Lezione 6 - Analisi statica
|
|
|
- Albano Gatto
- 9 anni fa
- Visualizzazioni
Transcript
1 ezione 6 - nalisi statica ü [.a : ultima revisione 7 ottobre 212] Si consideri la stessa struttura bidimensionale della lezione precedente, ossia un insieme di travi collegate tra loro ed al suolo da opportuni vincoli. Si vuole ora indagare se la struttura in esame e' in equilibrio, o meno, ed eventualmente si vuole indicare un procedimento di calcolo per le reazioni incognite dei vincoli. a classificazione statica delle strutture Si consideri una struttura costituita da t tratti, e si immagini di eliminare tutti i vincoli, sia esterni che interni, sostituendo ad essi le rispettive reazioni vincolari. Ci si e' ridotti ad un insieme di t tratti liberi, soggetti ai carichi esterni, noti, ed alle m reazioni vincolari incognite, e poiche' per ciascuna di queste tratti e' possibile scrivere tre equazioni di equilibrio, sulla struttura non vincolata potranno scriversi 3t equazioni di equilibrio nelle m incognite vincolari. X b dove la matrice statica ha 3t righe ed m colonne. (1) Si supponga ora che le equazioni di equilibrio linearmente indipendenti siano N 3t, tenendo conto del fatto che particolari disposizioni dei vincoli possono portare ad equazioni di equilibrio lineramente dipendenti, e si osservi la seguente classificazione:. N - m > Esistono piu' equazioni che incognite, sicche' le equazioni non possono essere risolte a fornire le reazioni, se non per particolari condizioni di carico, identificabili analiticamente come quelle condizioni di carico che portano ad una matrice estesa ancora di rango N. In tal caso si parla di struttura labile, in cui i vincoli sono incapaci di garantire l'equilibrio. Il numero l N-m e' il grado di labilita' della struttura. Il corrispondente caso cinematico e' quello dei meccanismi.. N - m Il numero di equazioni di equilibrio lineramente indipendenti e' pari al numero delle incognite. Ne segue che la soluzione esiste per qualsiasi condizione di carico, ed e' unica. a struttura risulta in equilibrio ed e' agevole calcolare le reazioni vincolari. In tal caso si parla di struttura isostatica, equivalente della struttura cinematicamente determinata. C. N - m < Esistono piu' reazioni vincolari che equazioni di equilibrio, la struttura e' in equilibrio, ma in genere non e' possibile calcolare le reazioni vincolari con le sole equazioni della statica. a struttura si dice iperstatica, il numero i m-n e' il grado di iperstaticita' della struttura, ed esistono i soluzioni possibili.
2 37 ezione 6 - nalisi statica.nb a scrittura delle equazioni di equilibrio Si consideri la trave di igura 1a, vincolata al suolo da una cerniera situata in corrispondenza dell'estremo di sinistra, e soggetta ad una forza verticale in corrispondenza dell'estremo libero. Sostituendo alla cerniera le due reazioni incognite verticali ed orizzontali R H ed R V, come illustrato in alto della stessa igura 1a), si possono scrivere le tre equazioni di equilibrio: R H R V + R V dove si e' assunto come polo l'estremo libero, e dove - come sempre - si sono assunte positive le reazioni dirette secondo gli assi e le coppie antiorarie. e (2) rappresentano tre equazioni nelle due incognite reattive, e non possono essere risolte: la struttura non e' in equilibrio, e ruotera' intorno alla cerniera di sinistra. (2) Ha Hb igura 1 - Due esempi di analisi statica Si consideri ora la trave di igura 1b, vincolata da una cerniera nell'estremo di sinistra e da un carrello a piano di scorrimento orizzontale nell'estremo di destra, e soggetta ad una forza in mezzeria. I vincoli sono equivalenti a due reazioni ed nell'estremo di sinistra, ed una reazione a destra. Scegliendo come polo l'estremo di sinistra, si possono scrivere le tre equazioni: (3) a matrice ha rango massimo, la struttura e' isostatica, e le reazioni possono facilmente calcolarsi. (4) Come terzo esempio, si esamini la trave in igura 2a), incastrata a sinistra ed appoggiata a destra ad un carrello a piano di scorrimento orizzontale, e soggetta ad un carico distribuito su tutta la luce. e reazioni incognite sono quattro, come illustrato in igura 2c), mentre le equazioni di equilibrio restano tre:
