9 - Geometria delle aree

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "9 - Geometria delle aree"

Transcript

1 9 - Geometria delle aree ü [A.a : ultima revisione 4 gennaio 04] In questa esercitazione si applicano le definizioni di baricentro, momento statico, momento d'inerzia, etc. ad alcuni esempi di interesse pratico. Si parte dallo studio di sistemi ad aree concentrate, per poi passare ad analizzare aree distribuite a geometria complessa, che possano riguardarsi come l'unione di aree a geometria piu' semplice. In sostanza, si applicano i risultati ricavati per le sezioni rettangolari, triangolari, circolari ed ellittiche, assieme alla proprieta' distributiva dei momenti statici e dei momenti di inerzia: Assegnate aree A, A,... A n, il momento statico dell'unione di queste aree e' la somma dei momenti statici delle singole aree, ed analoga proprieta' vale per i momenti del secondo ordine: S I Ê A i = S HA i L Ê A i = I HA i L i= i= i= i= () () Esercizio n.: i sistemi ad aree concentrate Si consideri un sistema di aree concentrate S i, identificate dalle loro coordinate x ed x in un generico sistema di riferimento. L'area totale A del sistema e' la somma delle aree parziali: A = i= A i Per definizione, il momento statico di un tale sistema e' un vettore definito da: S = K S S O = i= A i x i i= A i x i dove S i e' il momento statico rispetto all'asse x i. La matrice dei momenti di inerzia si definisce come : () (4) I = K I I I I O = i= i= A i x i i= A i x i x i A i x i x i i= A i x i dove I e' il momento di inerzia rispetto all'asse x, I e' il momento di inerzia rispetto all'asse x, I e' il momento centrifugo rispetto agli assi x ed x. Tutto cio' premesso, si consideri il sistema di Figura, costituito da quattro aree disposte ai vertici del rettangolo di base 5 metri ed altezza metri, con: (5) m A = 0. m m B = 0.4 m m C = 0.7 m m D = 0. m L'area totale e' allora pari a: (6)

2 4 9 - Geometria delle aree.nb A =.6 m (7) X m A m C m B m D 5 Figura - Un sistema di masse concentrate mentre i due momenti statici, rispetto agli assi x ed x, sono forniti da: S = H L =.7 m S = H L 5 = 5 m (8) Il baricentro del sistema, quindi, avra' coordinate pari a : x G = S A = 5.6 =.5 m x G = S A =.7.6 =.6875 m (9) (0) X X G m A m C G.68 G m B m D.5 Figura - Il baricentro del sistema I momenti di inerzia, rispetto agli assi x ed x, sono forniti da: I = H L = 8. m 4 I = H L 5 = 5 m 4 I = H0.7L 5 = 0.5 m 4 () Per ottenere i momenti di inerzia baricentrici, relativi agli assi paralleli ad x ed x, ma passanti per il baricentro del sistema, non resta che applicare il teorema di Huyghens:

3 9 - Geometria delle aree.nb 5 I ' I ' = I A x G = =.547 m 4 = I A x G = = 9.75 m 4 I ' = I A x G x G = =.065 m 4 Si sono quindi indicati con l'apice le tre quantita' relative al sistema baricentrico. Infine, i momenti principali di inerzia sono forniti da: I = I ' + I' + I ' I' ' + I = m 4 () I = I ' + I' I ' I' ' + I =.8879 m 4 (4) mentre la rotazione che occorre assegnare al sistema di riferimento per portarlo ad allinearsi con gli assi principali di inerzia e' fornita da: φ = ArcTan I' = I ' I' ossia circa 7.6 gradi, in senso antiorario. (5) X X G m A φ G m C G.68 m B m D.5 Figura - Gli assi centrali di inerzia ota - In forma matriciale, si possono scrivere i momenti di inerzia nel sistema baricentrico: I ' = I' I' I' I' = K O (6) ed ottenere i momenti principali di inerzia, assieme alle corrispondenti direzioni principali di inerzia, equivale al calcolo degli autovalori e degli autovettori di I '. Esercizio n.: la sezione ad L Calcolare le coordinate del baricentro ed i momenti di inerzia della sezione ad L di Figura 4.

