiente f d. Al corsoio, in C, è collegata la biella B C, di lunghezza b e
CONTINUITÀ E DERIVABILITÀ Esercizi risolti
CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della
Dimensionamento della trasmissione flessibile a cinghie trapezoidali.
SOLUZIONE TRACCIA II PROVA SCRITTA DI MECCANICA E MACCHINE ESAME DI STATO 005/06 Lo schema della trasmissione può essere schematizzato come indicato in figura, ove il motore elettrico è separato dalla
ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea)
ESERCIZIO n. 1 - Scelte di consumo (scelta ottimale, variazione di prezzo, variazione di reddito) Un consumatore ha preferenze rappresentate dalla seguente funzione di utilità: a) Determinare la scelta
CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola
CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,