3 ezione 6 - nalisi statica.nb q q M r M r q q 2 2 a struttura risulta una volta iperstatica, ed esiste una infinita' di soluzioni. (6) q R H M r M r M r Ha Hb q igura 2 - ltri due esempi di analisi statica Infine, si consideri la trave di igura 2b), vincolata agli estremi da due bipendoli ad asse di scorrimento verticale, e soggetta ad una forza in mezzeria. Per essa si potranno scrivere le tre equazioni di equilibrio: + R H M r + M r 2 (7) Ne risulta chiaramente che per cattiva disposizione dei vincoli, la struttura non potra' risultare in equilibrio, e piu' in particolare subira' una traslazione verticale. Un esempio piu' complesso Si consideri infine il telaio di igura 3, costituito da due piedritti di altezza h 1 ed h 2, rispettivamente, e da un traverso di luce 2. lle due estremita' una cerniera blocca ambedue le traslazioni, ed il traverso e' suddiviso in mezzeria per mezzo di una terza cerniera. a struttura e' soggetta ad una forza orizzontale in corrispondenza del traverso. a struttura e' formata da due travi, e sostituendo ai vincoli, interni ed esterni, le corrispondenti reazioni, si possono imporre le condizioni di equilibrio per le due travi, scegliendo come poli i punti e C, rispettivamente:
4 39 ezione 6 - nalisi statica.nb R V R H R H R V H 2 R H RV C R CH RCV + R H + + h 1 R H R H + R HC + R VC R H H 2 (8) H 2 R H R HC R VC Il determinante della matrice di equilibrio e' pari a -H + H 2 e di conseguenza e' diverso da zero, le reazioni possono essere calcolate e l'equilibrio e' garantito: (9) H 2 + H 2 H 2 H + H 2 R H + H 2 H 2 H + H 2 (1) R HC R VC + H 2 H 2 H + H 2
5 ezione 6 - nalisi statica.nb 4 igure
Lezione 39 - Le equazioni di congruenza
Lezione 9 - Le equazioni di congruenza ü [.a. 0-0 : ultima revisione 7 agosto 0] Per definizione, in una trave iperstatica non e' possibile calcolare le reazioni vincolari con sole equazioni di equilibrio.
21 - La scrittura diretta delle equazioni di congruenza - Parte II
21 - a scrittura diretta delle equazioni di congruenza - Parte II ü [.a. 2011-2012 : ultima revisione 15 aprile 2012] Esercizio n.9 Si calcolino le reazioni e si disegni il diagramma delle c.s.i. per il
Lezione 2 - I vincoli
Lezione 2 - I vincoli ü [.a. 2011-2012 : ultima revisione 29 settembre 2012] Proseguendo nello studio della cinematica del corpo rigido, si vuole fornire in questa lezione una classificazione dei possibili
5 - Sul grado di labilita' ed iperstaticita'
5 - Sul grado di labilita' ed iperstaticita' ü [.a. 2011-2012 : ultima revisione 14 ottobre 2012] Una struttura e' labile se presenta una possibilita' di meccanismo rigido, e' isostatica se e' possibile
Lezione 33- Le travi ad una campata II
ezione 33- e travi ad una campata II ü [.a. 2011-2012 : ultima revisione 14 giugno 2012] In questa lezione si studiano le travi ad una sola campata con i piu' comuni tipi di vincolo e soggetti ai piu'
1. Analisi cinematica delle strutture
1. nalisi cinematica delle strutture Metodo analitico ü [.a. 211-212 : ultima revisione 22 ottobre 211] In questa pplicazione si esamina una serie di strutture al fine di identificare le proprieta' cinematiche
Lezione 33- Le travi ad una campata II
ezione 33- e travi ad una campata II [Ultima revisione: 5 febbraio 009] In questa lezione si studiano le travi ad una sola campata con i piu' comuni tipi di vincolo e soggetti ai piu' comuni tipi di carico
Lezione 40 - I corollari di Mohr
ezione 40 - I corollari di Mohr ü [.a. 011-01 : ultima revisione 9 agosto 011] In questa ezione si illustra un metodo per calcolare lo spostamento o la rotazione di un punto di una trave rettilinea, sfruttando
Complementi 10 - Le travature reticolari isostatiche
Complementi - Le travature reticolari isostatiche [Ultimarevisione: revisione: febbraio febbraio9] In questa lezione si analizza la prima classe strutturale di interesse, costituita da un assemblaggio
Lezione 44 - Le linee di influenza per distorsioni viaggianti.