4 6 9 - Geometria delle aree.nb X Figura 4 - La sezione ad L à Soluzione Si suddivide la sezione nei due rettangoli di Figura 5, di base b = 0cm e b = 60cm ed altezza h =00cm ed h =0cm, rispettivamente. Tale scelta e' ovviamente arbitraria, nel senso che altre scelte sarebbero altrettanto legittime. L'area della sezione e' fornita da: A = A + A = b h + b h = 00 cm (7) X b b h h Figura 5 - La sezione ad L come unione di due rettangoli Per calcolare il baricentro, si calcolino i due momenti statici rispetto ai due assi di Figura:

5 9 - Geometria delle aree.nb 7 S = S HL + S HL = A x HL G + A x HL h G = b h + b h h = 000 cm (8) S = S HL + S HL = A x HL G + A x HL b G = b h + b h b + b da cui le coordinate del baricentro dell'intera figura: = cm (9) x G = S A = b h b + b h Ib + b M b h + b h = = 5 cm (0) x G = S h b h + b h A = h 000 = = 5 cm b h + b h 00 Per calcolare i momenti di inerzia rispetto agli assi di Figura, si puo' scrivere: () I = I HL + I HL = b h + b h = cm 4 () I = I HL ' + I HL + A Ix HL G M = b h + b h + b h b + b = cm 4 () I = A x HL G x HL G + A x HL G x HL G = b h b h + b h h b + b = cm 4 (4) Si osservi che nel calcolo di I si e' calcolato l'apporto del secondo rettangolo come somma del momento di inerzia rispetto all'asse verticale passante per il suo baricentro, e poi si e' aggiunto il momento di trasporto secondo Huygens, mentre nel caso dei momenti centrifughi si e' calcolato per ambedue i rettangoli il solo momento di trasporto, poiche' il momento centrifugo baricentrico e' nullo. In riferimento agli assi baricentrici paralleli alla coppia di assi ed X si ha, per la legge di Huygens: I ' I ' = I A x G = = cm 4 = I A x G = = cm 4 (5) (6) I ' = I A x G x G = = cm 4 (7) Infine, per ottenere i momenti d'inerzia centrali occorre ruotare la coppia di assi di un angolo f * pari a: φ = ArcTan I' I ' I' = pari a 0.96 gradi. I momenti d'inerzia richiesti valgono: I r = I ' Sin φ + I ' Sin φ Cosφ + I ' Cos φ = cm 4 I r = I ' Cos φ I ' Sin φ Cosφ + I ' Sin φ = cm 4 (8) (9) (0)

6 8 9 - Geometria delle aree.nb I r = I I ' I ' M Sin φ Cosφ + I ' ICos φ Sin φ M = 0 () X 5 φ 5 G Figura 6 - Baricentro ed assi centrali di inerzia del profilato ad L Esercizio n. - Una travata da ponte Calcolare le coordinate del baricentro ed i momenti di inerzia della sezione aperta di Figura 7. X Figura 7 - Una sezione da ponte aperta à Soluzione Si consideri la sezione come composta da un rettangolo di base 9 metri ed altezza metri, a cui vanno sottratti i tre rettangoli "interni". In quest'ottica si ha un'area: A = = cm ed un momento statico rispetto all'asse orizzontale pari a: ()

7 9 - Geometria delle aree.nb 9 S = H900 00L 00 H80 70L 70 H460 70L H80 70L = cm Il baricentro della sezione e' quindi posto alle ascisse: x G = 450 cm x G = = 5.5 cm Ovviamente, la prima coordinata discende da proprieta' di simmetria. (4) I momenti di inerzia rispetto agli stessi assi si calcolano come: I = cm = (5) I = = cm I = = cm4 Per ricavare i momenti di inerzia baricentrici, si puo' utilizzare il teorema di Huygens I ' = I A x G = = cm 4 I = I A x G = = cm 4 (6) (7) (8) (9) I = I A x G x G = = 0 (40) Esercizio n. 4 Si utilizzino i risultati per il triangolo equilatero al fine di calcolare la matrice dei momenti di inerzia per il traingolo isoscele di base B ed altezza H di Figura 8