Lezione 44 - Le linee di influenza per distorsioni viaggianti. ü [A.a. 2013-2014 : ultima revisione 8 Aprile 2014] In questa Lezione si termina lo studio delle linee di influenza, affrontando il terzo
18 - I coefficienti fondamentali
8 - I coefficienti fondamentali ü [.a. 202-203 : ultima revisione 2 aprile 203] Sia nel calcolo di spostamenti attraverso il metodo di composizione, sia nella scrittura diretta delle equazioni di congruenza,
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE 1 PROVA SCRITTA 11 gennaio 2013 - Esercizio 2 Data la struttura di figura, ricavare le equazioni delle azioni interne (M, N, T) e tracciarne
Lezione 35 - Le travi a piu' campate
ezione 5 - e travi a piu' campate [Ultima revisione: 8 febbraio 009] 'analisi delle travi a piu' campate, in linea di principio, non presenta difficolta' insormontabili. Si consideri infatti una trave
Lezione 4 - I vincoli interni
Lezione 4 - I vincoli interni [Ultimarevisione: revisione:2agosto agosto2008] Proseguendo nello studio dei corpi rigidi, adotteremo d'ora in poi la seguente classificazione geometrica, necessariamente
Lezione 32 - Le travi ad una campata
ezione - e travi ad una campata [Ultima revisione: febbraio 009] Introduzione In questa lezione si studiano le travi ad una sola campata con i piu' comuni tipi di vincolo. a classificazione completa e'
Linea elastica, scalata per la rappresentazione grafica
Esercizio N.1 a trave a mensola ha sezione trasversale costante e porta un carico F nella sua estremità libera. Determinare l euazione della linea elastica, lo spostamento e la rotazione in. Ricordiamo
Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari
Statica del corpo rigido Condizioni di equilibrio Calcolo delle Reazioni incolari Obiettivo della lezione: apprendere le equazioni cardinali della statica e applicarle al calcolo delle reazioni vincolari.
Lezione 34 - I vincoli imperfetti
ezione 34 - I vincoli imperfetti [Ultima revisione: 26 febbraio 29] In quanto si e detto finora, si e sempre ipotizzato che il vincolo sia in grado di svolgere perfettamente la sua funzione, annullando
Esercizi svolti Calcolo reazioni vincolari
Esercizi svolti Calcolo reazioni vincolari prof. Carlucci Vincenzo ITIS Einstein Potenza 1 Esercizio 1 Calcolare le reazioni vincolari della struttura isostatica riportata in figura. Prima di procedere
Teoria e Progetto dei Ponti
Corso di Teoria e Progetto dei Ponti Università degli Studi di Pavia Teoria e Progetto dei Ponti 1/51 Teoria e Progetto dei Ponti Anno Accademico 08/09 Prof. Gian Michele Calvi Corso di Teoria e Progetto
Lezione Analisi Statica di Travi Rigide
Lezione Analisi Statica di Travi Rigide Analisi statica dei sistemi di travi rigide Dato un sistema di travi rigide soggetto a forze esterne. Il sistema è detto equilibrato se esiste un sistema di reazioni
Esercizi sintetici sull analisi cinematica di sistemi articolati
Fondamenti di Meccanica Strutturale Aerospaziali AA 2012/2013 Esercizi sintetici sull analisi cinematica di sistemi articolati Analisi cinematiche sintetiche e complete. Abbreviazioni usate: AC = analisi
Metodo delle Forze nelle strutture a nodi spostabili
Metodo delle Forze nelle strutture a nodi spostabili L inserimento delle cerniere nelle strutture a nodi spostabili rende queste labili ma quest operazione si rende necessaria se vogliamo utilizzare i
Esercitazione 06: Statica di più corpi rigidi vincolati