8 Geometria delle aree.nb X H B Figura 8 - Una sezione a triangolo isoscele Il baricentro della sezione e' situato sull' asse di simmetria, ossia x G = Bê. Poiche' inoltre la sezione puo' considerarsi formata da due triangoli rettangoli, i cui bariucentri sono ad un terzo dalla base, si ha subito x G = Hê. Cio' premesso si puo' calcolare subito il momento d'inerzia I rispetto all'asse baricentrico orizzontale, in quanto esso e' somma dei due momenti di inerzia dei due triangoli rettangoli: I = B H 6 = B H 6 (4) Il momento di inerzia I rispetto all'asse baricentrico verticale, invece, puo' essere calcolato aggiungendo al momento d'inerzia dei due triangoli equilateri il relativo momento di trasporto: I = B H 6 + B H B = B H 48 (4) Il momento d' inerzia centrifugo I e' invece nullo, segnalando che gli assi orizzontali e verticali sono gli assi centrali di inerzia. Esercizio n. 5 Si consideri la sezione di Figura 9, in cui B = 0 cm, b=.5 cm, H=0cm ed H = 0 cm. Si calcolino baricentro, momenti di inerzia baricentrici

9 9 - Geometria delle aree.nb 4 X B H H b b Figura 9 - Una sezione composta à Calcolo del baricentro L' area della sezione e' pari a : A = BH+ HB bl H = 50 cm (4) mentre il momento statico rispetto all' asse x e' pari a: S = BH H + H + HB bl H e segue che la coordinata x G e' fornita da: H = 7000 cm (44) BH IH + H M+ HB bl H H x G = = 0 cm (45) BH+ HB bl H mentre la coordinata x G e' pari a B/, in quanto il baricentro deve situarsi sull'asse di simmetria della sezione. à Calcolo dei momenti di inerzia Rispetto agli assi baricentrici, i momenti di inerzia valgono : I = BH + HB bl H = cm4 (46) H I = B H + B b mentre il momento centrifugo sara' nullo. = cm4 (47)

10 4 9 - Geometria delle aree.nb Esercizio n.6 Per la sezione a semicerchio di Figura 0, calcolare il baricentro ed i momenti di inerzia baricentrali utilizzando anche i risultati per la sezione circolare X R Figura 0 - Una sezione a semicerchio L' area del semicerchio e' fornita da : A = πr mentre il momento statico rispetto all' asse puo' calcolarsi come: e quindi : R S = πr Sin@θD R θ r = R 0 0 x G = 4 R π (48) (49) (50) X G 4 R π R Il momento di inerzia rispetto all' asse orizzontale baricentrale puo' allora calcolarsi come:

11 9 - Geometria delle aree.nb 4 I = πr 4 4 πr 4 R π = π R4 8 8 R4 9 π (5) à Calcoli Grafici

10 - Flessione deviata e sforzo normale eccentrico

10 - Flessione deviata e sforzo normale eccentrico 0 - Flessione deviata e sforzo normale eccentrico ü [A.a. 0-0 : ultima revisione 9 settembre 0] Si esaminano alcuni casi di sollecitazione composta del tipo normale, ossia di flessione deviata e flessione

Dettagli

RICHIAMI DI GEOMETRIA DELLE AREE

RICHIAMI DI GEOMETRIA DELLE AREE RICHIMI DI GEOMETRI DELLE REE G d G G O Baricentro di un area Coordinate del baricentro G di un area G = G = d d Momento statico di un area rispetto ad un asse Momento statico dell area rispetto all asse

Dettagli

Lezione 21 - La geometria delle aree. Richiami

Lezione 21 - La geometria delle aree. Richiami Lezione 1 - La geometria delle aree. Riciami ü [A.a. 011-01 : ultima revisione 11 dicemre 011] In questa Lezione si riciamano sinteticamente alcune nozioni di geometria delle aree, aricentro di una figura

Dettagli

ELABORATO 2 GEOMETRIA DELLE MASSE

ELABORATO 2 GEOMETRIA DELLE MASSE ELABORATO GEOMETRIA DELLE MASSE DATI Al = 1.00 Kg/m Fe = 3.8 Kg/m s = 1 mm d = 3 mm b = mm r = mm h = 5 mm La struttura è stata divisa in 11 parti ed è formata da due figure elementari: rettangolo e quarto

Dettagli

Esercizio geometria delle aree

Esercizio geometria delle aree Salvatore Trotta Università degli Studi di Napoli - Federico II 15 aprile 2014 Consideriamo la seguente figura asimmetrica: Suddivisa la figura in tre rettangoli e fissato un sistema di riferimento arbitrario

Dettagli

Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm

Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm Esercizio N.1 (pag. 81) La coppia M agisce in un piano verticale passante per l asse baricentrico di una trave la cui sezione trasversale è mostrata in figura. Determinare la tensione nel punto A. Soluzione

Dettagli

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia 3 Geometria delle masse e momento di ordine ESERCIZI SVOLTI Considerata la sezione rappresentata in figura, calcolare i raggi d inerzia massimo e minimo, tracciare l ellisse d inerzia e il nocciolo centrale

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 22/23 Matrici d inerzia Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale -

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

11 - Taglio. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

11 - Taglio. 1. Sezione ad T. Lê2 L Lê2. à Soluzione 11 - aglio ü [A.a. 01-013 : ultima revisione 5 marzo 013] In questo capitolo si studiano alcune sezioni rette soggette a sforzo di taglio, si utilizza la formula di Jourawsky per tracciare il diagramma

Dettagli

Compito del 21 giugno 2004

Compito del 21 giugno 2004 Compito del 1 giugno 00 Una lamina omogenea di massa m è costituita da un quadrato ABCD di lato a da cui è stato asportato il quadrato HKLM avente i vertici nei punti medi dei lati di ABCD. La lamina è

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.4

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.4 ESERCZO n. Data la sezione a L riportata in Figura determinare: a) gli assi principali centrali di inerzia; b) l ellisse principale centrale di inerzia; c) il nocciolo centrale di inerzia. b b = cm h =

Dettagli

GEOMETRIA DELLE AREE

GEOMETRIA DELLE AREE Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì GEOMETRIA DELLE AREE AGGIORNAMENTO DEL 29/09/2011 Baricentro In un sistema di punti materiali o nel caso di un solido può

Dettagli

F, viene allungata o compressa di un tratto s rispetto alla sua posizione di equilibrio.

F, viene allungata o compressa di un tratto s rispetto alla sua posizione di equilibrio. UNIÀ 4 L EQUILIBRIO DEI SOLIDI.. La forza elastica di una molla.. La costante elastica e la legge di Hooke. 3. La forza peso. 4. Le forze di attrito. 5. La forza di attrito statico. 6. La forza di attrito

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

Tema 4.1 Sia assegnata la distribuzione di aree rappresentata in figura 4.1. determinino:

Tema 4.1 Sia assegnata la distribuzione di aree rappresentata in figura 4.1. determinino: 4 eometria delle aree Tema 4.1 Sia assegnata la distribuzione di aree rappresentata in figura 4.1. determinino: Si a) un riferimento principale di inerzia ed i relativi momenti del secondo ordine; b) l

Dettagli

Geometria delle Aree. Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali

Geometria delle Aree. Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali eometria delle ree Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali In realtà lo studio della Meccanica delle Strutture non si accontenta di

Dettagli

Appendice: raccolta di tracce di esercizi proposti e di esercizi svolti sulla geometria delle aree

Appendice: raccolta di tracce di esercizi proposti e di esercizi svolti sulla geometria delle aree UNIVERSITÀ DEGLI STUDI DI SALERNO FACOLTÀ DI INGEGNERIA Corso di Scienza delle Costruzioni 1 Laurea in ingegneria civile per l ambiente ed il territorio Prof. Fernando Fraternali Appendice: raccolta di

Dettagli

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale Prova Scritta di di Meccanica Analitica 8 Giugno 018 Problema 1 Si consideri un punto materiale di massa unitaria soggetto ad un potenziale V (x) = 1 x + x x > 0 determinare le frequenze delle piccole

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5 Esercizi svolti di geometria delle aree Alibrandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.5 Data la sezione riportata in Figura, determinare: a) gli assi principali centrali di inerzia; b) l ellisse

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione 1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse

Dettagli

3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0.