Meccanica e Tecnica delle ostruzioni Meccaniche Esercitazioni del corso. Periodo I Prof. Leonardo ERTINI Ing. iro SNTUS Esercitazione 06: Statica di più corpi rigidi vincolati Indice Principio di zione
BOZZA. Lezione n. 6. Rigidezze e coefficienti di trasmissione
ezione n. 6 Rigidezze e coefficienti di trasmissione ffinché si possa utilizzare efficacemente il metodo dell equilibrio nella soluzione di travature iperstatiche, occorre ricavare, per le varie membrature,
Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI CONTINUE AGGIORNAMENTO DEL 27/10/2011
Sussidi didattici per il corso di OSRUZIONI EILI Prof. Ing. Francesco Zanghì RVI ONINUE GGIORNMENO EL 7/0/0 orso di OSRUZIONI EILI Prof. Ing. Francesco Zanghì Per trave continua intendiamo una trave unica,
Lezione 32 - Le travi ad una campata
ezione 3 - e travi ad una campata ü [.a. 011-01 : ultima revisione 14 giugno 01] Introduzione In questa lezione si studiano le travi ad una sola campata con i piu' comuni tipi di vincolo. a classificazione
Corso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1
orso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1 1) Un triangolo rettangolo presenta l ipotenusa lunga 5m mentre l angolo formato con uno dei due cateti
LABILITA DI STRUTTURE
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU LAILITA DI STRUTTURE v 0.9 1 1 2 2n-1= 1 A C D 2n = 2 2(n-1) = 2 2n-1= 1 Numero totale di aste N = 2 GdL (gradi di libertà aste libere) = N 3 = 6 GdV (gradi
EQUAZIONE DELLA LINEA ELASTICA
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale:
1.6. Momenti di forze parallele rispetto a un asse. Ricerca grafica e analitica 16
Prefazione Avvertenze 1 Elementi di teoria dei vettori...i I.1. Generalità...I 1.2. Composizione delle forze...2 Risultante di forze aventi la stessa retta d'applicazione 3 Risultante di forze concorrenti
1) METODO DELLE SEZIONI DI RITTER
1) METODO DELLE SEZIONI DI RITTER Un altro metodo per il calcolo di una travatura reticolare isostatica è quello delle sezioni di Ritter. Prendiamo in esame la stessa struttura dell esercizio precedente
20 - La scrittura diretta delle equazioni di congruenza
0 - a scrittura diretta delle euazioni di congruenza ü [.a. 0-0 : ultima revisione 9 aprile 0] Si consideri una struttura piana costituita da t tratti, per cui uindi possano scriversi t euazioni di euilibrio.
3.6.3 Esercizio Esercizio... 85
Indice 1 Movimenti rigidi 1 1.1 Trasformazioni nello spazio R 3.................. 1 1.2 Trasformazioni rigide........................ 2 1.2.1 Espressione generale di una trasformazione rigida.... 3 1.2.2
Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA
Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA Trave a mensola, di rigidezza flessionale costante pari a EI, soggetta a forza verticale agente all estremo liero. Determinare
Università degli Studi Roma Tre Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti A/A Dott. Ing.
Definizione La linea di influenza è un grafico che fornisce la risposta della struttura (sollecitazione o spostamento) in un punto in funzione della posizione della forza. I diagrammi delle sollecitazioni
2 - Analisi cinematica delle strutture
2 - Analisi cinematica delle strutture Metodo grafico ü [A.a. 2011-2012 : ultima revisione 20 settembre 2011] Si illustra ora un classico metodo grafico per l'analisi cinematica delle strutture, utilizzando
MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ.