3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0. 1 Calcolo vettoriale 1 Scrivere il vettore w =, 6 sotto forma di combinazione lineare dei vettori u = 1, e v = 3, 1 R w = v 4u Determinare la lunghezza o il modulo del vettore, 6, 3 R 7 3 Determinare la

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 4: Idrostatica (parte III - equazione globale - legge

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

SEZIONI A PARETE SOTTILE SFORZI TANGENZIALI E CENTRO DI TAGLIO

SEZIONI A PARETE SOTTILE SFORZI TANGENZIALI E CENTRO DI TAGLIO SEZIONI A PAREE SOILE SFORZI ANGENZIALI E CENRO DI AGLIO La relazione di Jourawski che lega l azione di taglio agente nella sezione di una trave con le sollecitazioni tangenziali medie agenti su su una

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

Esercitazione 11: Stato di tensione nella sezione di trave

Esercitazione 11: Stato di tensione nella sezione di trave Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo I Prof. Leonardo BERTINI Ing. Ciro SNTUS Esercitazione 11: Stato di tensione nella sezione di trave Indice 1 Forza normale

Dettagli

Nel Sistema Internazionale l unità di misura dell angolo è il radiante

Nel Sistema Internazionale l unità di misura dell angolo è il radiante Scienze Motorie Grandezze fisiche Il Sistema Internazionale di Unità di Misura 1) Nel Sistema Internazionale il prefisso Giga equivale a a) 10 15 b) 10 12 c) 10 9 d) 10 6 e) 10 3 Nel Sistema Internazionale

Dettagli

Lezione 5 - Analisi cinematica

Lezione 5 - Analisi cinematica ezione 5 - nalisi cinematica ü [.a. - : ultima revisione 7 ottobre ] Si consideri ora una struttura bidimensionale, ossia un insieme di travi collegate tra loro ed al suolo da opportuni vincoli. In questa

Dettagli

CdL in Ingegneria Informatica (Orp-Z)

CdL in Ingegneria Informatica (Orp-Z) Prova scritta di Algebra Lineare e Geometria del giorno 1 Febbraio 2006 Sia f : R 4 R 4 l applicazione lineare definita dalla legge f (x, y, z, t) = (2x + (h + 3)y + (1 h)z + t, 2x + 5y + (h + 5)z + 2t,

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

4^C - Esercitazione recupero n 4

4^C - Esercitazione recupero n 4 4^C - Esercitazione recupero n 4 1 Un filo metallico di lunghezza l viene utilizzato per deitare il perimetro di un'aiuola rettangolare a Qual è l'aiuola di area massima che è possibile deitare? b Lo stesso

Dettagli

Esercizi con campi magnetici statici

Esercizi con campi magnetici statici Esercizi con campi magnetici statici Il problema più generale è il calcolo del campo magnetico generato da uno o più fili percorsi da corrente. In linea di principio, questo tipo di problema dovrebbe essere

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

GEOMETRIA DELLE MASSE BARICENTRI MOMENTI DI 2 ORDINE

GEOMETRIA DELLE MASSE BARICENTRI MOMENTI DI 2 ORDINE EOMETRIA DELLE MASSE BARICENTRI MOMENTI DI ORDINE EOMETRIA DELLE MASSE Baricentro Momenti d inerzia. SOMMARIO Baricentro. Baricentro. Icorpi si possono pensare costituiti da un insieme di punti pesanti.

Dettagli

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema.

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema. Esercizio 1. Un sistema materiale è costituito da una lamina piana omogenea di massa M e lato L e da un asta AB di lunghezza l e massa m. La lamina scorre con un lato sull asse x ed è soggetta a una forza

Dettagli

Figura 1: Esercizio 1

Figura 1: Esercizio 1 y α φ P O x Figura : Esercizio entro di massa Esercizio. alcolare il centro di massa di un arco di circonferenza di raggio R, sotteso da un angolo di ampiezza α e densità lineare costante µ. Soluzione.

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

Corsi di Laurea in Ingegneria Meccanica e Informatica Anno Accademico 2015/2016 Meccanica Razionale

Corsi di Laurea in Ingegneria Meccanica e Informatica Anno Accademico 2015/2016 Meccanica Razionale Corsi di Laurea in Ingegneria Meccanica e Informatica Anno Accademico 15/16 Meccanica Razionale Nome... N. Matricola... Ancona, 7 giugno 16 1. Un corpo rigido piano è formato da due aste AC e BC, di ugual

Dettagli

1 La Geometria delle Masse

1 La Geometria delle Masse 1 La eometria delle Masse 1.1 Baricentri e Momenti Statici Due siste di forze vengono detti equivalenti quando generano la stessa risultante e lo stesso momento risultante rispetto ad un polo qualsiasi.

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE IL BARICENTRO GENERALITA' GEOMETRIA DELLE MASSE Un corpo può essere immaginato come se fosse costituito da tante piccole particelle dotate di massa (masse puntiformi); a causa della forza di gravità queste

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 7 Luglio 8 (usare fogli diversi per esercizi diversi) Primo Esercizio Si consideri il corpo rigido piano descritto in figura, formato

Dettagli

Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale

Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale Sommario CAPITOLO 1 - Matrici...! Definizione! Matrici di tipo particolare Definizioni relative-! Definizioni ed operazioni fondamentali! Somma di matrici (o differenza)! Prodotto di due matrici! Prodotti

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018. Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018 Prova teorica - A Nome... N. Matricola... Ancona, 5 aprile 2018 1. Gradi di libertà di

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012

ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012 ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012 G 1 : Considera la corona circolare formata da due cerchi aventi il raggio uno il doppio dell altro, l angolo al centro â e le due corde AB e A B. La

Dettagli

1. Analisi cinematica delle strutture

1. Analisi cinematica delle strutture 1. nalisi cinematica delle strutture Metodo analitico ü [.a. 211-212 : ultima revisione 22 ottobre 211] In questa pplicazione si esamina una serie di strutture al fine di identificare le proprieta' cinematiche

Dettagli

Compito di Matematica / Classe 2Dsa / 10-marzo-17 / Alunno:

Compito di Matematica / Classe 2Dsa / 10-marzo-17 / Alunno: Compito di Matematica / Classe 2Dsa / 10-marzo-17 / Alunno: Assegnato il triangolo di vertici A 6, 5 B 5, 2 C(13, 2) determina l ortocentro e il circocentro. Determina l equazione della retta di Eulero.

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Il valore assoluto (lunghezza, intensita )

Il valore assoluto (lunghezza, intensita ) Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza

Dettagli

Primo compito di esonero. Meccanica Razionale - Canale A - La. 23 aprile Docente C. Cammarota

Primo compito di esonero. Meccanica Razionale - Canale A - La. 23 aprile Docente C. Cammarota Primo compito di esonero Meccanica Razionale - Canale A - La 23 aprile 2014 Docente C. Cammarota Un punto materiale P di massa m è vincolato a muoversi senza attrito su un profilo descritto dall equazione

Dettagli

ESERCIZI SUL CAMPO ELETTRICO 2

ESERCIZI SUL CAMPO ELETTRICO 2 ESERIZI SUL AMPO ELETTRIO 5. Una sfera di massa m possiede una carica q positiva. Essa è legata con un filo ad una lastra piana infinita uniformemente carica con densità superficiale σ, e forma un angolo

Dettagli

Scritto di meccanica razionale 1 A-L del

Scritto di meccanica razionale 1 A-L del Scritto di meccanica razionale 1 A-L del 1.1.6 Esercizio 1 Nel piano Oxy di una terna solidale Oxyz si consideri la lamina rigida D in figura, costituita da una semicorona circolare di centro O, raggio

Dettagli

Giacomo Sacco Appunti di Costruzioni Edili

Giacomo Sacco Appunti di Costruzioni Edili Giacomo Sacco Appunti di Costruzioni Edili Le tensioni dovute a sforzo normale, momento, taglio e a pressoflessione. 1 Le tensioni. Il momento, il taglio e lo sforzo normale sono le azioni che agiscono