Meccanica delle strutture Componenti di spostamento Sistemi iperstatici di travi Linea elastica e metodo di Ritz. Componenti di spostamento in sistemi isostatici di travi MST.1.01 Sia dato il portale in
Esercitazione 3 - Calcolo delle azioni interne
Università degli Studi di ergamo orso di Laurea in Ingegneria Tessile orso di Elementi di Meccanica Esercitazione - alcolo delle azioni interne Esercizio n. La struttura di figura.a è composta da due aste
Università degli Studi della Basilicata Facoltà di Ingegneria
Università degli Studi della Basilicata Facoltà di Ingegneria Corso di TECNICA DELLE COSTRUZIONI Docente: Collaboratori: Prof. Ing. Angelo MASI Dr. Ing. Giuseppe Santarsiero Ing. Vincenzo Manfredi RICHIAMI
Capitolo 2 LA STATICA DELLE TRAVI
Capitolo 2 LA STATICA DELLE TRAVI 2-1. LA TRAVE Definizione: La TRAVE è un solido generato da un area piana di forma e dimensioni variabili con continuità, che si muove nello spazio mantenendosi normale
13 - Le travi soggette a sforzo assiale
13 - e travi soggette a sforzo assiale ü [A.a. 212-213 : ultima revisione 7 febbraio 213] Relazioni fondamentali Si consideri una trave rettilinea soggetta ai carichi assiali th ). Per essa, si hanno le
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,
Reazioni vincolari e equilibrio del corpo rigido. M. Guagliano
Reazioni vincolari e equilibrio del corpo rigido Reazioni vincolari del corpo rigido 2 I corpi rigidi sono generalmente vincolati al riferimento fisso tramite i vincoli, che esercitano delle forze sul
Complementi 11 - Le travature reticolari iperstatiche
Complementi 11 - Le travature reticolari iperstatiche [Ultimarevisione: revisione:1 1febbraio febbraio009] In questa leione si prosegue lo studio delle travature reticolari, affrontando il caso delle travature
Il Principio dei lavori virtuali
Il Principio dei lavori virtuali Il P..V. rientra nella classe di quei principi energetici che indicano che i sistemi evolvono nel senso di minimizzare l energia associata ad ogni stato di possibile configurazione.
Esercitazione di Statica
Appunti di Elementi di Meccanica Esercitazione di Statica v 1.0 7 ottobre 2008 Figura 1: Scaffale a mensole 1 Problema Lo scaffale è un oggetto di uso quotidiano, presente nella maggior parte delle abitazioni.
EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO
EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO Equilibrio di un Punto Materiale Definizione 1 Un punto materiale è in una posizione di equilibrio quando posto in quella posizione
ESERCIZI SVOLTI. 12 Travi iperstatiche 12.2 Travi continue
1 Travi iperstatiche 1. Travi continue 1 ESERCIZI SVOLTI 1 1..4 Travi continue con sbalzi e con incastri Studiare la trave continua omogenea e a sezione costante rappresentata in figura, soggetta ai carichi
in B, cioè Pl 2 /(3EJ), e della risultante del caricamento triangolare, cioè Pl 2 /(2EJ). In conclusione, il taglio in A nella trave ausiliaria vale
Si considera la trave di lunghezza l, incastrata in B e caricata in A da una coppia concentrata C, (a). Si vuole calcolare la freccia e la rotazione della trave nei punti A e D. La Figura (b) mostra l
Capitolo 2. Statica del corpo rigido. 2.1 Azioni su un corpo rigido
Capitolo 2 Statica del corpo rigido La statica è la parte della meccanica che si occupa dello studio dell equilibrio di corpi in quiete, ossia fermi, o mobili di moto rettilineo uniforme. In effetti applichiamo
SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3
SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni
Statica e Teoria delle Strutture
Prima Facoltà di rchitettura "Ludovico Quaroni" - orso di Laurea Specialistica Quinquennale in rchitettura U.E. orso di Statica e Teoria delle Strutture esare Tocci Esercizio La struttura riprodotta in
Appunti di Elementi di Meccanica. Azioni interne. v 1.0
Appunti di Elementi di Meccanica Azioni interne v 1.0 Figura 1: Forze in equilibrio agenti su un corpo Figura : Azioni interne in un corpo piano 1 Forze scambiate all interno di un solido Un sistema di
2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =
Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):
26 - La linea elastica e le strutture a telaio