Dettagli

1 SIGNIFICATO DEL DETERMINANTE

1 SIGNIFICATO DEL DETERMINANTE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Facoltà di Farmacia e Medicina - Corso di Laurea in CTF 1 SIGNIFICATO DEL DETERMINANTE Consideriamo il seguente problema: trovare l area del parallelogramma

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. ott. Franco Obersnel Esercizio 1 Sia R = [a 1, b 1 ] [a, b ] [a 3, b 3 ] IR 3 un parallelepipedo di IR 3. Si diano le

Dettagli

Lezione 12 - I cerchi di Mohr

Lezione 12 - I cerchi di Mohr Lezione 1 - I cerchi di Mohr ü [A.a. 011-01 : ultima revisione 3 novembre 013] In questa lezione si descrive un classico metodo di visualizzazione dello stato tensionale nell'intorno di un punto generico

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e Tecnologie della Comunicazione Complementi 1: numeri complessi I numeri complessi La definizione dei numeri complessi nasce dalla esigenza di trovare una soluzione alla equazione: x 1 che non

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Verifica di Topografia

Verifica di Topografia ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 5^ Geometri 1) Se il seno e il coseno di

Dettagli

1 Congruenza diretta e inversa

1 Congruenza diretta e inversa 1 Congruenza diretta e inversa PROPRIETÀ. La congruenza tra due figure piane mantiene inalterata la lunghezza dei segmenti e l ampiezza degli angoli; ciò che cambia è la posizione delle figure nel piano.

Dettagli

Equilibrio statico sul piano inclinato

Equilibrio statico sul piano inclinato Esperienza 3 Equilibrio statico sul piano inclinato Obiettivi - Comprendere la differenza tra grandezze vettoriali e grandezze scalari attraverso lo studio delle condizioni di equilibrio statico di un

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e.

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e. 16 42 Funzioni implicite Il seguente teorema fornisce una condizione sufficiente affinché, data un equazione della forma f(x, ) = 0, sia possibile determinare come funzione della x Teo 11 (Teorema della

Dettagli

Appunti di Costruzioni Edili

Appunti di Costruzioni Edili Giacomo Sacco Appunti di Costruzioni Edili Geometria delle masse (Aggiornato settembre 016) 1 - Geometria delle masse Per massa intendiamo la quantità di materia presente in un corpo. Nel Sistema Internazionale

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

ESERCITAZIONE 2 RIPARTIZIONE FORZE SISMICHE

ESERCITAZIONE 2 RIPARTIZIONE FORZE SISMICHE ESERCITAZIONE 2 RIPARTIZIONE FORZE SISMICHE Questa esercitazione permette di individuare il metodo di ripartizione di una forza orizzontale, come ad esempio la forza sismica, sui diversi telai che costituiscono

Dettagli

Calcolo di velocità angolari ed energie cinetiche di corpi rigidi.

Calcolo di velocità angolari ed energie cinetiche di corpi rigidi. Calcolo di velocità angolari ed energie cinetiche di corpi rigidi. > restart: with(linalg): Warning, new definition for norm Warning, new definition for trace () Disco circolare omogeneo che rotola con

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

1. Siano A e B due punti di un atto di moto rigido piano. Dire quale delle seguenti affermazioni è errata:

1. Siano A e B due punti di un atto di moto rigido piano. Dire quale delle seguenti affermazioni è errata: Università del Salento Facoltà di Ingegneria Corsi di Laurea in Ingegneria Industriale e Civile Prova scritta di Meccanica Razionale 20 giugno 2016 Soluzioni Parte 1: Domande a risposta multipla. 1. Siano

Dettagli

PNI 2008 QUESITO La probabilità richiesta è uguale al rapporto tra il volume favorevole ed il volume possibile : QUESITO 2

PNI 2008 QUESITO La probabilità richiesta è uguale al rapporto tra il volume favorevole ed il volume possibile : QUESITO 2 www.matefilia.it PNI 008 QUESITO 1 Il triangolo ABC, sezione del cono con un piano perpendicolare alla base e passante per il vertice, è equilatero; indichiamo con R il lato del triangolo (R sarà il raggio

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

Lezione 41 - Il teorema di reciprocita'

Lezione 41 - Il teorema di reciprocita' ezione 41 - Il teorema di reciprocita' ü [A.a. 212-213 : ultima revisione 25 Aprile 213] In questa ezione si introduce il concetto di distorsione, e si dimostra un principio generale di reciprocita', da

Dettagli

Domanda Risposta

Domanda Risposta Esame di Geometria 18 Maggio 010 Cognome e Nome: Matricola: Corso di Laurea Regolamento della prova. La prova consiste in 7 Domande a risposta multipla chiusa (di cui una soltanto è corretta) e di Esercizi.

Dettagli

Università degli Studi di Catania CdL in Ingegneria Civile e Ambientale

Università degli Studi di Catania CdL in Ingegneria Civile e Ambientale CdL in ngegneria Civile e Ambientale Prova scritta di Algebra Lineare e Geometria del 26 gennaio 2018 Usare solo carta fornita dal Dipartimento di Matematica e nformatica, riconsegnandola tutta. 1) Siano

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 22/23 Baricentri Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a. 22/23

Dettagli

STATICA Equilibrio dei solidi

STATICA Equilibrio dei solidi FISICA STATICA Equilibrio dei solidi Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica EQUILIBRIO DI UN PUNTO MATERIALE Un corpo è in equilibrio quando è fermo e continua a restare fermo.

Dettagli

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1 CENTR DI TAGLI E TRSINE SPURIA IN TRAVI A PARETE STTILE ESERCIZI 1 La sezione di figura, sietrica rispetto ad un asse orizzontale passante per, è soggetta all azione di taglio T agente in direzione verticale

Dettagli

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60

Dettagli

Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa

Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa t = 15 h = 175 Si consideri la sezione rappresentata in figura (sezione di trave inflessa) sulla quale agisca un taglio verticale T

Dettagli

Richiami di geometria delle Aree

Richiami di geometria delle Aree Università degli Studi di Roma Tre - Facoltà di Ingegneria Laurea magistrale in Ingegneria Civile in Protezione Corso di Cemento rmato Precompresso / 2016-17 Richiami di geometria delle ree PREMESS L analisi

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 15 Febbraio 018 (usare fogli diversi per esercizi diversi) Primo Esercizio In un piano orizzontale si fissi un sistema di riferimento

Dettagli

Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 3 settembre 2009 Tema A

Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 3 settembre 2009 Tema A Università degli Studi di Bergamo Corso integrato di Analisi (Geometria e Algebra Lineare) settembre 009 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

SdC A. COGNOME:... NOME:... Matricola:... FIRMA:... Pagina 1/4. Problema 1. Si consideri la travatura in figura.

SdC A. COGNOME:... NOME:... Matricola:... FIRMA:... Pagina 1/4. Problema 1. Si consideri la travatura in figura. Università degli Studi di Roma Tor Vergata Corso di Scienza delle Costruzioni - A.A. 2013/14 Corsi di Studio in Ingegneria Edile-Architettura e Ingegneria dell Edilizia Prova scritta del 24 febbraio 2014

Dettagli

1. Calcolare, giustificandone l esistenza, il seguente integrale: y (1 + x) 2 dxdy, ydxdy. x 2 dxdy,

1. Calcolare, giustificandone l esistenza, il seguente integrale: y (1 + x) 2 dxdy, ydxdy. x 2 dxdy, . Calcolare, giustificandone l esistenza, il seguente integrale: ( + x dxd, = {(x, R :, x }.. isegnare il dominio = {(x, R : x, + x } e calcolare dxd. 3. Calcolare x dxd, è il triangolo di vertici ( 3,,

Dettagli

Coordinate e Sistemi di Riferimento

Coordinate e Sistemi di Riferimento Coordinate e Sistemi di Riferimento Sistemi di riferimento Quando vogliamo approcciare un problema per risolverlo quantitativamente, dobbiamo per prima cosa stabilire in che sistema di riferimento vogliamo

Dettagli