26 - a linea elastica e le strutture a telaio ü [A.a. 2012-201 : ultima revisione 7 maggio 201] In questa Esercitazione si estende il metodo della linea elastica alle strutture a telaio, in cui ogni elemento
Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI
. Travi isostatiche ad asse rettilineo ESERCIZI PROPOSTI Con riferimento alle tre strutture isostatiche di figura, costituite da tre tratti, determinare: ) Reazioni vincolari; ) Diagrammi del momento flettente
LEZIONE N 12 IL CEMENTO ARMATO PRECOMPRESSO IL SISTEMA EQUIVALENTE ALLA PRECOMPRESSIONE (SEP) Uso del sistema equivalente per travi continue
EZIOE 12 I CEMETO ARMATO PRECOMPRESSO I SISTEMA EQUIVAETE AA PRECOMPRESSIOE (SEP) I sistemi i iperstatici ti i precompressi Uso del sistema equivalente per travi continue linea delle pressioni e cavo concordante
Esercizio 1 Trovare, se esistono, le soluzioni del sistema lineare. y + 3z = 3 x y + z = 0. { x + y = 1
Esercizio 1 Trovare, se esistono, le soluzioni del lineare y + 3z = 3 x y + z = 0 x + y = 1 0 1 3 3 1 1 1 0 1 1 1 0 = 0 1 3 3 = 1 1 0 1 1 1 0 1 = 1 1 1 0 0 1 3 3 0 1 1 = Il di partenza è quindi equivalente
Analisi cinematica delle Strutture
nalisi cinematica delle Strutture Travi e aste La Scienza delle ostruzioni prende in esame preliminarmente le travi, corpi solidi rigidi aventi una dimensione, la lunghezza, molto più grande delle altre,
La Struttura. Schema di scarico di un viadotto con travate semplicemente appoggiate. Schema di scarico di un ponte strallato
La Struttura Obiettivo del Corso è quello di fornire un approccio metodologico per la trattazione analitica dei modelli meccanici della parte resistente della Costruzione. La trattazione è fondata su un
Reazioni vincolari. Sistemi di corpi rigidi. Resistenza dei materiali. Forme strutturali per il design A.A prof.
Resistenza dei materiali e Forme strutturali per il design A.A. 2014-2015 prof. Andrea Dall Asta Reazioni vincolari e Sistemi di corpi rigidi Scuola di Architettura e Design, Università di Camerino e-mail:[email protected]
Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture
Introduzione La meccanica è quella parte delle scienze applicate che studia le forze ed il moto. In questo campo è fondamentale la nozione di equilibrio, ovvero la condizione che si instaura quando le
2. Si Discretizzano i carichi in CARICHI CONCENTRATI in modo da riprodurre gli andamenti delle azioni interne. Si opera in pi passi: 2a.
1 Prove Statiche Permettono la verifica del comportamento elastico struttura allo scopo di validare il modello numerico Le prove prevedono: 1. Struttura completa (full-scale) Sottostruttura (Es. solo centina,
Fondamenti di Meccanica Esame del
Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.
Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007
Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
Fig. 1.1 Schema statico
ESERCIZIO 1 Fig. 1.1 Schema statico Primo passo: Determinazione delle reazioni vincolari Sulla struttura agisce un carico regolare che è equivalente, ai soli fini dell equilibrio di corpo rigido, ad una
Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità
Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà Proprietà delle matrici di rigidezza e di flessibilità Prof. Adolfo Santini - Dinamica delle Strutture Introduzione In
Elementi di Statica Grafica
Università degli Studi di Messina Facoltà di Ingegneria.. 006/007 Statica e Sismica delle Costruzioni Murarie Docente: Ing. lessandro Palmeri Lezione n. 4: Un corpo rigido è in equilibrio se e solo sono
La situazione è rappresentabile così:
Forze Equivalenti Quando viene applicata una forza ad un corpo rigido è importante definire il punto di applicazione La stessa forza applicata a punti diversi del corpo può produrre effetti diversi! Con
3 - Analisi statica delle strutture
3 - nalisi statica delle strutture Metodo analitico ü [.a. 11-1 : ultima revisione 3 settembre 11] Si consideri una struttura piana S, costituita da t tratti rigidi, e si immagini di rimuovere tutti i
Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto
Il Metodo degli Elementi Finiti Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Per ottenere la
Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale
Sommario CAPITOLO 1 - Matrici...! Definizione! Matrici di tipo particolare Definizioni relative-! Definizioni ed operazioni fondamentali! Somma di matrici (o differenza)! Prodotto di due matrici! Prodotti
Appunti sull analisi cinematica geometrica di Giuseppe Cocchetti
ppunti sull analisi cinematica geometrica di Giuseppe Cocchetti Documento in OZZ aggiornamento del 0404 Segnalare eventuali refusi all indirizzo giuseppecocchetti@polimiit nalisi dell'atto di moto rigido
Soluzione dei compiti del Corso di Tecnica delle Costruzioni
Corso di Laurea CEA Indirizzi Ambiente ed Infrastrutture Soluzione dei compiti del Corso di Tecnica delle Costruzioni Maurizio Orlando Lorenzo R. Piscitelli Versione 1.0 aggiornamento 15 GENNAIO 2017 Pagina
NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori :
NOTA 1 VETTOI LIBEI e VETTOI APPLICATI Negli esempi visti sono stati considerati due tipi di vettori : 1) Vettori liberi, quando non è specificato il punto di applicazione. Di conseguenza ad uno stesso
A3.4 Le travature reticolari
A3.4 Le travature reticolari poliglotta Travatura reticolare GB: Truss F: Poutre à croisillons D: Fachwerkträger richiamo Alcuni esempi di travature reticolari: i tralicci utilizzati per il trasporto dell
UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE
UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE 10 Gennaio 2014 ESAME DI MECCANICA solo PRIMA PARTE versione A Corso di Laurea in Ingegneria Biomedica Esercizio 1 Nel meccanismo in figura,
TRAVI E SISTEMI DI TRAVI
Daniele Zaccaria TRAVI E SISTEMI DI TRAVI Dispense del Corso di SCIENZA DELLE COSTRUZIONI Corsi di Laurea in Ingegneria Civile e Ambientale, Ingegneria Industriale, Ingegneria Navale Dipartimento di Ingegneria
9 - Geometria delle aree
9 - Geometria delle aree ü [A.a. 0-04 : ultima revisione 4 gennaio 04] In questa esercitazione si applicano le definizioni di baricentro, momento statico, momento d'inerzia, etc. ad alcuni esempi di interesse
Esercizi sullo studio di funzione
Esercizi sullo studio di funzione Seconda parte Come visto nella prima parte, per poter descrivere una curva, data la sua equazione cartesiana esplicita y f () occorre procedere secondo l ordine seguente:
Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite
3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x
Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE
Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima
Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari
Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema
INTRODUZIONE AI DUE VOLUMI... XIX STRUTTURE LINEARI PIANE ISOSTATICHE Strutture lineari piane Strutture lineari spaziali...
INDICE INTRODUZIONE AI DUE VOLUMI............ XIX VOLUME I STRUTTURE LINEARI PIANE ISOSTATICHE CAP. 1 TIPOLOGIE STRUTTURALI.......... 1 1.1 DEFINIZIONI.................. 1 1.2 STRUTTURE LINEARI...............
Tecnica delle Costruzioni Esercitazione 02
TECNICA DELLE COSTRUZIONI ESERCITAZIONI 1 Strutture reticolari METODO DEI NODI Si procede nell isolare un nodo della struttura reticolare tagliando le aste che vi convergono. Si esplicitano quindi gli
Il teorema di Rouché-Capelli
Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un
SISTEMI LINEARI, METODO DI GAUSS
SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti
za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 -
11 Calcolo di spostamenti e rotazioni in travature isostatiche 81 11 Calcolo di spostamenti e rotazioni in travature isostatiche Consideriamo d ora in avanti travature linearmente termoelastiche dello
Meccanica Applicata alle Macchine
Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali
SISTEMI LINEARI MATRICI E SISTEMI 1
MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui
TIPOLOGIE STRUTTURALI E FATTORI DI STRUTTURA
CORSO DI AGGIORNAMENTO SULLA NORMATIVA SISMICA DI CUI ALL ORDINANZA 3274 DEL 20 03 2003, 08 aprile 21 maggio 2004 TIPOLOGIE STRUTTURALI E FATTORI DI STRUTTURA 1 LIVELLI DI PROTEZIONE SISMICA 2.5 Le costruzioni
CLASSE 4 A APPUNTI DAL CORSO DI COSTRUZIONI LA SOLUZIONE DELLA TRAVE CONTINUA EQUAZIONE DEI TRE MOMENTI
the design of he Forth Bridge (Scotland) 1883-1890 by Sir John Fowler and Sir Benjamin Baker Nessun effetto è in natura sanza ragione; intendi la ragione e non ti bisogna sperienzia. Leonardo da Vinci
MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari
MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2
